Introduction to Iterative Clustering Analysis Using
iterClust

Hongxu Ding and Andrea Califano
Department of Systems Biology, Columbia University, New York, USA

April 25, 2023

Contents

1 Intr 10N 1
LT General WorkFlowl . . . . . ... ... ... . ... .. ... .. 2
(1.2 Internal Variables IV)| . . . .. ... .. ... ... ... .. ... ..., 2
1.3 Installationl . . . ... .. . . . .. ... 2
...................................... 2

2 Data Preparation| 2

3 Define functions 3

4 Run iterClust 4

15 Compare iterClust, PAM and Consensus Clustering| 5

1 Introduction

In a scenario where populations A, B1, B2 exist, pronounce differences between A and B
may mask subtle differences between B1 and B2. To solve this problem, so that heterogene-
ity can be better detected, clustering analysis needs to be performed iteratively, so that, for
example, in iteration 1, A and B are separated and in iteration 2, B1 and B2 are separated
. The iterClust () function in iterClust package provides an statistical framework for
performing such iterative clustering analysis, which can be used to, for instance discover cell
populations using single cells RNA-Seq profiles, clustering clinically-related patient gene ex-
pression profiles and solve general clustering problems.



1.1 General Work Flow

iterClust () organizes user-defined functions and parameters as follows:
ith Iteration Start =>
featureSelect (feature selection) =>
minFeatureSize (confirm enough features are selected) =>
clustHetero (confirm heterogeneity) =>
coreClust (generate several clustering schemes, only for heterogenous clusters) =>
clustEval (pick the optimal clustering scheme) =>
minClustSize (remove clusters with few observations) =>
obsEval (evaluate how each observations are clustered) =>
obsOutlier (remove poorly clustered observations) =>
results in Internal Variables (IV) =>
ith Iteration End

1.2 Internal Variables (IV)

iterClust () has the following IVs which can be used in user-defined functions:
cluster, a list with two elements, named cluster and feature, which are also list object,
organized by round of iterations, containing names of observations for each clusters in this
specific iteration, and features used to split clusters in previous iterations thereby produce the
current clusters organized as lists, respectively.
depth, an integer specifying current round of iteration.

1.3 Installation

iterClust depends on SummarizedExperiment and Biobase. Running examples in iterClust
requires tsne, cluster, ConsensusClusterPlus and bcellViper. To install iterClust, from bio-
conductor

if (!requireNamespace ("BiocManager", quietly=TRUE))
install.packages ("BiocManager")
BiocManager::install ("iterClust")

1.4 Citing

2 Data Preparation

We applied iterClust () toa B-cell expression dataset included in bcellViper. We load the
two librarues first, followed by load and filter expression matrix and phenotype annotation.



library (iterClust)

library (bcellViper)

data (bcellViper)

exp <— exprs(dset)

pheno <- as.character (dset@phenoDatal@dataSdescription)

exp <- exp[, pheno %in% names (table (pheno)) [table (pheno) > 5]]
pheno <- pheno[pheno %in% names (table (pheno)) [table (pheno) > 5]]
dim(exp)

vV V.V Vv VvV VYV

[1] 6249 161

> table (pheno)

pheno
B-CLL BL DLCL HCL PEL pB-CLL pDLCL pFL pMCL
16 23 53 13 9 18 15 6 8

3 Define functions

We define functions needed for iterClust (), as well as load package cluster that these
functions needed.

> library(cluster)
In every iterations, all genes in the dataset were used for clustering analysis.
> featureSelect <- function (dset, iteration, feature) return (rownames (dset

In every iterations, the core function for clustering is pam () in package cluster. We
searched through 2 to 5 clusters to find the optimal result.

> coreClust <- function(dset, iteration){

+ dist <- as.dist (1l - cor(dset))

+ range=seq (2, (ncol(dset)-1), by = 1)

+ clust <- vector("list", length (range))

+ for (i in 1:length(range)) clust[[i]] <- pam(dist, range[i])Sclusterin
+ return (clust)}

In every iterations, the core function for evaluating different clustering schemesis silhouette ()
in package cluster. We considered clustering schemes with the highest average silhouette
score as the optimal scheme. clust is the output for function clust fun ().



> clustEval <- function(dset, iteration, clust){

+ dist <- as.dist (1l - cor(dset))

+ clustEval <- vector ("numeric", length (clust))

+ for (i in I1:1ength(clust)){

+ clustEval[i] <- mean(silhouette(clust/[[i]], dist) [, "sil width"])}
+ return (clustEval) }

In every iterations, clusters with average silhouette score greater than 0.15 were considered
as heterogenous and further splitted.

> clustHetero <- function(clustEval, iteration){
+ return (clustEval > O#xiteration+0.15) }

In every iterations, the core function for evaluating each observation is silhouette ()
in package cluster. clust is the output for function clustfun ().

> obsEval <- function(dset, clust, iteration){
+ dist <- as.dist (1l - cor(dset))
+ obsEval <- vector ("numeric", length(clust))

+ return (silhouette(clust, dist) [, "sil width"])}

In every iterations, observations with silhouette score smaller than -1 were considered as
outlier observations.

> obsOutlier <- function (obsEval, iteration) return(obsEval < O#iteration-

4 Run iterClust

iterClust () was run with the above defined functions. Then we showed how the results
of iterClust () are organized.

> ¢ <- iterClust (exp, maxIter=3, minFeatureSize=100, minClustSize=5)
> names (c)

[1] "cluster" "feature" "clustEval" "obsEval"
> names (c$cluster)

[1] "Iterl™ "Iter2"

> names (cScluster$SIiterl)

[1] "Clusterl"™ "Cluster2" "Cluster3" "Cluster4"™ "Clusterb"



> cSclusterSIterlSClusterl

[1] "GSM44075" "GSM44078" "GSM44080" "GSM44081" "GSM44082" "GSM44083"
[7] "GSM44084" "GSM44088" "GSM44089" "GSM44091" "GSM44092"™ "GSM44094™"
[13] "GSM44095" "GSM44246™ "GSM44247" "GSM44248" "GSM44249" "GSM44250"
[19] "GSM44251" "GSM44252"™ "GSM44261" "GSM44264"™ "GSM44265" "GSM44266"
[25] "GSM44267" "GSM44268" "GSM44269" "GSM44076" "GSM44077" "GSM44079"
[31] "GSM44090"™ "GSM44093™ "GSM44192"™ "GSM44244"™ "GSM44245" "GSM44253"
[37] "GSM44254"™ "GSM44255"™ "GSM44256"™ "GSM44257" "GSM44258" "GSM44259"
[43] "GSM44291"™ "GSM44292"
> names (cSfeature)
[1] "Iterl"™ "Iter2"
> names (cSfeatureSIterl)
[1] "OriginalDataset"”
> names (cSfeatureSIter’2)
[1] "ClusterlinIterl" "Cluster2inIterl"™ "Cluster3inIterl"™ "Clusterd4inlIterl
[5] "ClusterbinIterl"
> cSfeatureSIter2S5Clusterliniterl[1:10]
[1] "ADA" "CDH2" "MEDG" "NR2E3" "ACOTS8" "ABI1" "GNPDA1"
[8] "TANK" "HGC6.3" "Clorfo8"

S Compare iterClust, PAM and Consensus Clustering

In this section, we compared the performance of iterClust () with another clustering
framework ConsensusClusterPlus () as well as their underlying clustering algorithm
pam ().

"clusterConsensus"]
ICL=ICL)

> library (ConsensusClusterPlus)

> set.seed(1)

> consensusClust = ConsensusClusterPlus (exp, maxK = 10,

+ reps = 100, clusterAlg = "pam",

+ distance = "pearson", plot = FALSE
> ICL <- calcICL(consensusClust, plot = FALSE)

> ICL <- sapply(2:10, function(k, ICL){

+ s <— ICLSclusterConsensus[grep(k, ICLSclusterConsensus(, "k"]),

+

+

mean(s[is.finite(s)])},



vV V. Vv Vv

We first projected the data on 2D-tSNE space for later visualization purpose.

library (tsne)
dist <- as.dist(l - cor(exp))

set.seed (1)
tsne <- tsne(dist, perplexity = 20, max_iter = 500)

Then we compared iterClust (), pam() and ConsensusClusterPlus ().



> par (mfrow = c(1, 2))
> for (j in 1:1length(cScluster)) {

+

+ + + + + +

COL <- structure(rep (1, ncol (exp)), names = colnames (exp))
for (i in 1:length(cScluster[[j]])) COL[cScluster[[F]][[i]]] <- 1i+1
plot (tsnel[, 1], tsne[, 2], cex = 0, cex.lab = 1.5,

xlab = "Diml", ylab = "Dim2",

main = paste("iterClust, iter=", j, sep = ""))
text (tsne([, 1], tsnel[, 2], labels = pheno, cex = 0.5, col = COL)
legend("topleft", legend = "Outliers", fill = 1, bty = "n")}

iterClust, iter=1 iterClust, iter=2

15
5

1 I%ﬂtliers — 7| M Outliers

1
1

AN HCL AN HCL I '}L
E 0 — popcL DLCHBHERL E 0 — DLCHBFERY.
N R DLCL DLCL

[a) Pl BC: BoLcl pLo. A smLcl pLot

o Ll o™ o o oudgh 30

hic. i O, :
B
o0 _| oSk o n
. e .

Figure 1: Resultof iterClust ()



> par (mfrow = c(1, 2))
> for (j in 1:1length(cScluster)){

+

+ + + +

plot (tsnel[, 1], tsne[, 2], cex = 0, cex.lab = 1.5,
xlab = "Diml", ylab = "Dim2",
main = paste ("PAM, k=", length (cScluster([[j]]),
text (tsne[, 1], tsne[, 2], labels = pheno, cex = 0.5,

sep =

n ") )

col = pam(dist, k = length(cScluster[[j]]))Sclustering)}

PAM, k=5 PAM, k=7

5
|
5

S
o

1
1

DLCL

o AN HCL By f;L
E ° g “7 ﬁ@JMP
a a oot B vt
o o &) o MRRSL ,%ﬁ%j{h ﬁ%&t 5@
9DLCL Dpftsy. BH P'over
? P A e
I : PGk
' ' ' ' ' I T T T T
-20 -10 0 10 20 -20 -10 0 10 20

Figure 2: Result of PAM () with same number of clusters given by iterClust ()



+ VvV +V++V +V+V S+ F+VY

par (mfrow = c (2, 2))

plot(c(2:10), ICL, xlab = "#Clusters", ylab = "Cluster Consensus Score’",
col = c¢c(2, rep(1l, 8)), ylim = c(0.8, 1),
cex.lab = 1.5, pch = 16, main = "")
plot (tsnef[, 1], tsne[, 2], cex = 0, cex.lab = 1.5,
xlab = "Diml", ylab = "Dim2",main = "Consensus Clustering+PAM, k=2"
text (¢snef[, 1], tsne[, 2], labels = pheno,
cex = 0.5, col = consensusClust/[[2]]SconsensusClass)
plot(c(2:10), ICL, xlab = "#Clusters", ylab = "Cluster Consensus Score’",
col = c¢c(rep(1, 5), 2, 1, 1), ylim = c(0.8, 1),
cex.lab = 1.5, pch = 16, main = "")
plot (tsnef[, 1], tsne[, 2], cex = 0, cex.lab = 1.5,
xlab = "Diml", ylab = "Dim2",main = "Consensus Clustering+PAM, k=7"
text (tsnel[, 1], tsne[, 2], labels = pheno, cex = 0.5,
col = consensusClust[[7]]SconsensusClass)

Consensus Clustering+PAM, k=2

(&) 8 1 0 g
= o - s
o HEfEEr
o L]
0N n . o
(%2} g ] . =]
> pLCL
2 . o~ o
% S | c 0 v%&w‘“;mm‘ ‘
c ° ° a ”’ﬁi Lab ol e
o i N L , e
o O —.pc ﬂ”ﬁnﬁ@&ﬂ B
0 o . B:s L it L
g S . zf;%'”s‘”‘g‘eﬁft“
7] . o _| Be-oiea
= ' T
O 34
© T T T T T T T T T T
2 4 6 8 10 -20 -10 0 10 20
#Clusters Dim1l
Consensus Clustering+PAM, k=7
8
) > o | o
B — = %’gﬁ%ﬁ
[&]
0N n * .
n 9 - . S
o
3 .
c ° N, HeL
3 2 - €
c L]
o] e o
O o . .
e 0 -
o o ¢ i
b7 * o e
] bLCk
O 8
© T T T T T T T T T T
2 4 6 8 10 -20 -10 0 10 20
#Clusters Dim1l

Figure 3: Result of ConsensusClusterPlus ()



The results showed that iterClust () can distinguish subtle differences between puri-
fied and unpurified B-cells (pDLCL VS DLCL, B-CLL VS pB-CLL), which cannot be distin-
guished by pam () and ConsensusClusterPlus (). Also, pam () and ConsensusClusterPlus ()
falsely separated a homogenous cluster containing DLCL samples (DLCL samples are known
to have subpopulations and this is one subpopulation).

10



	Introduction
	General Work Flow
	Internal Variables (IV)
	Installation
	Citing

	Data Preparation
	Define functions
	Run iterClust
	Compare iterClust, PAM and Consensus Clustering

