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1 Introduction

Mathematical models are used to understand protein signalling networks so
as to provide an integrative view of pharmacological and toxicological pro-
cesses at molecular level. CellNOptR [1] is an existing package (see http://

bioconductor.org/packages/release/bioc/html/CellNOptR.html) that pro-
vides functionalities to combine prior knowledge network (about protein sig-
nalling networks) and perturbation data to infer functional characteristics (of
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the signalling network). While CellNOptR has demonstrated its ability to infer
new functional characteristics, it is based on a boolean formalism where protein
species are characterised as being fully active or inactive. In contrast, logic-
based ordinary differential equations allow a quantitive description of a given
Boolean model.

The method used here was first published byWittmann et al. [9] by the name
of odefy. For a detailed description of the methodology the user is adressed to
[9] and for a published application example to [6].

This package implements the Odefy method and focus mainly extending the
CellNOptR capabilities in order to simulate and calibrate logic-based ordinary
differential equation model. We provide direct and easy to use interface to op-
timization methods available in R such as eSSR [7] (enhanced Scatter Search
Metaheuristic for R) and an R genetic algorithm implementation by the name
of genalg in order to perform parameter estimation. Additionally we were spe-
cially careful in tackling the main computanional bottlenecks by implementing
CNORode simulation engine in the C language using the CVODES library [10].

This brief tutorial shows how to use CNORode using as a starting point a
Boolean model and a dataset consisting in a time-series of several proteins.

2 Installation

CNORode depends on CellNOptR and genalg, which are 2 bioconductor pack-
ages. Therefore, in order to install CNORode, open a R session and type:

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("CNORode")

It may take a few minutes to install all dependencies if you start from scratch
(i.e, none of the R packages are installed on your system). Note also that under
Linux system, some of these packages necessitate the R-devel package to be
installed (e.g., under Fedora type sudo yum install R-devel).

Additionally, for parameter estimation we recommend the use of eSSR. This
algorithm is part of the MEIGOR toolbox which is available on BioConductor
and it can be downloaded from https://www.bioconductor.org/packages/

release/bioc/html/MEIGOR.html. MEIGOR can be installed by typing

BiocManager::install("MEIGOR")

Finally, once CNORode is installed you can load it by typing:

library(CNORode)
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3 Quick Start

In this section, we provide a quick example on how to use CNORode to find the
set of continuous parameters which minimize the squared difference between a
model simulation and the experimental data.

Since here we will not be modifying the model structure as opposed to
CellNOptR we will use a model that already contains AND type gates. Such
model can be for instance the result of calibrating a prior knowledge network(PKN)
with CellNOptR. Please note that a PKN can also be used as Boolean model
which will contain only OR type gates.

Detailed information about the model used here (ToyModelMMB FeedbackAnd)
and additional models can be found at: https://saezlab.github.io/CellNOptR/
5_Models%20and%20Documentation/
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Figure 1: The used model(left panel). A plot from the data, resulting from the
plotCNOlist function (right panel).

The example used here is shipped with the CNORode. In order to load the
data and model you should type the following commands:

library(CNORode)

model=readSIF(system.file("extdata", "ToyModelMMB_FeedbackAnd.sif",

package="CNORode",lib.loc = .libPaths()));

cno_data=readMIDAS(system.file("extdata", "ToyModelMMB_FeedbackAnd.csv",

package="CNORode",lib.loc = .libPaths()));

cnolist=makeCNOlist(cno_data,subfield=FALSE);
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The structure from the CNOlist and the Model object is exactly the same
as used in the CellNOptR and therefore for a detailed explanation about these
structure we direct the reader to the CellNOptR manual.

In order to simulate the model and perform parameter estimation we first
need to create a list with the ODE parameters associated with each dynamic
state as described in [9]. Each dynamic state will have a τ parameter, as many n
and k parameters as inputs. Although the default is to use the normalized Hill
function it also possible to use the standard Hill or even not to use any transfer
function at all. To illustrate the shape of the equations associated to each
dynamic state and the meaning of each parameter, let us show the differential
of Mek :

˙Mek =

[(
1−Aktn1/(k1

n1 +Aktn1)

1/(k1
n1 + 1)

)
·

(
Rafn2/(k2

n2 +Rafn2)

1/(k2
n2 + 1)

)
−Mek

]
· τMek

To create a list of ODE parameters we will typically use the createLBode-
ContPars function:

ode_parameters=createLBodeContPars(model, LB_n = 1, LB_k = 0.1,

LB_tau = 0.01, UB_n = 5, UB_k = 0.9, UB_tau = 10, default_n = 3,

default_k = 0.5, default_tau = 1, opt_n = TRUE, opt_k = TRUE,

opt_tau = TRUE, random = FALSE)

This function creates a general structure where the ODE parameters are
ordered according to the model. Some tweaks have been added in order to
ease tasks we have found to be common, nevertheless you can edit several at-
tributes manually. If you print the ode parameters list you will see the following
attributes.
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print(ode_parameters)

$parNames

[1] "cJun_n_Jnk" "cJun_k_Jnk" "TRAF6_n_Jnk" "TRAF6_k_Jnk"

[5] "tau_Jnk" "Mek_n_Erk" "Mek_k_Erk" "tau_Erk"

[9] "Jnk_n_cJun" "Jnk_k_cJun" "tau_cJun" "TRAF6_n_p38"

[13] "TRAF6_k_p38" "tau_p38" "TNFa_n_TRAF6" "TNFa_k_TRAF6"

[17] "tau_TRAF6" "PI3K_n_Akt" "PI3K_k_Akt" "tau_Akt"

[21] "Ras_n_Raf" "Ras_k_Raf" "tau_Raf" "TNFa_n_PI3K"

[25] "TNFa_k_PI3K" "EGF_n_PI3K" "EGF_k_PI3K" "tau_PI3K"

[29] "EGF_n_Ras" "EGF_k_Ras" "tau_Ras" "Akt_n_Mek"

[33] "Akt_k_Mek" "Raf_n_Mek" "Raf_k_Mek" "tau_Mek"

[37] "Erk_n_Hsp27" "Erk_k_Hsp27" "p38_n_Hsp27" "p38_k_Hsp27"

[41] "tau_Hsp27" "TRAF6_n_NFkB" "TRAF6_k_NFkB" "tau_NFkB"

[45] "Mek_n_p90RSK" "Mek_k_p90RSK" "tau_p90RSK"

$parValues

[1] 3.0 0.5 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5

[17] 1.0 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 3.0 0.5 1.0 3.0 0.5 1.0 3.0

[33] 0.5 3.0 0.5 1.0 3.0 0.5 3.0 0.5 1.0 3.0 0.5 1.0 3.0 0.5 1.0

$index_opt_pars

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

[45] 45 46 47

$index_n

[1] 1 3 6 9 12 15 18 21 24 26 29 32 34 37 39 42 45

$index_k

[1] 2 4 7 10 13 16 19 22 25 27 30 33 35 38 40 43 46

$index_tau

[1] 5 8 11 14 17 20 23 28 31 36 41 44 47

$LB

[1] 1.00 0.10 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10

[14] 0.01 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10 0.01 1.00 0.10 1.00

[27] 0.10 0.01 1.00 0.10 0.01 1.00 0.10 1.00 0.10 0.01 1.00 0.10 1.00

[40] 0.10 0.01 1.00 0.10 0.01 1.00 0.10 0.01

$UB

[1] 5.0 0.9 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9

[14] 10.0 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9 10.0 5.0 0.9 5.0

[27] 0.9 10.0 5.0 0.9 10.0 5.0 0.9 5.0 0.9 10.0 5.0 0.9 5.0
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[40] 0.9 10.0 5.0 0.9 10.0 5.0 0.9 10.0
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Typically before running an optimization run you will want to choose which
type of parameters you want to optimize. The field index opt pars defines which
parameters are meant to be optimized. In the createLBodeContPars, if you
choose opt tau as TRUE all τ parameters will be added to the index opt pars
array, the same idea is valid for n and k parameters.

It is also possible to choose default values for lower and upper bounds for the
parameters of a given type, e.g. τ ( LB tau and UB tau), as well as a default
initial value for such parameters.

Once we have the ODE parameters structure we are ready to run a simulation
or optimization process. To run a simulation we can use the getLBodeModel or
getLBodeDataSim, depending on if we want to simulate only the signals present
in the CNOlist object or all the species in the model. Additionally plotLBode-
DataSim or plotLBodeModelSim will also return the values of a model simulation
while plotting the same values. In figure 2, we use plotLBodeModelSim to plot
all the experiments sampled in 5 different instants (timeSignals).

modelSim=plotLBodeModelSim(cnolist = cnolist, model, ode_parameters,

timeSignals=seq(0,2,0.5));
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Figure 2: A model simulation plotted with plotLBodeModelSim ..
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As previously mentioned, we provide two optimization algorithms that allow
parameter estimation Both of these algorithms have specific parameters that can
be tunned on each specific problem (please check CNORode manual for detailed
information). For instance, in order to run the genetic algorithm for 10 iterations
and a population of size of 10, we can use the following code:

initial_pars=createLBodeContPars(model, LB_n = 1, LB_k = 0.1,

LB_tau = 0.01, UB_n = 5, UB_k = 0.9, UB_tau = 10, random = TRUE)

#Visualize initial solution

simulatedData=plotLBodeFitness(cnolist, model,initial_pars)

paramsGA = defaultParametersGA()

paramsGA$maxStepSize = 1

paramsGA$popSize = 50

paramsGA$iter = 100

paramsGA$transfer_function = 2

opt_pars=parEstimationLBode(cnolist,model,ode_parameters=initial_pars,

paramsGA=paramsGA)

#Visualize fitted solution

simulatedData=plotLBodeFitness(cnolist, model,ode_parameters=opt_pars)

Model optimisation using eSS:

requireNamespace("MEIGOR")

initial_pars=createLBodeContPars(model,

LB_n = 1, LB_k = 0.1, LB_tau = 0.01, UB_n = 5,

UB_k = 0.9, UB_tau = 10, random = TRUE)

#Visualize initial solution

fit_result_ess =

parEstimationLBodeSSm(cnolist = cnolist,

model = model,

ode_parameters = initial_pars,

maxeval = 1e5,

maxtime = 20,

local_solver = "DHC",

transfer_function = 3

)

#Visualize fitted solution

# simulatedData=plotLBodeFitness(cnolist, model,ode_parameters=fit_result_ess)
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simulatedData=plotLBodeFitness(cnolist, model,

initial_pars,

transfer_function = 3)
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Figure 3: The initial solution before optimization. Each row corresponds to an
experiment with a particular combination of stimuli and inhibitors. The columns
correspond to the measured values (triangles) and the simulated values (dashed
blue lines) from a given signal. The background color gives an indication of
squared difference where red means high error and white low error.
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simulatedData=plotLBodeFitness(cnolist, model,

ode_parameters=fit_result_ess,

transfer_function = 3)
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Figure 4: A solution obtained by optimization with a genetic algorithm. Each
row corresponds to an experiment with a particular combination of stimuli and
inhibitors. The columns correspond to the measured values (triangles) and the
simulated values (dashed blue lines) from a given signal. The background color
gives an indication of squared difference where red means high error and white
low error.
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In addition to eSSR and genalg its is fairly easy to use any other continuous
optimization algorithm. In the following example we show how to generate and
use an the objective function in order to use it with a variant of eSSR(part of
MEIGOR package) that uses multiple cpus:

library(MEIGOR)

f_hepato<-getLBodeContObjFunction(cnolist, model, initial_pars, indices=NULL,

time = 1, verbose = 0, transfer_function = 2, reltol = 1e-05, atol = 1e-03,

maxStepSize = Inf, maxNumSteps = 1e4, maxErrTestsFails = 50, nan_fac = 1)

n_pars=length(initial_pars$LB);

problem<-list(f=f_hepato, x_L=initial_pars$LB[initial_pars$index_opt_pars],

x_U=initial_pars$UB[initial_pars$index_opt_pars]);

#Source a function containing the options used in the CeSSR publication

source(system.file("benchmarks","get_paper_settings.R",package="MEIGOR"))

#Set max time as 20 seconds per iteration

opts<-get_paper_settings(20);

Results<-CeSSR(problem,opts,Inf,Inf,3,TRUE,global_save_list=c('cnolist','model',

'initial_pars'))

4 Crossvalidation

CNORode offers the possibility to perform a k-fold cross-validation for logic-
ode models in order to assess the predictive performance of our models. In
k-iterations a fraction of the data is eliminated from the CNOlist. The model is
trained on the remaining data and then the model predicts the held-out data.
Then the prediction accuracy is reported for each iteration. Three different re-
sampling strategies about how we can split the training and the test set: 1)Re-
sampling of the data-points, 2)Re-sampling of the experimental conditions and
3)Resampling of the observable nodes.

In the example below, we show an example about how we can apply the
cross-validation analysis over a small toy case-study from Macnamara et al.
2012.

library(CellNOptR)

library(CNORode)

library(MEIGOR)

# MacNamara et al. 2012 case study:

data(PKN_ToyPB, package="CNORode")

data(CNOlist_ToyPB, package="CNORode")

# original and preprocessed network

plotModel(pknmodel, cnodata)

model = preprocessing(data = cnodata, model = pknmodel,

compression = T, expansion = T)

plotModel(model, cnodata)

plotCNOlist(CNOlist = cnodata)
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# set initial parameters

ode_parameters=createLBodeContPars(model, LB_n = 1, LB_k = 0,

LB_tau = 0, UB_n = 4, UB_k = 1,

UB_tau = 1, default_n = 3, default_k = 0.5,

default_tau = 0.01, opt_n = FALSE, opt_k = TRUE,

opt_tau = TRUE, random = TRUE)

## Parameter Optimization

# essm

paramsSSm=defaultParametersSSm()

paramsSSm$local_solver = "DHC"

paramsSSm$maxtime = 600;

paramsSSm$maxeval = Inf;

paramsSSm$atol=1e-6;

paramsSSm$reltol=1e-6;

paramsSSm$nan_fac=0;

paramsSSm$dim_refset=30;

paramsSSm$n_diverse=1000;

paramsSSm$maxStepSize=Inf;

paramsSSm$maxNumSteps=10000;

transferFun=4;

paramsSSm$transfer_function = transferFun;

paramsSSm$lambda_tau=0

paramsSSm$lambda_k=0

paramsSSm$bootstrap=F

paramsSSm$SSpenalty_fac=0

paramsSSm$SScontrolPenalty_fac=0

# run the optimisation algorithm

opt_pars=parEstimationLBode(cnodata,model, method="essm",

ode_parameters=ode_parameters, paramsSSm=paramsSSm)

plotLBodeFitness(cnolist = cnodata, model = model,

ode_parameters = opt_pars, transfer_function = 4)

# 10-fold crossvalidation using T1 data

# We use only T1 data for crossvalidation, because data

# in the T0 matrix is not independent.

# All rows of data in T0 describes the basal condition.

# Crossvalidation produce some text in the command window:

library(doParallel)

registerDoParallel(cores=3)

R=crossvalidateODE(CNOlist = cnodata, model = model,

type="datapoint", nfolds=3, parallel = TRUE,

ode_parameters = ode_parameters, paramsSSm = paramsSSm)

For more, please information about the crossvalidateODE function, please
check its documentation.

12



References

[1] C. Terfve. CellNOptR: R version of CellNOpt,
boolean features only. R package version 1.2.0, (2012)
http://www.bioconductor.org/packages/release/bioc/html/CellNOptR.html

[2] L.G. Alexopoulos, J. Saez-Rodriguez, B.D. Cosgrove, D.A. Lauffenburger,
P.K Sorger.: Networks inferred from biochemical data reveal profound dif-
ferences in toll-like receptor and inflammatory signaling between normal and
transformed hepatocytes. Molecular & Cellular Proteomics: MCP 9(9), 1849–
1865 (2010).

[3] M.K. Morris, I. Melas, J. Saez-Rodriguez. Construction of cell type-specific
logic models of signalling networks using CellNetOptimizer. Methods in
Molecular Biology: Computational Toxicology, Ed. B. Reisfeld and A. Mayeno,
Humana Press.

[4] M.K. Morris, J. Saez-Rodriguez, D.C. Clarke, P.K. Sorger, D.A. Lauffen-
burger. Training Signaling Pathway Maps to Biochemical Data with Con-
strain ed Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to In-
flammatory Stimuli. PLoS Comput Biol. 7(3) (2011) : e1001099.

[5] J. Saez-Rodriguez, L. Alexopoulos, J. Epperlein, R. Samaga, D. Lauffen-
burger, S. Klamt and P.K. Sorger. Discrete logic modelling as a means to
link protein signalling networks with functional analysis of mammalian signal
transduction. Molecular Systems Biology, 5:331, 2009.

[6] Dominik Wittmann, Jan Krumsiek, Julio S. Rodriguez, Douglas Lauffen-
burger, Steffen Klamt, and Fabian Theis. Transforming boolean models to
continuous models: methodology and application to t-cell receptor signaling.
BMC Systems Biology, 3(1):98+, September 2009.

[7] Egea, J.A., Maria, R., Banga, J.R. (2010) An evolutionary method for
complex-process optimization. Computers & Operations Research 37(2):315-
324.

[8] Egea, J.A., Balsa-Canto, E., Garcia, M.S.G., Banga, J.R. (2009) Dynamic
optimization of nonlinear processes with an enhanced scatter search method.
Industrial & Engineering Chemistry Research 49(9): 43884401.

[9] Jan Krumsiek, Sebastian Polsterl, Dominik Wittmann, and Fabian Theis.
Odefy - from discrete to continuous models. BMC Bioinformatics, 11(1):233+,
2010.

[10] R. Serban and A. C. Hindmarsh ”CVODES: the SensitivityEnabled ODE
Solver in SUNDIALS,” Proceedings of IDETC/CIE 2005, Sept. 2005, Long
Beach, CA. Also available as LLNL technical report UCRLJP200039.

13



[11] A. MacNamara, C. Terfve, D. Henriques, B.P. Bernabe, and J. Saez-
Rodriguez. State-time spectrum of signal transduction logic models. Phys
Biol., 9(4):045003, 2012.

14


	Introduction
	Installation
	Quick Start
	Crossvalidation

