Package ‘tidySummarized Experiment’

October 16, 2023
Type Package

Title Brings SummarizedExperiment to the Tidyverse
Version 1.10.0

Description
tidySummarizedExperiment is an adapter that abstracts the 'SummarizedExperiment' container
in the form of tibble and allows the data manipulation, plotting and nesting using 'tidyverse'

License GPL-3
Depends R (>=4.1.0), SummarizedExperiment

Imports tibble (>= 3.0.4), dplyr, magrittr, tidyr, ggplot2, rlang,
purtr, lifecycle, methods, plotly, utils, S4Vectors,
tidyselect, ellipsis, vctrs, pillar, stringr, cli, fansi

Suggests BiocStyle, testthat, knitr, markdown
VignetteBuilder knitr

RdMacros lifecycle

Biarch true

biocViews AssayDomain, Infrastructure, RNASeq, DifferentialExpression,
GeneExpression, Normalization, Clustering, QualityControl,
Sequencing, Transcription, Transcriptomics

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

LazyDataCompression xz
URL https://github.com/stemangiola/tidySummarizedExperiment

BugReports https://github.com/stemangiola/tidySummarizedExperiment/issues
git_url https://git.bioconductor.org/packages/tidySummarizedExperiment

git_branch RELEASE_3_17

git_last_commit e7ae528

git_last_commit_date 2023-04-25


https://github.com/stemangiola/tidySummarizedExperiment
https://github.com/stemangiola/tidySummarizedExperiment/issues

as_tibble

Date/Publication 2023-10-15

Author Stefano Mangiola [aut, cre]

Maintainer Stefano Mangiola <mangiolastefano@gmail.com>

R topics documented:

as_tibble . . . . . L e 2
bind . . . .. e e 3
bind_TOWS . . . . . . e e 4
070 1 L 11
formatting . . . . . . . . 12
geplot . . L e 13
pasilla . . . .o 14
plot_ly . . . e 15
< 18
tbl_format_header . . . . . . . . . . ... 19
AY . .. e 19
UNNESE . . . o e e e e e e e e e e e e 20
Po>T0 . . . o e e e e e e e e e 25

Index 26

as_tibble Coerce lists, matrices, and more to data frames
Description
[Maturing]

as_tibble() turns a SummarizedExperiment existing object into a so-called tibble, a data frame
with class tb1l_df.

Arguments
X A SummarizedExperiment
This parameter includes .subset that can be set to any tidyselect expression.
For example .subset = c(sample, type), or .subset = contains("PC").
Value

A tibble



bind 3

Examples

tidySummarizedExperiment::pasilla %>%
as_tibble()

tidySummarizedExperiment::pasilla %>%
as_tibble(.subset = -c(condition, type))

bind Efficiently bind multiple data frames by row and column

Description

This is an efficient implementation of the common pattern of do.call(rbind, dfs) ordo.call(cbind,
dfs) for binding many data frames into one.

Arguments

Data frames to combine.

Each argument can either be a data frame, a list that could be a data frame, or a
list of data frames.

When row-binding, columns are matched by name, and any missing columns
will be filled with NA.

When column-binding, rows are matched by position, so all data frames must
have the same number of rows. To match by value, not position, see mutate-
joins.

.id Data frame identifier.

When .1id is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
bind_rows(). When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

add.cell.ids from SummarizedExperiment 3.0 A character vector of length(x=c(x, y)). Ap-
pends the corresponding values to the start of each objects’ cell names.
Details

The output of bind_rows () will contain a column if that column appears in any of the inputs.

Value

bind_rows () and bind_cols() return the same type as the first input, either a data frame, tb1_df,
or grouped_df.



4 bind_rows

Examples

T%>%T <- magrittr:: %>%"
library(tibble)

tt <- tidySummarizedExperiment::pasilla
bind_rows(tt, tt)

num_rows <- nrow(tidySummarizedExperiment::as_tibble(tt))
tt %>% bind_cols(tibble(a=0, num_rows))

bind_rows distinct

Description

filter () retains the rows where the conditions you provide a TRUE. Note that, unlike base subset-
ting with [, rows where the condition evaluates to NA are dropped.

summarise() creates a new data frame. It will have one (or more) rows for each combination of
grouping variables; if there are no grouping variables, the output will have a single row summarising
all observations in the input. It will contain one column for each grouping variable and one column
for each of the summary statistics that you have specified.

summarise() and summarize() are synonyms.

mutate() adds new variables and preserves existing ones; transmute() adds new variables and
drops existing ones. New variables overwrite existing variables of the same name. Variables can be
removed by setting their value to NULL.

Rename individual variables using new_name=0ld_name syntax.
See this repository for alternative ways to perform row-wise operations.
slice() lets you index rows by their (integer) locations. It allows you to select, remove, and
duplicate rows. It is accompanied by a number of helpers for common use cases:

e slice_head() and slice_tail() select the first or last rows.

* slice_sample() randomly selects rows.

e slice_min() and slice_max() select rows with highest or lowest values of a variable.
If . datais a grouped_df, the operation will be performed on each group, so that (e.g.) slice_head(df,
n=5) will select the first five rows in each group.

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes
it easy to refer to variables based on their name (e.g. a: f selects all columns from a on the left to f
on the right). You can also use predicate functions like is.numeric to select variables based on their
properties.

[Superseded] sample_n() and sample_frac() have been superseded in favour of slice_sample().
While they will not be deprecated in the near future, retirement means that we will only perform
critical bug fixes, so we recommend moving to the newer alternative.

These functions were superseded because we realised it was more convenient to have two mutually
exclusive arguments to one function, rather than two separate functions. This also made it to clean
up a few other smaller design issues with sample_n()/sample_frac:


https://github.com/jennybc/row-oriented-workflows

bind _rows

e The connection to slice() was not obvious.

* The name of the first argument, tbl, is inconsistent with other single table verbs which use

.data.

* The size argument uses tidy evaluation, which is surprising and undocumented.

* It was easier to remove the deprecated . env argument.

* ... was in a suboptimal position.

pull() is similar to $. It’s mostly useful because it looks a little nicer in pipes, it also works with
remote data frames, and it can optionally name the output.

Usage

bind_rows(...,

bind_cols(...,

.1id

.id = NULL, add.cell.ids = NULL)

NULL)

## S3 method for class 'SummarizedExperiment'

filter(.data,

Arguments

.1id

add.cell.ids

.data

.preserve

.keep_all

.drop

data
X

y

by
copy

suffix

., .preserve = FALSE)

For use by methods.

Data frame identifier.

When .1id is supplied, a new column of identifiers is created to link each row
to its original data frame. The labels are taken from the named arguments to
bind_rows(). When a list of data frames is supplied, the labels are taken from
the names of the list. If no names are found a numeric sequence is used instead.

from SummarizedExperiment 3.0 A character vector of length(x=c(x, y)). Ap-
pends the corresponding values to the start of each objects’ cell names.

A tidySummarizedExperiment object or any data frame

when FALSE (the default), the grouping structure is recalculated based on the
resulting data, otherwise it is kept as is.

If TRUE, keep all variables in .data. If a combination of ... is not distinct, this
keeps the first row of values. (See dplyr)

When . drop=TRUE, empty groups are dropped. See group_by_drop_default()
for what the default value is for this argument.

Input data frame.

tbls to join. (See dplyr)

tbls to join. (See dplyr)

A character vector of variables to join by. (See dplyr)

If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. (See dplyr)

If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.
(See dplyr)



6 bind_rows

tbl A data.frame.

size <tidy-select> For sample_n(), the number of rows to select. For sample_frac(),
the fraction of rows to select. If tbl is grouped, size applies to each group.

replace Sample with or without replacement?

weight <tidy-select> Sampling weights. This must evaluate to a vector of non-

negative numbers the same length as the input. Weights are automatically stan-
dardised to sum to 1.

.env DEPRECATED.

name An optional parameter that specifies the column to be used as names for a named
vector. Specified in a similar manner as var.

Details
dplyr is not yet smart enough to optimise filtering optimisation on grouped datasets that don’t need
grouped calculations. For this reason, filtering is often considerably faster on ungroup()ed data.

rowwise() is used for the results of do() when you create list-variables. It is also useful to support
arbitrary complex operations that need to be applied to each row.

Currently, rowwise grouping only works with data frames. Its main impact is to allow you to
work with list-variables in summarise() and mutate() without having to use [[1]]. This makes
summarise() on a rowwise tbl effectively equivalent to plyr: :1dply().

Slice does not work with relational databases because they have no intrinsic notion of row order. If
you want to perform the equivalent operation, use filter () and row_number().

Value

A tidySummarizedExperiment object

An object of the same type as .data.

* Rows are a subset of the input, but appear in the same order.

* Columns are not modified.

* The number of groups may be reduced (if . preserve is not TRUE).

* Data frame attributes are preserved.
A grouped data frame, unless the combination of . .. and add yields a non empty set of grouping
columns, a regular (ungrouped) data frame otherwise.

An object usually of the same type as .data.

* The rows come from the underlying group_keys().

* The columns are a combination of the grouping keys and the summary expressions that you
provide.

 If x is grouped by more than one variable, the output will be another grouped_df with the
right-most group removed.

* If x is grouped by one variable, or is not grouped, the output will be a tibble.

» Data frame attributes are not preserved, because summarise() fundamentally creates a new
data frame.



bind _rows 7

An object of the same type as .data.
For mutate():

* Rows are not affected.

* Existing columns will be preserved unless explicitly modified.
* New columns will be added to the right of existing columns.

* Columns given value NULL will be removed

* Groups will be recomputed if a grouping variable is mutated.
* Data frame attributes are preserved.

For transmute():

* Rows are not affected.

* Apart from grouping variables, existing columns will be remove unless explicitly kept.
* Column order matches order of expressions.

* Groups will be recomputed if a grouping variable is mutated.

* Data frame attributes are preserved.

An object of the same type as .data.

* Rows are not affected.
* Column names are changed; column order is preserved
* Data frame attributes are preserved.

* Groups are updated to reflect new names.

A tbl
A tbl
A tidySummarizedExperiment object
A tidySummarizedExperiment object
A tidySummarizedExperiment object
A tidySummarizedExperiment object

An object of the same type as .data. The output has the following properties:

» Each row may appear 0, 1, or many times in the output.
* Columns are not modified.

* Groups are not modified.

 Data frame attributes are preserved.

An object of the same type as .data. The output has the following properties:

¢ Rows are not affected.

* Output columns are a subset of input columns, potentially with a different order. Columns
will be renamed if new_name=old_name form is used.

* Data frame attributes are preserved.

* Groups are maintained; you can’t select off grouping variables.

A tidySummarizedExperiment object

A vector the same size as .data.



8 bind_rows

Useful filter functions

o == >, >=etc
° &’ I, !’Xor()
e is.na()

e between(), near()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped filtering:

The former keeps rows with mass greater than the global average whereas the latter keeps rows with
mass greater than the gender

average.

Because mutating expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped mutate:

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages:

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages:

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages:

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:



bind_rows 9

¢ slice(): no methods found.
e slice_head(): no methods found.
e slice_tail(): no methods found.
e slice_min(): no methods found.
e slice_max(): no methods found.
e slice_sample(): no methods found.
This function is a generic, which means that packages can provide implementations (methods) for

other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Useful functions

¢ Center: mean(), median()

e Spread: sd(), IQR(), mad()

* Range: min(), max(), quantile()
e Position: first(), last(), nth(),
e Count: n(), n_distinct()

* Logical: any(), all()

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This means
that previously created summary variables can be further transformed or combined within the sum-
mary, as in mutate(). However, it also means that summary variables with the same names as
previous variables overwrite them, making those variables unavailable to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results, consider
using new names for your summary variables, especially when creating multiple summaries.

Useful mutate functions

* +, -, log(), etc., for their usual mathematical meanings
lead(), lag()

e dense_rank(), min_rank(), percent_rank(), row_number (), cume_dist(), ntile()

e cumsum(), cummean(), cummin(), cummax(), cumany(), cumall()
* na_if (), coalesce()

e if_else(), recode(), case_when()



10 bind_rows

Scoped selection and renaming

Use the three scoped variants (rename_all(), rename_if (), rename_at()) to renaming a set of
variables with a function.

See Also
filter_all(), filter_if() and filter_at().

Examples

T%>%T <- magrittr:: %>%
tidySummarizedExperiment: :pasilla %>%

distinct(.sample)

T%>%T <- magrittr:: %%
tidySummarizedExperiment::pasilla %>%

filter(.sample == "untrtl1")

# Learn more in ?dplyr_tidy_eval
T%>%T <- magrittr::T%>%
tidySummarizedExperiment::pasilla %>%

group_by(.sample)
T%>%" <- magrittr:: %>%"
tidySummarizedExperiment: :pasilla %>%

summarise(mean(counts))
“%>%" <- magrittr:: %>%"
tidySummarizedExperiment::pasilla %>%

mutate(logcounts=log2(counts))

T%>%T <- magrittr:: %>%"

# tidySummarizedExperiment::pasilla %>%
#

# rename (cond=condition)

T%>%T <- magrittr:: %>%"

T%>%T <- magrittr::T%>%

tt <- tidySummarizedExperiment::pasilla
tt %>% left_join(tt %>% distinct(condition) %>% mutate(new_column=1:2))

T%>%" <- magrittr::%>%"

tt <- tidySummarizedExperiment::pasilla
tt %>% inner_join(tt %>% distinct(condition) %>% mutate(new_column=1:2) %>% slice(1))

T%>%T <- magrittr:: %%

tt <- tidySummarizedExperiment::pasilla
tt %>% right_join(tt %>% distinct(condition) %>% mutate(new_column=1:2) %>% slice(1))



count 11

T%>%T <- magrittr:: %%
tt <- tidySummarizedExperiment::pasilla
tt %>% full_join(tibble::tibble(condition="treated"”, dose=10))
T%>%T <- magrittr:: %%
tidySummarizedExperiment::pasilla %>%
slice(1)

T%>%" <- magrittr::%>%"
tidySummarizedExperiment::pasilla %>%

select(.sample, .feature, counts)

T%>%T <- magrittr::T%>%
tidySummarizedExperiment: :pasilla %>%

sample_n(50)
tidySummarizedExperiment: :pasilla %>%

sample_frac(0.1)

T%>%T <- magrittr:: %%
tidySummarizedExperiment::pasilla %>%

pull(feature)

count Count observations by group

Description

count() lets you quickly count the unique values of one or more variables: df %>% count(a,
b) is roughly equivalent to df %>% group_by(a, b) %>% summarise(n=n()). count() is paired
with tally(), a lower-level helper that is equivalent to df %>% summarise(n=n()). Supply wt to
perform weighted counts, switching the summary from n=n() to n=sum(wt).

add_count() are add_tally() are equivalents to count() and tally() but use mutate() instead
of summarise() so that they add a new column with group-wise counts.

Usage
count(

X’

wt = NULL,
sort = FALSE,



12 formatting

name = NULL,
.drop = group_by_drop_default(x)

)

Arguments

X A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).
<data-masking> Variables to group by.

wt <data-masking> Frequency weights. Can be NULL or a variable:

e If NULL (the default), counts the number of rows in each group.
* If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will error,
and require you to specify the name.

.drop For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data). Deprecated in add_count () since it didn’t
actually affect the output.

Value

An object of the same type as .data. count() and add_count() group transiently, so the output
has the same groups as the input.

Examples

T%>%" <- magrittr::%>%"
tidySummarizedExperiment::pasilla %>%

count(.sample)

formatting Printing tibbles

Description

[Maturing]
One of the main features of the tb1_df class is the printing:
* Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary
of the remaining rows and columns.
* Tibble reveals the type of each column, which keeps the user informed about whether a vari-
able is, e.g., <chr> or <fct> (character versus factor).

Printing can be tweaked for a one-off call by calling print() explicitly and setting arguments like
n and width. More persistent control is available by setting the options described below.



ggplot 13

Arguments
X Object to format or print.
Other arguments passed on to individual methods.
n Number of rows to show. If NULL, the default, will print all rows if less than
option tibble.print_max. Otherwise, will print tibble.print_min rows.
width Width of text output to generate. This defaults to NULL, which means use getOption("tibble.width")
or (if also NULL) getOption("width"); the latter displays only the columns that
fit on one screen. You can also set options(tibble.width = Inf) to override
this default and always print all columns.
n_extra Number of extra columns to print abbreviated information for, if the width is too
small for the entire tibble. If NULL, the default, will print information about at
most tibble.max_extra_cols extra columns.
Value
Nothing

Package options

The following options are used by the tibble and pillar packages to format and print tb1_df objects.
Used by the formatting workhorse trunc_mat () and, therefore, indirectly, by print.tbl().

e tibble.print_max: Row number threshold: Maximum number of rows printed. Set to Inf
to always print all rows. Default: 20.

* tibble.print_min: Number of rows printed if row number threshold is exceeded. Default:
10.

e tibble.width: Output width. Default: NULL (use width option).

* tibble.max_extra_cols: Number of extra columns printed in reduced form. Default: 100.

Examples

library(dplyr)
pasilla %>% print()

ggplot Create a new ggplot from a tidySummarizedExperiment object

Description

ggplot () initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.



14 pasilla

Arguments
.data Default dataset to use for plot. If not already a data.frame, will be converted to
one by fortify(). If not specified, must be supplied in each layer added to the
plot.
mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-

plied in each layer added to the plot.
Other arguments passed on to methods. Not currently used.

environment DEPRECATED. Used prior to tidy evaluation.

Details

ggplot () is used to construct the initial plot object, and is almost always followed by + to add
component to the plot. There are three common ways to invoke ggplot():

The first method is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used to add a layer using data from another data frame. See the
first example below. The second method specifies the default data frame to use for the plot, but
no aesthetics are defined up front. This is useful when one data frame is used predominantly as
layers are added, but the aesthetics may vary from one layer to another. The third method initializes
a skeleton ggplot object which is fleshed out as layers are added. This method is useful when
multiple data frames are used to produce different layers, as is often the case in complex graphics.

Value

A ggplot

Examples

library(ggplot2)
tidySummarizedExperiment::pasilla %>%

tidySummarizedExperiment::ggplot(aes(sample, counts)) +
geom_boxplot()

pasilla Read counts of RNA-seq samples of Fasilla knock-down by Brooks et
al.

Description

A SummarizedExperiment dataset containing the transcriptome information for Drosophila Melanogaster.

Usage
data(pasilla)



plot_ly 15

Format

containing 14599 features and 7 biological replicates.

Source

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

plot_ly Initiate a plotly visualization

Description

This function maps R objects to plotly.js, an (MIT licensed) web-based interactive charting library.
It provides abstractions for doing common things (e.g. mapping data values to fill colors (via color)
or creating animations (via frame)) and sets some different defaults to make the interface feel more
’R-like’ (i.e., closer to plot() and ggplot2::gplot()).

Usage

plot_ly(
data = data.frame(),

type

= NULL,
name = NULL,
color = NULL,
colors = NULL,
alpha = NULL,

stroke = NULL,
strokes = NULL,
alpha_stroke = 1,

size = NULL,
sizes = c(10, 100),
span = NULL,

spans = c(1, 20),
symbol = NULL,
symbols = NULL,
linetype = NULL,
linetypes = NULL,

split = NULL,
frame = NULL,
width = NULL,
height = NULL,
source = "A"


https://bioconductor.org/packages/release/data/experiment/html/pasilla.html
https://plot.ly/javascript/

16 plot_ly

Arguments

data A data frame (optional) or crosstalk::SharedData object.

Arguments (i.e., attributes) passed along to the trace type. See schema() for a
list of acceptable attributes for a given trace type (by going to traces -> type ->
attributes). Note that attributes provided at this level may override other argu-
ments (e.g. plot_ly(x=1:10, y=1:10, color=I("red"), marker=list(color="blue"))).

type A character string specifying the trace type (e.g. "scatter”, "bar”, "box",
etc). If specified, it always creates a trace, otherwise

name Values mapped to the trace’s name attribute. Since a trace can only have one
name, this argument acts very much like split in that it creates one trace for
every unique value.

color Values mapped to relevant ’fill-color’ attribute(s) (e.g. fillcolor, marker.color,
textfont.color, etc.). The mapping from data values to color codes may be con-
trolled using colors and alpha, or avoided altogether via I() (e.g., color=I("red")).
Any color understood by grDevices: :col2rgb() may be used in this way.

colors Either a colorbrewer2.org palette name (e.g. "Y1OrRd" or "Blues"), or a vector
of colors to interpolate in hexadecimal "#RRGGBB" format, or a color interpo-
lation function like colorRamp().

alpha A number between 0 and 1 specifying the alpha channel applied to color. De-
faults to 0.5 when mapping to fillcolor and 1 otherwise.

stroke Similar to color, but values are mapped to relevant ’stroke-color’ attribute(s)
(e.g., marker.line.color and line.color for filled polygons). If not specified, stroke
inherits from color.

strokes Similar to colors, but controls the stroke mapping.
alpha_stroke Similar to alpha, but applied to stroke.

size (Numeric) values mapped to relevant 'fill-size’ attribute(s) (e.g., marker.size,
textfont.size, and error_x.width). The mapping from data values to symbols may
be controlled using sizes, or avoided altogether via I() (e.g., size=1(30)).

sizes A numeric vector of length 2 used to scale size to pixels.

span (Numeric) values mapped to relevant ’stroke-size’ attribute(s) (e.g., marker.line.width,
line.width for filled polygons, and error_x.thickness) The mapping from data
values to symbols may be controlled using spans, or avoided altogether via I()
(e.g., span=I(30)).

spans A numeric vector of length 2 used to scale span to pixels.

symbol (Discrete) values mapped to marker.symbol. The mapping from data values to
symbols may be controlled using symbols, or avoided altogether via I() (e.g.,
symbol=I("pentagon”)). Any pch value or symbol name may be used in this

way.
symbols A character vector of pch values or symbol names.
linetype (Discrete) values mapped to line.dash. The mapping from data values to sym-

bols may be controlled using linetypes, or avoided altogether via I() (e.g.,
linetype=I("dash")). Any 1ty (see par) value or dash name may be used in
this way.


https://plot.ly/r/reference#scatter-fillcolor
https://plot.ly/r/reference#scatter-marker-color
https://plot.ly/r/reference/#scatter-textfont-color
https://plot.ly/r/reference#scatter-fillcolor
https://plot.ly/r/reference#scatter-marker-line-color
https://plot.ly/r/reference#scatter-line-color
https://plot.ly/r/reference#scatter-marker-size
https://plot.ly/r/reference#scatter-textfont-size
https://plot.ly/r/reference#scatter-error_x-width
https://plot.ly/r/reference#scatter-marker-line-width
https://plot.ly/r/reference#scatter-line-width
https://plot.ly/r/reference#scatter-error_x-thickness
https://plot.ly/r/reference#scatter-marker-symbol
https://plot.ly/r/reference#scatter-marker-symbol
https://plot.ly/r/reference#scatter-marker-symbol
https://plot.ly/r/reference#scatter-line-dash
https://plot.ly/r/reference#scatter-line-dash

plot_ly 17

linetypes A character vector of 1ty values or dash names

split (Discrete) values used to create multiple traces (one trace per value).

frame (Discrete) values used to create animation frames.

width Width in pixels (optional, defaults to automatic sizing).

height Height in pixels (optional, defaults to automatic sizing).

source a character string of length 1. Match the value of this string with the source

argument in event_data() to retrieve the event data corresponding to a specific
plot (shiny apps can have multiple plots).

Details

Unless type is specified, this function just initiates a plotly object with ’global’ attributes that are
passed onto downstream uses of add_trace() (or similar). A formula must always be used when
referencing column name(s) in data (e.g. plot_ly(mtcars, x=~wt)). Formulas are optional when
supplying values directly, but they do help inform default axis/scale titles (e.g., plot_ly(x=mtcars$wt)
vs plot_ly(x=~mtcars$wt))

Value

A plotly

Author(s)

Carson Sievert

References

https://plotly-r.com/overview.html

See Also
* For initializing a plotly-geo object: plot_geo()
* For initializing a plotly-mapbox object: plot_mapbox ()
* For translating a ggplot2 object to a plotly object: ggplotly()
» For modifying any plotly object: layout(), add_trace(), style()
* For linked brushing: highlight ()
* For arranging multiple plots: subplot(), crosstalk::bscols()
* For inspecting plotly objects: plotly_json()

* For quick, accurate, and searchable plotly.js reference: schema()


https://plot.ly/r/reference#scatter-line-dash
https://plotly-r.com/overview.html

18 se

Examples

# Plotly better not run
print(”See below examples")

## Not run:

# plot_ly() tries to create a sensible plot based on the information you
# give it. If you don't provide a trace type, plot_ly() will infer one.

plot_ly(economics, x=~pop)

plot_ly(economics, x=~date, y=~pop)

# plot_ly() doesn't require data frame(s), which allows one to take

# advantage of trace type(s) designed specifically for numeric matrices

plot_ly(z=~volcano)

plot_ly(z=~volcano, type="surface")

# plotly has a functional interface: every plotly function takes a plotly
# object as it's first input argument and returns a modified plotly object
add_lines(plot_ly(economics, x=~date, y=~ unemploy / pop))

# To make code more readable, plotly imports the pipe operator from magrittr
economics %>%

plot_ly(x=~date, y=~ unemploy / pop) %>%

add_lines()

# Attributes defined via plot_ly() set 'global' attributes that
# are carried onto subsequent traces, but those may be over-written
plot_ly(economics, x=~date, color=I("black")) %>%
add_lines(y=~uempmed) %>%
add_lines(y=~psavert, color=I("red"))

# Attributes are documented in the figure reference -> https://plot.ly/r/reference
# You might notice plot_ly() has named arguments that aren't in this figure

# reference. These arguments make it easier to map abstract data values to

# visual attributes.

p <- plot_ly(iris, x=~Sepal.Width, y=~Sepal.Length)

add_markers(p, color=~Petal.lLength, size=~Petal.lLength)

add_markers(p, color=~Species)

add_markers(p, color=~Species, colors="Set1")

add_markers(p, symbol=~Species)

add_paths(p, linetype=~Species)

## End(Not run)

se Read counts of RNA-seq samples derived from Pasilla knock-down by
Brooks et al.

Description

A SummarizedExperiment dataset containing the transcriptome information for Drosophila Melanogaster.



tbl_format_header 19

Usage

data(se)

Format

containing 14599 features and 7 biological replicates.

Source

https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

tbl_format_header Format the header of a tibble

Description

[Experimental]

For easier customization, the formatting of a tibble is split into three components: header, body, and
footer. The tbl_format_header () method is responsible for formatting the header of a tibble.

Override this method if you need to change the appearance of the entire header. If you only need to
change or extend the components shown in the header, override or extend tb1_sum() for your class
which is called by the default method.

tidy tidy for SummarizedExperiment

Description

DEPRECATED. Not needed any more.

Usage

tidy(object)

Arguments

object A SummarizedExperiment object

Value

A tidySummarizedExperiment object

Examples

tidySummarizedExperiment: :pasilla %>% tidy()


https://bioconductor.org/packages/release/data/experiment/html/pasilla.html

20 unnest

unnest unnest

Description

Given a regular expression with capturing groups, extract() turns each group into a new column.
If the groups don’t match, or the input is NA, the output will be NA.

pivot_longer() "lengthens" data, increasing the number of rows and decreasing the number of
columns. The inverse transformation is pivot_wider()

Learn more in vignette("pivot").

pivot_wider() "widens" data, increasing the number of columns and decreasing the number of
rows. The inverse transformation is pivot_longer().

Learn more in vignette("pivot").
Convenience function to paste together multiple columns into one.

Given either a regular expression or a vector of character positions, separate() turns a single
character column into multiple columns.

Arguments

keep_empty See tidyr::unnest

ptype See tidyr::unnest

.drop See tidyr::unnest

.id tidyr::unnest

.sep tidyr::unnest

.preserve See tidyr::unnest

.data A tbl. (See tidyr)

.names_sep See tidyr::nest

into Names of new variables to create as character vector. Use NA to omit the variable
in the output.

regex a regular expression used to extract the desired values. There should be one
group (defined by ()) for each element of into.

convert If TRUE, will run type.convert() with as.is=TRUE on new columns. This is
useful if the component columns are integer, numeric or logical.
NB: this will cause string "NA"s to be converted to NAs.

cols <tidy-select> Columns to pivot into longer format.

cols_vary When pivoting cols into longer format, how should the output rows be arranged

relative to their original row number?

» "fastest”, the default, keeps individual rows from cols close together in
the output. This often produces intuitively ordered output when you have at
least one key column from data that is not involved in the pivoting process.



unnest

names_to

21

* "slowest"” keeps individual columns from cols close together in the out-
put. This often produces intuitively ordered output when you utilize all of
the columns from data in the pivoting process.

A character vector specifying the new column or columns to create from the
information stored in the column names of data specified by cols.

 If length 0, or if NULL is supplied, no columns will be created.

* If length 1, a single column will be created which will contain the column
names specified by cols.

* Iflength >1, multiple columns will be created. In this case, one of names_sep
or names_pattern must be supplied to specify how the column names
should be split. There are also two additional character values you can
take advantage of:

— NA will discard the corresponding component of the column name.

— ".value” indicates that the corresponding component of the column
name defines the name of the output column containing the cell values,
overriding values_to entirely.

names_sep, names_pattern

names_repair

values_to

values_drop_na

If names_to contains multiple values, these arguments control how the column
name is broken up.

names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (specifying
a regular expression to split on).

names_pattern takes the same specification as extract (), a regular expression
containing matching groups (()).

If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

What happens if the output has invalid column names? The default, "check_unique”
is to error if the columns are duplicated. Use "minimal” to allow duplicates

in the output, or "unique” to de-duplicated by adding numeric suffixes. See
vctrs: :vec_as_names() for more options.

A string specifying the name of the column to create from the data stored in cell
values. If names_to is a character containing the special .value sentinel, this
value will be ignored, and the name of the value column will be derived from
part of the existing column names.

If TRUE, will drop rows that contain only NAs in the value_to column. This ef-
fectively converts explicit missing values to implicit missing values, and should
generally be used only when missing values in data were created by its struc-
ture.

names_transform, values_transform

Optionally, a list of column name-function pairs. Alternatively, a single function
can be supplied, which will be applied to all columns. Use these arguments if
you need to change the types of specific columns. For example, names_transform
= list(week = as.integer) would convert a character variable called week to
an integer.

If not specified, the type of the columns generated from names_to will be char-
acter, and the type of the variables generated from values_to will be the com-
mon type of the input columns used to generate them.



unnest

names_ptypes, values_ptypes

Optionally, a list of column name-prototype pairs. Alternatively, a single empty
prototype can be supplied, which will be applied to all columns. A prototype
(or ptype for short) is a zero-length vector (like integer () or numeric()) that
defines the type, class, and attributes of a vector. Use these arguments if you
want to confirm that the created columns are the types that you expect. Note
that if you want to change (instead of confirm) the types of specific columns,
you should use names_transform or values_transform instead.

id_cols <tidy-select> A set of columns that uniquely identify each observation. Typ-
ically used when you have redundant variables, i.e. variables whose values are
perfectly correlated with existing variables.

Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_fromand values_from.

id_expand Should the values in the id_cols columns be expanded by expand() before piv-
oting? This results in more rows, the output will contain a complete expansion
of all possible values in id_cols. Implicit factor levels that aren’t represented
in the data will become explicit. Additionally, the row values corresponding to
the expanded id_cols will be sorted.

names_from, values_from
<tidy-select> A pair of arguments describing which column (or columns)
to get the name of the output column (names_from), and which column (or
columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the front of
the output column.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_prefix  String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable

names.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns (and special .value) to create custom col-
umn names.

names_sort Should the column names be sorted? If FALSE, the default, column names are

ordered by first appearance.

names_vary When names_from identifies a column (or columns) with multiple unique val-
ues, and multiple values_from columns are provided, in what order should the
resulting column names be combined?

* "fastest"” varies names_from values fastest, resulting in a column naming
scheme of the form: valuel_namel, valuel_name2, value2_namel, value2_name2.
This is the default.

* "slowest" varies names_from values slowest, resulting in a column nam-
ing scheme of the form: valuel_name1, value2_namel, valuel_name2, value2_name2.

names_expand Should the values in the names_from columns be expanded by expand () before
pivoting? This results in more columns, the output will contain column names



unnest

values_fill

values_fn

unused_fn

data

col

na.rm
remove

sep

extra

23

corresponding to a complete expansion of all possible values in names_from.
Implicit factor levels that aren’t represented in the data will become explicit.
Additionally, the column names will be sorted, identical to what names_sort
would produce.

Optionally, a (scalar) value that specifies what each value should be filled in
with when missing.

This can be a named list if you want to apply different fill values to different
value columns.

Optionally, a function applied to the value in each cell in the output. You will
typically use this when the combination of id_cols and names_from columns
does not uniquely identify an observation.

This can be a named list if you want to apply different aggregations to different
values_from columns.

Optionally, a function applied to summarize the values from the unused columns
(i.e. columns not identified by id_cols, names_from, or values_from).

The default drops all unused columns from the result.

This can be a named list if you want to apply different aggregations to different
unused columns.

id_cols must be supplied for unused_fn to be useful, since otherwise all un-
specified columns will be considered id_cols.

This is similar to grouping by the id_cols then summarizing the unused columns
using unused_fn.
A data frame.

The name of the new column, as a string or symbol.

This argument is passed by expression and supports quasiquotation (you can
unquote strings and symbols). The name is captured from the expression with
rlang: :ensym() (note that this kind of interface where symbols do not repre-
sent actual objects is now discouraged in the tidyverse; we support it here for
backward compatibility).

<tidy-select> Columns to unite
If TRUE, missing values will be remove prior to uniting each value.
If TRUE, remove input columns from output data frame.

Separator between columns.

If character, sep is interpreted as a regular expression. The default value is a
regular expression that matches any sequence of non-alphanumeric values.

If numeric, sep is interpreted as character positions to split at. Positive values
start at 1 at the far-left of the string; negative value start at -1 at the far-right of
the string. The length of sep should be one less than into.

If sep is a character vector, this controls what happens when there are too many
pieces. There are three valid options:

e "warn" (the default): emit a warning and drop extra values.

e "drop": drop any extra values without a warning.

* "merge": only splits at most length(into) times



24 unnest

fill If sep is a character vector, this controls what happens when there are not
enough pieces. There are three valid options:

* "warn" (the default): emit a warning and fill from the right
* "right": fill with missing values on the right
 "left": fill with missing values on the left

Details

pivot_longer() is an updated approach to gather(), designed to be both simpler to use and to
handle more use cases. We recommend you use pivot_longer() for new code; gather() isn’t
going away but is no longer under active development.

pivot_wider() is an updated approach to spread(), designed to be both simpler to use and to
handle more use cases. We recommend you use pivot_wider() for new code; spread() isn’t
going away but is no longer under active development.

Value

A tidySummarizedExperiment objector a tibble depending on input
A tidySummarizedExperiment objector a tibble depending on input
A tidySummarizedExperiment objector a tibble depending on input
A tidySummarizedExperiment objector a tibble depending on input
A tidySummarizedExperiment objector a tibble depending on input

A tidySummarizedExperiment objector a tibble depending on input

See Also

separate() to split up by a separator.
pivot_wider_spec() to pivot "by hand" with a data frame that defines a pivotting specification.
separate(), the complement.

unite(), the complement, extract () which uses regular expression capturing groups.
Examples
tidySummarizedExperiment: :pasilla %>%
nest(data=-condition) %>%
unnest(data)
tidySummarizedExperiment::pasilla %>%

nest(data=-condition)

tidySummarizedExperiment: :pasilla %>%

extract(type, into="sequencing", regex="([a-z]*)_end"”, convert=TRUE)



%>% 25

# See vignette("pivot"”) for examples and explanation

library(dplyr)
tidySummarizedExperiment: :pasilla %>%

pivot_longer(c(condition, type), names_to="name", values_to="value")
# See vignette("pivot"”) for examples and explanation

library(dplyr)
tidySummarizedExperiment::pasilla %>%

pivot_wider(names_from=feature, values_from=counts)
tidySummarizedExperiment: :pasilla %>%

unite("group”, c(condition, type))

%>% Pipe operator

Description

See magrittr: :%>% for details.

Usage

lhs %>% rhs

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.
Value

The result of calling rhs(1hs).

Examples

library(magrittr)
1 %>% sum(2)



Index

* datasets distinct (bind_rows), 4
pasilla, 14 do(), 6
se, 18

+ internal event_data(), 17
%>%, 25 expand(), 22
bind_rows, 4 extract (unnest), 20

* single table verbs extract(), 21, 24
bind_rows, 4 ) )

+9 filter (bind_rows), 4

=8 filter(),6

> 8 filter_allQ), 10

e 8 filter_at(), 10

8 8 filter_if(), 10

%%, 25, 25 firstQ, 9
T formatting, 12

formula, 17

add_trace(), 17 X
fortify(), 14

all(), 9 R '
animation, 15 full_join (bind_rows), 4
any(), 9

h 24
as_tibble, 2 gather().

ggplot, 13
ggplot2::qgplot(), 15
ggplotly(), 17
grDevices::col2rgb(), 16
group_by (bind_rows), 4
group_by_drop_default(), 5
grouped data frame, 6
grouped_df, 4, 6

between(), 8

bind, 3

bind_cols (bind_rows), 4
bind_rows, 4

case_when(), 9
coalesce(), 9

count, 11 highlight(), 17

crosstalk: :bscols(), 17

crosstalk: :SharedData, /6 10,16

cumall(), 9 if_else(), 9

cumany(), 9 inner_join (bind_rows), 4

cume_dist(), 9 IQR(), 9

cummax (), 9 is.na(), 8

cummean(), 9

cummin(), 9 lag(), 9

cumsum(), 9 last(), 9
layout(), 17

dense_rank(), 9 lead(), 9

26



INDEX

left_join (bind_rows), 4
log(), 9

mad(), 9

max(), 9

mean(), 9
median(), 9

min(), 9
min_rank(), 9

mutate (bind_rows), 4
mutate(), 6, 9
mutate-joins, 3

n(),9
n_distinct(), 9
na_if(), 9
near(), 8

nest (unnest), 20
nth(), 9
ntile(), 9

par, 16

pasilla, 14

pch, 16
percent_rank(), 9
pivot_longer (unnest), 20
pivot_longer(), 20
pivot_wider (unnest), 20
pivot_wider_spec(), 24
plot(), 15
plot_geo(), 17
plot_ly, 15
plot_mapbox(), 17
plotly_json(), 17
plyr::1ldply(), 6

pull (bind_rows), 4

quantile(), 9
quasiquotation, 23

recode(), 9

rename (bind_rows), 4
rename_all(), 10
rename_at(), 10
rename_if (), 10
right_join (bind_rows), 4
rlang: :ensym(), 23
row_number(), 6, 9
rowwise (bind_rows), 4

sample_frac (bind_rows), 4
sample_n (bind_rows), 4
schema(), 16, 17

sd(), 9

se, 18

select (bind_rows), 4
separate (unnest), 20
separate(), 21, 24

slice (bind_rows), 4
slice_sample(), 4
spread(), 24
style(), 17
subplot(), 17

summarise (bind_rows), 4
summarise(), 6

tbl_format_header, 19
tbl_sum(), 19
tibble, 6

tidy, 19
type.convert(), 20

ungroup(), 6
unite (unnest), 20
unite(), 24
unnest, 20

vctrs: :vec_as_names(), 21

xor(), 8

27



	as_tibble
	bind
	bind_rows
	count
	formatting
	ggplot
	pasilla
	plot_ly
	se
	tbl_format_header
	tidy
	unnest
	>
	Index

