
Package ‘scp’
October 16, 2023

Title Mass Spectrometry-Based Single-Cell Proteomics Data Analysis

Version 1.10.1

Description Utility functions for manipulating, processing, and
analyzing mass spectrometry-based single-cell proteomics
data. The package is an extension to the 'QFeatures' package and
relies on 'SingleCellExpirement' to enable single-cell proteomics
analyses. The package offers the user the functionality to process
quantitative table (as generated by MaxQuant, Proteome Discoverer,
and more) into data tables ready for downstream analysis and data
visualization.

Depends R (>= 4.2.0), QFeatures (>= 1.3.5)

Imports methods, stats, utils, SingleCellExperiment,
SummarizedExperiment, MultiAssayExperiment, MsCoreUtils,
matrixStats, S4Vectors, dplyr, magrittr

Suggests testthat, knitr, BiocStyle, rmarkdown, patchwork, ggplot2,
impute, scater, sva, preprocessCore, vsn, uwot

License Artistic-2.0

Encoding UTF-8

VignetteBuilder knitr

biocViews GeneExpression, Proteomics, SingleCell, MassSpectrometry,
Preprocessing, CellBasedAssays

BugReports https://github.com/UCLouvain-CBIO/scp/issues

URL https://UCLouvain-CBIO.github.io/scp

Roxygen list(markdown=TRUE)

RoxygenNote 7.2.1

git_url https://git.bioconductor.org/packages/scp

git_branch RELEASE_3_17

git_last_commit eb62620

git_last_commit_date 2023-06-13

Date/Publication 2023-10-15

1

https://github.com/UCLouvain-CBIO/scp/issues
https://UCLouvain-CBIO.github.io/scp

2 aggregateFeaturesOverAssays

Author Christophe Vanderaa [aut, cre]
(<https://orcid.org/0000-0001-7443-5427>),

Laurent Gatto [aut] (<https://orcid.org/0000-0002-1520-2268>)

Maintainer Christophe Vanderaa <christophe.vanderaa@uclouvain.be>

R topics documented:
aggregateFeaturesOverAssays . 2
computeSCR . 3
divideByReference . 4
medianCVperCell . 5
mqScpData . 7
normalizeSCP . 12
pep2qvalue . 13
readSCP . 14
readSingleCellExperiment . 16
sampleAnnotation . 17
scp1 . 18

Index 19

aggregateFeaturesOverAssays

Aggregate features over multiple assays

Description

This function is a wrapper function around QFeatures::aggregateFeatures. It allows the user to
provide multiple assays for which aggregateFeatures will be applied sequentially.

Usage

aggregateFeaturesOverAssays(object, i, fcol, name, fun, ...)

Arguments

object A QFeatures object

i A numeric(1) or character(1) indicating which assay to transfer the colData
to.

fcol The feature variables for each assays i defining how to summarise the QFea-
tures. If fcol has length 1, the variable name is assumed to be the same for all
assays

name A character() naming the new assay. name must have the same length as i.
Note that the function will fail if of the names in name is already present.

fun A function used for quantitative feature aggregation.

... Additional parameters passed the fun.

https://orcid.org/0000-0001-7443-5427
https://orcid.org/0000-0002-1520-2268

computeSCR 3

Value

A QFeatures object

See Also

QFeatures::aggregateFeatures

Examples

data("scp1")
scp1 <- aggregateFeaturesOverAssays(scp1,

i = 1:3,
fcol = "peptide",
name = paste0("peptides", 1:3),
fun = colMeans,
na.rm = TRUE)

scp1

computeSCR Compute the sample over carrier ratio (SCR)

Description

The function computes the ratio of the intensities of sample channels over the intentisty of the
carrier channel for each feature. The ratios are averaged within the assay.

Usage

computeSCR(
object,
i,
colvar,
samplePattern,
sampleFUN = "mean",
carrierPattern,
carrierFUN = sampleFUN,
rowDataName = "SCR"

)

Arguments

object A QFeatures object.

i A character() or integer() indicating for which assay(s) the SCR needs to
be computed.

colvar A character(1) indicating the variable to take from colData(object) that
gives the sample annotation.

4 divideByReference

samplePattern A character(1) pattern that matches the sample encoding in colvar.

sampleFUN A character(1) or function that provides the summarization function to use
(eg mean, sum, media, max, ...). Only used when the pattern matches multiple
samples. Default is mean. Note for custom function, na.rm = TRUE is passed
to sampleFUN to ignore missing values, make sure to provide a function that
accepts this argument.

carrierPattern A character(1) pattern that matches the carrier encoding in colvar. Only one
match per assay is allowed, otherwise only the first match is taken

carrierFUN A character(1) or function that provides the summarization function to use
(eg mean, sum, media, max, ...). Only used when the pattern matches multiple
carriers. Default is the same function as sampleFUN. Note for custom function,
na.rm = TRUE is passed to carrierFUN to ignore missing values, make sure to
provide a function that accepts this argument.

rowDataName A character(1) giving the name of the new variable in the rowData where the
computed SCR will be stored. The name cannot already exist in any of the assay
rowData.

Value

A QFeatures object for which the rowData of the given assay(s) is augmented with the mean SCR.

Examples

data("scp1")
scp1 <- computeSCR(scp1,

i = 1,
colvar = "SampleType",
carrierPattern = "Carrier",
samplePattern = "Blank|Macrophage|Monocyte",
sampleFUN = "mean",
rowDataName = "MeanSCR")

Check results
rowData(scp1)[[1]][, "MeanSCR"]

divideByReference Divide assay columns by a reference column

Description

The function divides the sample columns by a reference column. The sample and reference columns
are defined based on the provided colvar variable and on regular expression matching.

Usage

divideByReference(object, i, colvar, samplePattern = ".", refPattern)

medianCVperCell 5

Arguments

object A QFeatures object

i A numeric() or character() vector indicating from which assays the rowData
should be taken.

colvar A character(1) indicating the variable to take from colData(object) that
gives the sample annotation.

samplePattern A character(1) pattern that matches the sample encoding in colvar. By de-
fault all samples are devided (using the regex wildcard .).

refPattern A character(1) pattern that matches the carrier encoding in colvar. Only one
match per assay is allowed, otherwise only the first match is taken

Details

The supplied assay(s) are replaced with the values computed after reference division.

Value

A QFeatures object

Examples

data("scp1")
scp1 <- divideByReference(scp1,

i = 1,
colvar = "SampleType",
samplePattern = "Macrophage",
refPattern = "Ref")

medianCVperCell Compute the median coefficient of variation (CV) per cell

Description

The function computes for each cell the median CV and stores them accordingly in the colData of
the QFeatures object. The CVs in each cell are computed from a group of features. The grouping
is defined by a variable in the rowData. The function can be applied to one or more assays, as long
as the samples (column names) are not duplicated. Also, the user can supply a minimal number
of observations required to compute a CV to avoid that CVs computed on too few observations
influence the distribution within a cell. The quantification matrix can be optionally normalized
before computing the CVs. Multiple normalizations are possible.

6 medianCVperCell

Usage

medianCVperCell(
object,
i,
groupBy,
nobs = 5,
na.rm = TRUE,
colDataName = "MedianCV",
norm = "none",
...

)

Arguments

object A QFeatures object

i A numeric() or character() vector indicating from which assays the rowData
should be taken.

groupBy A character(1) indicating the variable name in the rowData that contains the
feature grouping.

nobs An integer(1) indicating how many observations (features) should at least be
considered for computing the CV. Since no CV can be computed for less than 2
observations, nobs should at least be 2.

na.rm A logical(1) indicating whether missing data should be removed before com-
putation.

colDataName A character(1) giving the name of the new variable in the colData where the
computed CVs will be stored. The name cannot already exist in the colData.

norm A character() of normalization methods that will be sequentially applied to
each feature (row) in each assay. Available methods and additional information
about normalization can be found in MsCoreUtils::normalizeMethods. You can
also specify norm = "SCoPE2" to reproduce the normalization performed before
computing the CVs as suggested by Specht et al. norm = "none" will not nor-
malize the data (default)

... Additional arguments that are passed to the normalization method.

Details

A new column is added to the colData of the object. The samples (columns) that are not present in
the selection i will get assigned an NA.

Value

A QFeatures object.

mqScpData 7

References

Specht, Harrison, Edward Emmott, Aleksandra A. Petelski, R. Gray Huffman, David H. Perlman,
Marco Serra, Peter Kharchenko, Antonius Koller, and Nikolai Slavov. 2021. “Single-Cell Pro-
teomic and Transcriptomic Analysis of Macrophage Heterogeneity Using SCoPE2.” Genome Biol-
ogy 22 (1): 50.

Examples

data("scp1")
scp1 <- filterFeatures(scp1, ~ !is.na(Proteins))
scp1 <- medianCVperCell(scp1,

i = 1:3,
groupBy = "Proteins",
nobs = 5,
na.rm = TRUE,
colDataName = "MedianCV",
norm = "div.median")

Check results
hist(scp1$MedianCV)

mqScpData Example MaxQuant/SCoPE2 output

Description

A data.frame with 1088 observations and 139 variables, as produced by reading a MaxQuant
output file with read.delim().

• Sequence: a character vector

• Length: a numeric vector

• Modifications: a character vector

• Modified.sequence: a character vector

• Deamidation..N..Probabilities: a character vector

• Oxidation..M..Probabilities: a character vector

• Deamidation..N..Score.Diffs: a character vector

• Oxidation..M..Score.Diffs: a character vector

• Acetyl..Protein.N.term.: a numeric vector

• Deamidation..N.: a numeric vector

• Oxidation..M.: a numeric vector

• Missed.cleavages: a numeric vector

• Proteins: a character vector

• Leading.proteins: a character vector

8 mqScpData

• protein: a character vector

• Gene.names: a character vector

• Protein.names: a character vector

• Type: a character vector

• Set: a character vector

• MS.MS.m.z: a numeric vector

• Charge: a numeric vector

• m.z: a numeric vector

• Mass: a numeric vector

• Resolution: a numeric vector

• Uncalibrated...Calibrated.m.z..ppm.: a numeric vector

• Uncalibrated...Calibrated.m.z..Da.: a numeric vector

• Mass.error..ppm.: a numeric vector

• Mass.error..Da.: a numeric vector

• Uncalibrated.mass.error..ppm.: a numeric vector

• Uncalibrated.mass.error..Da.: a numeric vector

• Max.intensity.m.z.0: a numeric vector

• Retention.time: a numeric vector

• Retention.length: a numeric vector

• Calibrated.retention.time: a numeric vector

• Calibrated.retention.time.start: a numeric vector

• Calibrated.retention.time.finish: a numeric vector

• Retention.time.calibration: a numeric vector

• Match.time.difference: a logical vector

• Match.m.z.difference: a logical vector

• Match.q.value: a logical vector

• Match.score: a logical vector

• Number.of.data.points: a numeric vector

• Number.of.scans: a numeric vector

• Number.of.isotopic.peaks: a numeric vector

• PIF: a numeric vector

• Fraction.of.total.spectrum: a numeric vector

• Base.peak.fraction: a numeric vector

• PEP: a numeric vector

• MS.MS.count: a numeric vector

• MS.MS.scan.number: a numeric vector

• Score: a numeric vector

mqScpData 9

• Delta.score: a numeric vector

• Combinatorics: a numeric vector

• Intensity: a numeric vector

• Reporter.intensity.corrected.0: a numeric vector

• Reporter.intensity.corrected.1: a numeric vector

• Reporter.intensity.corrected.2: a numeric vector

• Reporter.intensity.corrected.3: a numeric vector

• Reporter.intensity.corrected.4: a numeric vector

• Reporter.intensity.corrected.5: a numeric vector

• Reporter.intensity.corrected.6: a numeric vector

• Reporter.intensity.corrected.7: a numeric vector

• Reporter.intensity.corrected.8: a numeric vector

• Reporter.intensity.corrected.9: a numeric vector

• Reporter.intensity.corrected.10: a numeric vector

• RI1: a numeric vector

• RI2: a numeric vector

• RI3: a numeric vector

• RI4: a numeric vector

• RI5: a numeric vector

• RI6: a numeric vector

• RI7: a numeric vector

• RI8: a numeric vector

• RI9: a numeric vector

• RI10: a numeric vector

• RI11: a numeric vector

• Reporter.intensity.count.0: a numeric vector

• Reporter.intensity.count.1: a numeric vector

• Reporter.intensity.count.2: a numeric vector

• Reporter.intensity.count.3: a numeric vector

• Reporter.intensity.count.4: a numeric vector

• Reporter.intensity.count.5: a numeric vector

• Reporter.intensity.count.6: a numeric vector

• Reporter.intensity.count.7: a numeric vector

• Reporter.intensity.count.8: a numeric vector

• Reporter.intensity.count.9: a numeric vector

• Reporter.intensity.count.10: a numeric vector

• Reporter.PIF: a logical vector

10 mqScpData

• Reporter.fraction: a logical vector

• Reverse: a character vector

• Potential.contaminant: a logical vector

• id: a numeric vector

• Protein.group.IDs: a character vector

• Peptide.ID: a numeric vector

• Mod..peptide.ID: a numeric vector

• MS.MS.IDs: a character vector

• Best.MS.MS: a numeric vector

• AIF.MS.MS.IDs: a logical vector

• Deamidation..N..site.IDs: a numeric vector

• Oxidation..M..site.IDs: a logical vector

• remove: a logical vector

• dart_PEP: a numeric vector

• dart_qval: a numeric vector

• razor_protein_fdr: a numeric vector

• Deamidation..NQ..Probabilities: a logical vector

• Deamidation..NQ..Score.Diffs: a logical vector

• Deamidation..NQ.: a logical vector

• Reporter.intensity.corrected.11: a logical vector

• Reporter.intensity.corrected.12: a logical vector

• Reporter.intensity.corrected.13: a logical vector

• Reporter.intensity.corrected.14: a logical vector

• Reporter.intensity.corrected.15: a logical vector

• Reporter.intensity.corrected.16: a logical vector

• RI12: a logical vector

• RI13: a logical vector

• RI14: a logical vector

• RI15: a logical vector

• RI16: a logical vector

• Reporter.intensity.count.11: a logical vector

• Reporter.intensity.count.12: a logical vector

• Reporter.intensity.count.13: a logical vector

• Reporter.intensity.count.14: a logical vector

• Reporter.intensity.count.15: a logical vector

• Reporter.intensity.count.16: a logical vector

• Deamidation..NQ..site.IDs: a logical vector

mqScpData 11

• input_id: a logical vector

• rt_minus: a logical vector

• rt_plus: a logical vector

• mu: a logical vector

• muij: a logical vector

• sigmaij: a logical vector

• pep_new: a logical vector

• exp_id: a logical vector

• peptide_id: a logical vector

• stan_peptide_id: a logical vector

• exclude: a logical vector

• residual: a logical vector

• participated: a logical vector

• peptide: a character vector

Usage

data("mqScpData")

Format

An object of class data.frame with 1361 rows and 149 columns.

Details

The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). The input
file evidence_unfiltered.csv was downloaded from a Google Drive repository. The MaxQuant
evidence file was loaded and the data was cleaned (renaming columns, removing duplicate fields,...).
MS runs that were selected in the scp1 dataset (see ?scp1) were kept along with a blank run. The
data is stored as a data.frame.

See Also

readSCP() for an example on how mqScpData is parsed into a QFeatures object.

https://www.biorxiv.org/content/10.1101/665307v3
https://drive.google.com/drive/folders/1VzBfmNxziRYqayx3SP-cOe2gu129Obgx

12 normalizeSCP

normalizeSCP Normalize single-cell proteomics (SCP) data

Description

This function normalises an assay in a QFeatures according to the supplied method (see Details).
The normalized data is added as a new assay

Usage

normalizeSCP(object, i, name = "normAssay", method, ...)

Arguments

object An object of class QFeatures.

i A numeric vector or a character vector giving the index or the name, respec-
tively, of the assay(s) to be processed.

name A character(1) naming the new assay name. Defaults is are normAssay.

method character(1) defining the normalisation method to apply. See Details.‘

... Additional parameters passed to MsCoreUtils::normalizeMethods().

Details

The method parameter in normalize can be one of "sum", "max", "center.mean", "center.median",
"div.mean", "div.median", "diff.meda", "quantiles", "quantiles.robust" or "vsn". The
MsCoreUtils::normalizeMethods() function returns a vector of available normalisation meth-
ods.

• For "sum" and "max", each feature’s intensity is divided by the maximum or the sum of the
feature respectively. These two methods are applied along the features (rows).

• "center.mean" and "center.median" center the respective sample (column) intensities by
subtracting the respective column means or medians. "div.mean" and "div.median" divide
by the column means or medians. These are equivalent to sweeping the column means (medi-
ans) along MARGIN = 2 with FUN = "-" (for "center.*") or FUN = "/" (for "div.*").

• "diff.median" centers all samples (columns) so that they all match the grand median by
subtracting the respective columns medians differences to the grand median.

• Using "quantiles" or "quantiles.robust" applies (robust) quantile normalisation, as im-
plemented in preprocessCore::normalize.quantiles() and preprocessCore::normalize.quantiles.robust().
"vsn" uses the vsn::vsn2() function. Note that the latter also glog-transforms the intensities.
See respective manuals for more details and function arguments.

For further details and examples about normalisation, see MsCoreUtils::normalize_matrix().

Value

A QFeatures object with an additional assay containing the normalized data.

pep2qvalue 13

See Also

QFeatures::normalize for more details about normalize

Examples

data("scp1")
scp1
normalizeSCP(scp1, i = "proteins", name = "normproteins",

method = "center.mean")

pep2qvalue Compute q-values

Description

This function computes q-values from the posterior error probabilities (PEPs). The functions takes
the PEPs from the given assay’s rowData and adds a new variable to it that contains the computed
q-values.

Usage

pep2qvalue(object, i, groupBy, PEP, rowDataName = "qvalue")

Arguments

object A QFeatures object

i A numeric() or character() vector indicating from which assays the rowData
should be taken.

groupBy A character(1) indicating the variable name in the rowData that contains the
grouping variable, for instance to compute protein FDR. When groupBy is not
missing, the best feature approach is used to compute the PEP per group, mean-
ing that the smallest PEP is taken as the PEP of the group.

PEP A character(1) indicating the variable names in the rowData that contains the
PEPs. Since, PEPs are probabilities, the variable must be contained in (0, 1).

rowDataName A character(1) giving the name of the new variable in the rowData where the
computed FDRs will be stored. The name cannot already exist in any of the
assay rowData.

Details

The q-value of a feature (PSM, peptide, protein) is the minimum FDR at which that feature will be
selected upon filtering (Savitski et al.). On the other hand, the feature PEP is the probability that
the feature is wrongly matched and hence can be seen as a local FDR (Kall et al.). While filtering
on PEP is guaranteed to control for FDR, it is usually too conservative. Therefore, we provide this
function to convert PEP to q-values.

14 readSCP

We compute the q-value of a feature as the average of the PEPs associated to PSMs that have equal
or greater identification confidence (so smaller PEP). See Kall et al. for a visual interpretation.

We also allow inference of q-values at higher level, for instance computing the protein q-values
from PSM PEP. This can be performed by supplying the groupBy argument. In this case, we adopt
the best feature strategy that will take the best (smallest) PEP for each group (Savitski et al.).

Value

A QFeatures object.

References

Käll, Lukas, John D. Storey, Michael J. MacCoss, and William Stafford Noble. 2008. “Posterior
Error Probabilities and False Discovery Rates: Two Sides of the Same Coin.” Journal of Proteome
Research 7 (1): 40–44.

Savitski, Mikhail M., Mathias Wilhelm, Hannes Hahne, Bernhard Kuster, and Marcus Bantscheff.
2015. “A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data
Sets.” Molecular & Cellular Proteomics: MCP 14 (9): 2394–2404.

Examples

data("scp1")
scp1 <- pep2qvalue(scp1,

i = 1,
groupBy = "protein",
PEP = "dart_PEP",
rowDataName = "qvalue_protein")

Check results
rowData(scp1)[[1]][, c("dart_PEP", "qvalue_protein")]

readSCP Read single-cell proteomics data as a QFeatures object from tabular
data and metadata

Description

Convert tabular quantitative MS data and metadata from a spreadsheet or a data.frame into a
QFeatures object containing SingleCellExperiment objects.

Usage

readSCP(
featureData,
colData,
batchCol,
channelCol,
suffix = NULL,

readSCP 15

sep = "",
removeEmptyCols = FALSE,
verbose = TRUE,
...

)

Arguments

featureData File or object holding the identification and quantitative data. Can be either
a character(1) with the path to a text-based spreadsheet (comma-separated
values by default, but see ...) or an object that can be coerced to a data.frame.
It is advised not to encode characters as factors.

colData A data.frame or any object that can be coerced to a data.frame. colData is
expected to contains all the sample meta information. Required fields are the
acquisition batch (given by batchCol) and the acquisition channel within the
batch (e.g. TMT channel, given by channelCol). Additional fields (e.g. sample
type, acquisition date,...) are allowed and will be stored as sample meta data.

batchCol A numeric(1) or character(1) pointing to the column of featureData and
colData that contain the batch names. Make sure that the column name in both
table are either identical and syntactically valid (if you supply a character) or
have the same index (if you supply a numeric). Note that characters can be
converted to syntactically valid names using make.names

channelCol A numeric(1) or character(1) pointing to the column of colData that con-
tains the column names of the quantitative data in featureData (see Example).

suffix A character() giving the suffix of the column names in each assay. Sample/single-
cell (column) names are automatically generated using: batch name + sep +
suffix. Make sure suffix contains unique character elements. The length of
the vector should equal the number of quantification channels. If NULL (de-
fault), the suffix is derived from the the names of the quantification columns in
featureData.

sep A character(1) that is inserted between the assay name and the suffix (see
suffix argument for more details).

removeEmptyCols

A logical(1). If true, the function will remove in each batch the columns that
contain only missing values.

verbose A logical(1) indicating whether the progress of the data reading and format-
ting should be printed to the console. Default is TRUE.

... Further arguments that can be passed on to read.csv except stringsAsFactors,
which is always FALSE.

Value

An instance of class QFeatures. The expression data of each batch is stored in a separate assay as a
SingleCellExperiment object.

16 readSingleCellExperiment

Note

The SingleCellExperiment class is built on top of the RangedSummarizedExperiment class. This
means that some column names are forbidden in the rowData. Avoid using the following names:
seqnames, ranges, strand, start, end, width, element

Author(s)

Laurent Gatto, Christophe Vanderaa

Examples

Load an example table containing MaxQuant output
data("mqScpData")

Load the (user-generated) annotation table
data("sampleAnnotation")

Format the tables into a QFeatures object
readSCP(featureData = mqScpData,

colData = sampleAnnotation,
batchCol = "Raw.file",
channelCol = "Channel")

readSingleCellExperiment

Read SingleCellExperiment from tabular data

Description

Convert tabular data from a spreadsheet or a data.frame into a SingleCellExperiment object.

Usage

readSingleCellExperiment(table, ecol, fnames, ...)

Arguments

table File or object holding the quantitative data. Can be either a character(1) with
the path to a text-based spreadsheet (comma-separated values by default, but
see ...) or an object that can be coerced to a data.frame. It is advised not to
encode characters as factors.

ecol A numeric indicating the indices of the columns to be used as assay values.
Can also be a character indicating the names of the columns. Caution must be
taken if the column names are composed of special characters like (or - that
will be converted to a . by the read.csv function. If ecol does not match, the
error message will dislpay the column names as seen by the read.csv function.

sampleAnnotation 17

fnames An optional character(1) or numeric(1) indicating the column to be used as
row names.

... Further arguments that can be passed on to read.csv except stringsAsFactors,
which is always FALSE.

Value

An instance of class SingleCellExperiment.

Note

The SingleCellExperiment class is built on top of the RangedSummarizedExperiment class. This
means that some column names are forbidden in the rowData. Avoid using the following names:
seqnames, ranges, strand, start, end, width, element

Author(s)

Laurent Gatto, Christophe Vanderaa

See Also

The code relies on QFeatures::readSummarizedExperiment.

Examples

Load a data.frame with PSM-level data
data("mqScpData")

Create the QFeatures object
sce <- readSingleCellExperiment(mqScpData,

grep("RI", colnames(mqScpData)))

sampleAnnotation Single cell sample annotation

Description

A data frame with 48 observations on the following 6 variables.

• Set: a character vector

• Channel: a character vector

• SampleType: a character vector

• lcbatch: a character vector

• sortday: a character vector

• digest: a character vector

18 scp1

Usage

data("sampleAnnotation")

Format

An object of class data.frame with 64 rows and 6 columns.

Details

##’ The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). The
input files batch.csv and annotation.csv were downloaded from a Google Drive repository.
The two files were loaded and the columns names were adapted for consistency with mqScpData
table (see ?mqScpData). The two tables were filtered to contain only sets present in “mqScp-
Data. The tables were then merged based on the run ID, hence merging the sample annotation and the batch annotation. Finally, annotation for the blank run was added manually. The data is stored as a data.frame‘.

See Also

readSCP() to see how this file is used.

scp1 Single Cell QFeatures data

Description

A small QFeatures object with SCoPE2 data. The object is composed of 5 assays, including 3
PSM-level assays, 1 peptide assay and 1 protein assay.

Usage

data("scp1")

Format

An object of class QFeatures of length 5.

Details

The dataset is a subset of the SCoPE2 dataset (version 2, Specht et al. 2019, BioRXiv). This dataset
was converted to a QFeatures object where each assay in stored as a SingleCellExperiment
object. One assay per chromatographic batch ("LCA9", "LCA10", "LCB3") was randomly sampled.
For each assay, 100 proteins were randomly sampled. PSMs were then aggregated to peptides and
joined in a single assay. Then peptides were aggregated to proteins.

Examples

data("scp1")
scp1

https://www.biorxiv.org/content/10.1101/665307v3
https://drive.google.com/drive/folders/1VzBfmNxziRYqayx3SP-cOe2gu129Obgx
https://www.biorxiv.org/content/10.1101/665307v3

Index

∗ datasets
mqScpData, 7
sampleAnnotation, 17
scp1, 18

aggregateFeaturesOverAssays, 2

computeSCR, 3

divideByReference, 4

medianCVperCell, 5
mqScpData, 7
MsCoreUtils::normalize_matrix(), 12
MsCoreUtils::normalizeMethods, 6
MsCoreUtils::normalizeMethods(), 12

normalizeSCP, 12

pep2qvalue, 13
preprocessCore::normalize.quantiles(),

12
preprocessCore::normalize.quantiles.robust(),

12

QFeatures, 11, 14, 15, 18
QFeatures::aggregateFeatures, 2, 3
QFeatures::normalize, 13
QFeatures::readSummarizedExperiment,

17

read.csv, 15, 17
read.delim(), 7
readSCP, 14
readSCP(), 11, 18
readSingleCellExperiment, 16

sampleAnnotation, 17
scp1, 18
SingleCellExperiment, 14, 15, 17, 18

vsn::vsn2(), 12

19

	aggregateFeaturesOverAssays
	computeSCR
	divideByReference
	medianCVperCell
	mqScpData
	normalizeSCP
	pep2qvalue
	readSCP
	readSingleCellExperiment
	sampleAnnotation
	scp1
	Index

