
Package ‘SpliceWiz’
October 16, 2023

Title Easy, optimized, and accurate alternative splicing analysis in R

Version 1.2.3

Date 2023-07-31

Description Reads and fragments aligned to splice junctions can be used to
quantify alternative splicing events (ASE). However, overlapping ASEs can

confound their quantification. SpliceWiz quantifies ASEs, calculating
percent-spliced-in (PSI) using junction reads, and intron retention using
IRFinder-based quantitation. Novel filters identify ASEs that are relatively
less confounded by overlapping events, whereby PSIs can be calculated with
higher confidence. SpliceWiz is ultra-fast, using multi-threaded processing
of BAM files. It can be run using a graphical user or command line
interfaces. GUI-based interactive visualization of differential ASEs,
including novel group-based RNA-seq coverage visualization, simplifies
short-read RNA-seq analysis in R.

License MIT + file LICENSE

Depends NxtIRFdata

Imports ompBAM, methods, stats, utils, tools, parallel, scales,
magrittr, Rcpp (>= 1.0.5), data.table, fst, ggplot2,
AnnotationHub, BiocFileCache, BiocGenerics, BiocParallel,
Biostrings, BSgenome, DelayedArray, DelayedMatrixStats,
genefilter, GenomeInfoDb, GenomicRanges, HDF5Array, htmltools,
IRanges, patchwork, pheatmap, progress, plotly, R.utils, rhdf5,
rtracklayer, SummarizedExperiment, S4Vectors, shiny,
shinyFiles, shinyWidgets, shinydashboard, stringi,
rhandsontable, DT, grDevices, heatmaply, matrixStats,
RColorBrewer, rvest

Suggests knitr, rmarkdown, openssl, crayon, splines, testthat (>=
3.0.0), DESeq2, limma, DoubleExpSeq, edgeR, DBI, GO.db, fgsea,
Rsubread

LinkingTo ompBAM, Rcpp, zlibbioc, RcppProgress

SystemRequirements C++11, GNU make

Collate AllImports.R RcppExports.R zzz.R AllClasses.R AllGenerics.R
ASEFilter-methods.R NxtSE-methods.R globals.R ggplot_themes.R

1

2 R topics documented:

example_data.R wrappers.R make_plot_data.R Coverage.R
covPlotly-methods.R covDataObject-methods.R
covPlotObject-methods.R plotCoverage.R utils.R File_finders.R
BuildRef_GO.R BuildRef.R ViewRef.R STAR_utils.R Mappability.R
ProcessBAM_docs.R ProcessBAM.R CollateData.R MakeSE.R Filters.R
ASE-methods.R ASE-GLM-edgeR.R dash_filterModules.R
dash_globals.R dash_settings.R dash_ref_new_ui.R
dash_ref_new_server.R dash_expr_ui.R dash_expr_server.R
dash_QC.R dash_filters.R dash_DE_ui.R dash_DE_server.R
dash_vis_ui.R dash_vis_server.R dash_cov_ui.R dash_cov_server.R
dash_GO_ui.R dash_GO_server.R dash_ui.R dash_server.R dash.R
SpliceWiz-package.R

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

VignetteBuilder knitr

biocViews Software, Transcriptomics, RNASeq, AlternativeSplicing,
Coverage, DifferentialSplicing, DifferentialExpression, GUI,
Sequencing

URL https://github.com/alexchwong/SpliceWiz

BugReports https://support.bioconductor.org/

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/SpliceWiz

git_branch RELEASE_3_17

git_last_commit 92135a4

git_last_commit_date 2023-07-30

Date/Publication 2023-10-15

Author Alex Chit Hei Wong [aut, cre, cph],
Ulf Schmitz [ctb],
William Ritchie [cph]

Maintainer Alex Chit Hei Wong <a.wong@centenary.org.au>

R topics documented:
SpliceWiz-package . 3
ASE-GLM-edgeR . 5
ASE-methods . 10
ASEFilter-class . 17
collateData . 20
coord2GR . 23
covDataObject-class . 24
Coverage . 27

https://github.com/alexchwong/SpliceWiz
https://support.bioconductor.org/

SpliceWiz-package 3

covPlotly-class . 30
covPlotObject-class . 32
example-SpliceWiz-data . 38
findSamples . 40
Gene-ontology-methods . 42
getAvailableGO . 46
Graphics-User-Interface . 53
isCOV . 54
makeSE . 55
make_plot_data . 57
Mappability-methods . 59
NxtSE-class . 62
plotCoverage . 68
processBAM . 73
Run_SpliceWiz_Filters . 76
setSWthreads . 78
STAR-methods . 78
theme_white . 85
View-Reference-methods . 86

Index 89

SpliceWiz-package SpliceWiz: efficient and precise alternative splicing analysis in R

Description

SpliceWiz is a computationally efficient and user friendly workflow that analyses aligned short-read
RNA sequencing for differential intron retention and alternative splicing.

Details

SpliceWiz uses isoform-specific alignments to quantify percent-spliced-in ratios (i.e. ratio of the
"included" isoform, as a proportion of "included" and "excluded" isoforms). For intron retention
(IR), the abundance of the intron-retaining transcript (included isoform) is quantified using the
trimmed-mean depth of intron coverage with reads, whereas the spliced transcript (excluded iso-
form) is measured as the splicing of the intron as well as that of overlapping introns (since splicing
of any overlapping intron implies the intron of interest is not retained). For other forms of alter-
native splicing, junction reads (reads aligned across splice junctions) are used to quantify included
and excluded isoforms.

SpliceWiz processes BAM files (aligned RNA sequencing) using ompBAM::ompBAM-package.
ompBAM is a C++ library that allows R packages (via the Rcpp framework) to efficiently read
BAM files using OpenMP-based multi-threading. SpliceWiz processes BAM files via the process-
BAM function, using a splicing and intron reference built from any given genome / gene annotation
resource using the buildRef function. processBAM generates two outputs per BAM file: a txt.gz
file which is a gzip-compressed text file with multiple tables, containing information including
junction read counts and intron retention metrics. This output is very similar to that of IRFinder, as

https://github.com/williamritchie/IRFinder

4 SpliceWiz-package

the analysis steps of SpliceWiz’s BAM processing was built on an improved version of IRFinder’s
source code (version 1.3.1). Additionally, processBAM outputs a COV file, which is a binary bgzf-
compressed file that contains strand-specific coverage data.

Once individual files have been analysed, SpliceWiz compiles a dataset using these individual out-
puts, using collateData. This function unifies junctions detected across the dataset, and generates
included / excluded counts of all putative IR events and annotated alternative splicing events (ASEs).
This dataset is exported as a collection of files including an H5 database. The data is later imported
into the R session using the makeSE function, as a NxtSE object.

The NxtSE object is a specialized SummarizedExperiment object tailored for use in SpliceWiz.
Annotation of rows provide information about ASEs via rowData, while columns allows users to
provide annotations via colData.

SpliceWiz offers several novel filters via the ASEFilter class. See ASEFilter for details.

Once the NxtSE is annotated and filtered, differential analysis is performed, using limma, DE-
Seq2 or DoubleExpSeq wrappers. These wrappers model isoform counts as log-normal, negative-
binomial, or beta-binomial distributions, respectively. See ASE-methods for details.

Finally, SpliceWiz provides visualisation tools to illustrate alternative splicing using coverage plots,
including a novel method to normalise RNA-seq coverage grouped by experimental condition.
This approach accounts for variations introduced by sequenced library size and gene expression.
SpliceWiz efficiently computes and visualises means and variations in per-nucleotide coverage
depth across alternate exons in genomic loci.

The main functions are:

• Build-Reference-methods - Prepares genome and gene annotation references from FASTA
and GTF files and synthesizes the SpliceWiz reference for processing BAM files, collating the
NxtSE object.

• STAR-methods - (Optional) Provides wrapper functions to build the STAR genome reference
and alignment of short-read FASTQ raw sequencing files. This functionality is only available
on systems with STAR installed.

• processBAM - OpenMP/C++ based algorithm to analyse single or multiple BAM files.

• collateData - Collates an experiment based on multiple IRFinder outputs for individual sam-
ples, into one unified H5-based data structure.

• makeSE - Constructs a NxtSE (H5-based SummarizedExperiment) object, specialised to house
measurements of retained introns and junction counts of alternative splice events.

• applyFilters - Use default or custom filters to remove alternative splicing or IR events pertain-
ing to low-abundance genes and transcripts.

• ASE-methods - one-step method to perform differential alternate splice event (ASE) analysis
on a NxtSE object using limma or DESeq2.

• make_plot_data: Functions that compile individual and group-mean percent spliced in (PSI)
values of IR and alternative splice events; useful to produce scatter plots or heatmaps.

• plotCoverage: Generate RNA-seq coverage plots of individual samples or across samples
grouped by user-specified conditions

See the SpliceWiz Quick-Start for worked examples on how to use SpliceWiz SpliceWiz Cookbook
for real-life usage examples

../doc/SW_QuickStart.html
../doc/SW_Cookbook.html

ASE-GLM-edgeR 5

Author(s)

Alex Wong

References

Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E, Rasko
JE, Ritchie W. IRFinder: assessing the impact of intron retention on mammalian gene expression.
Genome Biol. 2017 Mar 15;18(1):51. https://doi.org/10.1186/s13059-017-1184-4

ASE-GLM-edgeR Using Generalised linear models to analyse differential ASEs using
edgeR

Description

These functions allow users to fit included/excluded counts using edgeR’s quasi-likelihood tests for
differential Alternative Splice Events (ASEs)

Usage

fitASE_edgeR(
se,
strModelFormula,
strASEFormula,
useQL = TRUE,
IRmode = c("all", "annotated", "annotated_binary"),
filter_antiover = TRUE,
filter_antinear = FALSE

)

fitASE_edgeR_custom(
se,
model_IncExc,
model_ASE,
useQL = TRUE,
IRmode = c("all", "annotated", "annotated_binary"),
filter_antiover = TRUE,
filter_antinear = FALSE

)

testASE_edgeR(
se,
fit,
coef_IncExc = ncol(fit[["model_IncExc"]]),
contrast_IncExc = NULL,
coef_ASE = ncol(fit[["model_ASE"]]),
contrast_ASE = NULL

https://doi.org/10.1186/s13059-017-1184-4

6 ASE-GLM-edgeR

)

addPSI_edgeR(results, se, condition, conditionList)

Arguments

se The NxtSE object created by makeSE(). To reduce runtime and avoid excessive
multiple testing, consider filtering the object using applyFilters

strModelFormula

A string specifying the model formula to fit isoform counts to assess differen-
tial expression in isolation. Should take the form of "~0 + batch1 + batch2
+ test_factor", where batch1 and batch2 are batch factors (if any), and
test_factor is the variate of interest.

strASEFormula A string specifying the model formula to fit PSIs (isoform ratios). The variate of
interest should be specified as an interactiion term with ASE. For example, fol-
lowing the above example, the ASE formula should be "~0 + batch1 + batch2
+ test_factor + test_factor:ASE"

useQL (default TRUE) Whether to use edgeR’s quasi-likelihood method to help reduce
false positives from near-zero junction / intron counts.

IRmode (default all) Choose the approach to quantify IR events. Default all considers
all introns as potentially retained, and calculates IR-ratio based on total splicing
across the intron using the "SpliceOver" or "SpliceMax" approach (see collate-
Data). Other options include annotated which calculates IR-ratios for anno-
tated introns only, and annotated_binary which calculates PSI considering the
"included" isoform as the IR-transcript, and the "excluded" transcript is quanti-
fied from splice counts only across the exact intron (but not that of overlapping
introns). IR-ratio are denoted as "IR" events, whereas PSIs calculated using IR
and intron-spliced binary alternatives are denoted as "RI" events.

filter_antiover, filter_antinear

Whether to remove novel IR events that overlap over or near anti-sense genes.
Default will exclude antiover but not antinear introns. These are ignored if
strand-specific RNA-seq protocols are used.

model_IncExc A model matrix in which to model differential expression of isoform counts in
isolation. The number of rows must equal that of the number of samples in se

model_ASE A model matrix in which to model differential PSIs. The number of rows must
be twice that of the number of samples in se, the first half are for included
counts, and the second half are for excluded counts. See example below.

fit The output returned by the fitASE_edgeR and fitASE_edgeR_custom func-
tions.

coef_IncExc, coef_ASE

model coefficients to be dropped for LRT test between full and reduced mod-
els. Directly parsed onto edgeR::glmQLFTest. See ?edgeR::glmQLFTest for
details

contrast_IncExc, contrast_ASE

numeric vector specifying one or more #’ contrasts of the linear model coeffi-
cients to be tested. Directly parsed onto edgeR::glmQLFTest. See ?edgeR::glmQLFTest
for details

ASE-GLM-edgeR 7

results The return value of testASE_edgeR(), to be used as input to append mean and
delta PSI values onto.

condition The name of the column containing the condition values in colData(se)

conditionList A list (or vector) of condition values of which to calculate mean PSIs

Details

edgeR accounts appropriately for zero-counts which are often problematic as PSI approaches zero
or one, leading to false positives. The following functions allow users to define model formulas to
test relative expressions of included / excluded counts (to assess whether isoforms are differentially
regulated, in isolation), as well as together as an interaction (the latter provides results of differential
ASE analysis)

See the examples section for a brief explanation of how to use these functions.

See also ASE-methods for further explanations of results output.

Value

fitASE_edgeR and fitASE_edgeR_custom returns a named list containing the following:

• IncExc, ASE: DGEGLM objects containing the fitted models for isoform counts and PSIs, respec-
tively

• model_IncExc, model_ASE: model matrices of the above fitted models.

testASE_edgeR() returns a data.table containing the following:

• EventName: The name of the ASE event. This identifies each ASE in downstream functions
including makeMeanPSI, makeMatrix, and plotCoverage

• EventType: The type of event. See details section above.

• EventRegion: The genomic coordinates the event occupies. This spans the most upstream and
most downstream splice junction involved in the ASE, and is use to guide the plotCoverage
function.

• flags: Indicates which isoforms are NMD substrates and/or which are formed by novel splicing
only.

edgeR specific output equivalent to statistics returned by edgeR::topTags():

• logFC, logCPM, F, PValue, FDR: log fold change, log counts per million, F statistic, p value
and (Benjamini Hochberg) adjusted p values of the differential PSIs for the contrasts or coef-
ficients tested.

• inc/exc_(...): edgeR statistics corresponding to differential expression testing for raw included
/ excluded counts in isolation (not of the PSIs).

addPSI_edgeR() appends the following columns to the above output

• AvgPSI_X: the average percent spliced in / percent IR levels for condition X. Note this is a
geometric mean, based on the arithmetic mean of logit PSI values.

• deltaPSI: The difference in PSI between the mean values of the two conditions.

• abs_deltaPSI: The absolute value of difference in PSI between the mean values of the two
conditions.

8 ASE-GLM-edgeR

Functions

• fitASE_edgeR(): Use edgeR to fit counts and ASE models with a given design formula

• fitASE_edgeR_custom(): Use edgeR to fit counts and ASE models with a given design
formula

• testASE_edgeR(): Use edgeR to return differential ASE results. coef and contrast are parsed
onto edgeR’s glmQLFTest function

• addPSI_edgeR(): Adds average and delta PSIs of conditions of interest onto results pro-
duced by testASE_edgeR(). Note this is done automatically for other methods described in
ASE-methods.

References

Lun A, Smyth G (2017). ’No counts, no variance: allowing for loss of degrees of freedom when as-
sessing biological variability from RNA-seq data’ Stat Appl Genet Mol Biol, 017 Apr 25;16(2):83-
93. https://doi.org/10.1515/sagmb-2017-0010

Examples

Load the NxtSE object and set up the annotations
- see ?makeSE on example code of generating this NxtSE object
se <- SpliceWiz_example_NxtSE()

colData(se)$treatment <- rep(c("A", "B"), each = 3)
colData(se)$replicate <- rep(c("P","Q","R"), 2)
require("edgeR")

fit <- fitASE_edgeR(
se,
strModelFormula = "~0 + replicate + treatment",
strASEFormula = "~0 + replicate + treatment + treatment:ASE"

)

Get coefficient terms of Included / Excluded counts isolated model
colnames(fit$model_IncExc)
[1] "replicateP" "replicateQ" "replicateR" "treatmentB"

Get coefficient terms of PSI model
colnames(fit$model_ASE)
[1] "replicateP" "replicateQ" "replicateR" "treatmentB"
[5] "treatmentA:ASEIncluded" "treatmentB:ASEIncluded"

Contrast between treatment "B" against treatment "A"
res <- testASE_edgeR(se, fit,

contrast_IncExc = c(0,0,0,1),
contrast_ASE = c(0,0,0,0,-1,1)

)

Add mean PSI values to results:
res_withPSI <- addPSI_edgeR(res, se, "treatment", c("B", "A"))

https://doi.org/10.1515/sagmb-2017-0010

ASE-GLM-edgeR 9

Using custom model matrices to model counts
- the equivalent analysis can be performed as follows:

Sample annotations for isoform count expressions
colData <- as.data.frame(colData(se))

Sample annotations for isoform count PSI analysis
colData_ASE <- rbind(colData, colData)
colData_ASE$ASE <- rep(c("Included", "Excluded"), each = nrow(colData))
rownames(colData_ASE) <- c(

paste0(rownames(colData), ".Included"),
paste0(rownames(colData), ".Excluded")

)

model_IncExc <- model.matrix(
~0 + replicate + treatment,
data = colData

)

model_ASE <- model.matrix(
~0 + replicate + treatment + treatment:ASE,
data = colData_ASE

)

fit <- fitASE_edgeR_custom(se, model_IncExc, model_ASE)

res_customModel <- testASE_edgeR(se, fit,
contrast_IncExc = c(0,0,0,1),
contrast_ASE = c(0,0,0,0,-1,1)

)

Check this produces identical results:
identical(res_customModel, res)

Time series examples using edgeR and splines
- similar to section 4.8 in the edgeR vignette

colData(se)$timepoint <- rep(c(1,2,3), each = 2)
colData(se)$batch <- rep(c("1", "2"), 3)

First, we set up a polynomial spline with 2 degrees of freedom:
Time <- poly(colData(se)$timepoint, df = 2)

Next, we define the batch factor:
Batch <- factor(colData(se)$batch)

Finally, we construct the same factors for ASE analysis. Note that
each factor must be repeated twice

Time_ASE <- rbind(Time, Time)
Batch_ASE <- c(Batch, Batch)
ASE <- factor(

10 ASE-methods

rep(c("Included", "Excluded"), each = nrow(colData(se)))
)

Now, we set up the model matrices for isoform and PSI count modelling
model_IncExc <- model.matrix(~0 + Batch + Time)
model_ASE <- model.matrix(~0 + Batch_ASE + Time_ASE + Time_ASE:ASE)

fit <- fitASE_edgeR_custom(se, model_IncExc, model_ASE)

Note the coefficients of interest in the constructed models:

colnames(model_IncExc)
[1] "Batch1" "Batch2" "Time1" "Time2"

colnames(model_ASE)
[1] "Batch_ASE1" "Batch_ASE2" "Time_ASE1" "Time_ASE2"
[5] "Time_ASE1:ASEIncluded" "Time_ASE2:ASEIncluded"

We are interested in a model in which `Time` is excluded, thus:

res <- testASE_edgeR(se, fit,
coef_IncExc = 3:4,
coef_ASE = 5:6

)

Finally, add PSI values for each time point:

res_withPSI <- addPSI_edgeR(res, se, "timepoint", c(1, 2, 3))

ASE-methods Differential Alternative Splicing Event analysis

Description

Use Limma, DESeq2, DoubleExpSeq, and edgeR wrapper functions to test for differential Alterna-
tive Splice Events (ASEs)

Usage

ASE_limma(
se,
test_factor,
test_nom,
test_denom,
batch1 = "",
batch2 = "",
IRmode = c("all", "annotated", "annotated_binary"),
filter_antiover = TRUE,

ASE-methods 11

filter_antinear = FALSE
)

ASE_edgeR(
se,
test_factor,
test_nom,
test_denom,
batch1 = "",
batch2 = "",
useQL = TRUE,
IRmode = c("all", "annotated", "annotated_binary"),
filter_antiover = TRUE,
filter_antinear = FALSE

)

ASE_limma_timeseries(
se,
test_factor,
batch1 = "",
batch2 = "",
degrees_of_freedom = 1,
IRmode = c("all", "annotated", "annotated_binary"),
filter_antiover = TRUE,
filter_antinear = FALSE

)

ASE_edgeR_timeseries(
se,
test_factor,
batch1 = "",
batch2 = "",
degrees_of_freedom = 1,
useQL = TRUE,
IRmode = c("all", "annotated", "annotated_binary"),
filter_antiover = TRUE,
filter_antinear = FALSE

)

ASE_DESeq(
se,
test_factor,
test_nom,
test_denom,
batch1 = "",
batch2 = "",
n_threads = 1,
IRmode = c("all", "annotated", "annotated_binary"),

12 ASE-methods

filter_antiover = TRUE,
filter_antinear = FALSE

)

ASE_DoubleExpSeq(
se,
test_factor,
test_nom,
test_denom,
IRmode = c("all", "annotated", "annotated_binary"),
filter_antiover = TRUE,
filter_antinear = FALSE

)

Arguments

se The NxtSE object created by makeSE(). To reduce runtime and avoid excessive
multiple testing, consider filtering the object using applyFilters

test_factor The column name in the sample annotation colData(se) that contains the de-
sired variables to be contrasted. For ASE_limma_timeseries() and ASE_DESeq()
(when test_nom and test_denom parameters are left blank), test_factor must
contain numerical values representing the time variable.

test_nom The nominator condition to test for differential ASE. Usually the "treatment"
condition

test_denom The denominator condition to test against for differential ASE. Usually the "con-
trol" condition

batch1, batch2 (Optional, limma and DESeq2 only) One or two condition types containing
batch information to account for.

IRmode (default all) Choose the approach to quantify IR events. Default all considers
all introns as potentially retained, and calculates IR-ratio based on total splicing
across the intron using the "SpliceOver" or "SpliceMax" approach (see collate-
Data). Other options include annotated which calculates IR-ratios for anno-
tated introns only, and annotated_binary which calculates PSI considering the
"included" isoform as the IR-transcript, and the "excluded" transcript is quanti-
fied from splice counts only across the exact intron (but not that of overlapping
introns). IR-ratio are denoted as "IR" events, whereas PSIs calculated using IR
and intron-spliced binary alternatives are denoted as "RI" events.

filter_antiover, filter_antinear

Whether to remove novel IR events that overlap over or near anti-sense genes.
Default will exclude antiover but not antinear introns. These are ignored if
strand-specific RNA-seq protocols are used.

useQL (default TRUE) Whether to use edgeR’s quasi-likelihood method to help reduce
false positives from near-zero junction / intron counts.

degrees_of_freedom

(default 1) The complexity of time series trends modeled by ASE_limma_timeseries.
E.g., 1 will only model linear trends, whereas 2 extends the capacity for quadratic
trends, 3 for cubic trends, etc.

ASE-methods 13

n_threads (DESeq2 only) How many threads to use for DESeq2 based analysis.

Details

Using limma, SpliceWiz models included and excluded counts as log-normal distributed, whereas
using DESeq2, SpliceWiz models included and excluded counts as negative binomial distributed
with dispersion shrinkage according to their mean count expressions. For limma and DESeq2,
differential ASE are considered as the "interaction" between included and excluded splice counts
for each sample. See this vignette for an explanation of how this is done.

SpliceWiz’s limma wrapper implements an additional filter where ASEs with an average cpm val-
ues of either Included or Excluded counts are less than 1. DESeq2 has its own method for handling
outliers, which seems to work well for handling situations where PSI ~= 0 or PSI ~= 1.

Time series are supported by SpliceWiz to a limited extent. Time series analysis can be performed
via limma or DESeq2. For limma time-series analysis, use ASE_limma_timeseries(), specify-
ing the test_factor as the column of numeric values containing time series data. For DESeq,
time series differential analysis can be activated using the ASE_DESeq() function, again specifying
test_factor as the column containing time series data (and leaving test_nom and test_denom
parameters blank). See examples below.

(NEW) edgeR models counts using a negative binomial model. It accounts appropriately for zero-
counts which are often problematic as PSI approaches zero or one, leading to false positives. The
edgeR-based option produces differential ASEs that are less biased towards low counts. Our pre-
liminary analysis shows it to be more accurate than limma or DoubleExpSeq based methods.

(NEW) For time series analysis using edgeR, ASE_edgeR_timeseries() can be used interchange-
ably with its counterpart limma-based function. For complex models, please see ASE-GLM-edgeR
to build your own GLM models.

Using DoubleExpSeq, included and excluded counts are modeled using the generalized beta prime
distribution, using empirical Bayes shrinkage to estimate dispersion.

EventType are as follow:

• IR = intron retention (IR-ratio) - all introns are considered

• MXE = mutually exclusive exons

• SE = skipped exons

• AFE = alternate first exon

• ALE = alternate last exon

• A5SS = alternate 5’-splice site

• A3SS = alternate 3’-splice site

• RI = (known / annotated) intron retention (PSI).

NB: SpliceWiz measures intron retention events using two different approaches, the choice of which
is left to the user - see ASE-methods:

• IR (intron retention) events: considers all introns to be potentially retained. Given in most
scenarios there may be uncertainty as to which of the many mutually-overlapping introns are
spliced to produce the major isoform, SpliceWiz adopts the IRFinder approach by using the
IR-ratio. The "included" isoform is the relative abundance of the IR-transcript, as approxi-
mated by the trimmed-mean depth of coverage across the intron (excluding outliers including

https://rpubs.com/mikelove/ase

14 ASE-methods

exons of other transcripts, intronic elements such as snoRNAs, etc). The "excluded isoform"
includes all spliced transcripts that contain an overlapping intron, as estimated via SpliceWiz’s
SpliceOver and IRFinder’s SpliceMax methods - see collateData.

• RI (annotated retained introns) considers only annotated retained introns, i.e., those annotated
within the given reference. These are quantified using PSI, considering the included (IR-
transcript) and excluded (splicing of the exact intron) as binary alternatives.

SpliceWiz considers "included" counts as those that represent abundance of the "included" isoform,
whereas "excluded" counts represent the abundance of the "excluded" isoform. To allow compar-
ison between modalities, SpliceWiz applies a convention whereby the "included" transcript is one
where its splice junctions are by definition shorter than those of "excluded" transcripts. Specifically,
this means the included / excluded isoforms are as follows:

EventType Included Excluded
IR or RI Intron Retention Spliced Intron

MXE Upstream exon inclusion Downstream exon inclusion
SE Exon inclusion Exon skipping

AFE Downstream exon usage Upstream exon usage
ALE Upstream exon usage Downstream exon usage
A5SS Downstream 5’-SS Upstream 5’-SS
A3SS Upstream 3’-SS Downstream 3’-SS

Value

For all methods, a data.table containing the following:

• EventName: The name of the ASE event. This identifies each ASE in downstream functions
including makeMeanPSI, makeMatrix, and plotCoverage

• EventType: The type of event. See details section above.

• EventRegion: The genomic coordinates the event occupies. This spans the most upstream and
most downstream splice junction involved in the ASE, and is use to guide the plotCoverage
function.

• flags: Indicates which isoforms are NMD substrates and/or which are formed by novel splicing
only.

• AvgPSI_nom, Avg_PSI_denom: the average percent spliced in / percent IR levels for the two
conditions being contrasted. nom and denom in column names are replaced with the condition
names. Note this is a geometric mean, based on the arithmetic mean of logit PSI values.

• deltaPSI: The difference in PSI between the mean values of the two conditions.

• abs_deltaPSI: The absolute value of difference in PSI between the mean values of the two
conditions.

limma specific output

• logFC, AveExpr, t, P.Value, adj.P.Val, B: limma topTable columns of differential ASE. See
limma::topTable for details.

• inc/exc_(logFC, AveExpr, t, P.Value, adj.P.Val, B): limma results for differential testing for
raw included / excluded counts only

ASE-methods 15

edgeR specific output equivalent to statistics returned by edgeR::topTags:

• logFC, logCPM, F, PValue, FDR: log fold change, log counts per million, F statistic, p value
and (Benjamini Hochberg) adjusted p values.

• inc/exc_(...): edgeR statistics corresponding to differential expression testing for raw included
/ excluded counts in isolation

DESeq2 specific output

• baseMean, log2FoldChange, lfcSE, stat, pvalue, padj: DESeq2 results columns for differential
ASE; see DESeq2::results for details.

• inc/exc_(baseMean, log2FoldChange, lfcSE, stat, pvalue, padj): DESeq2 results for differen-
tial testing for raw included / excluded counts only

DoubleExp specific output

• MLE_nom, MLE_denom: Maximum likelihood expectation of PSI values for the denom in
column names are replaced with the condition names

• MLE_LFC: Log2-fold change of the MLE

• P.Value, adj.P.Val: Nominal and BH-adjusted P values

• n_eff: Number of effective samples (i.e. non-zero or non-unity PSI)

• mDepth: Mean Depth of splice coverage in each of the two groups.

• Dispersion_Reduced, Dispersion_Full: Dispersion values for reduced and full models. See
DoubleExpSeq::DBGLM1 for details.

Functions

• ASE_limma(): Use limma to perform differential ASE analysis of a filtered NxtSE object

• ASE_edgeR(): Use edgeR to perform differential ASE analysis of a filtered NxtSE object

• ASE_limma_timeseries(): Use limma to perform differential ASE analysis of a filtered
NxtSE object (time series)

• ASE_edgeR_timeseries(): Use edgeR to perform differential time series of a filtered NxtSE
object

• ASE_DESeq(): Use DESeq2 to perform differential ASE analysis of a filtered NxtSE object

• ASE_DoubleExpSeq(): Use DoubleExpSeq to perform differential ASE analysis of a filtered
NxtSE object (uses double exponential beta-binomial model) to estimate group dispersions,
followed by LRT

References

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). ’limma powers differ-
ential expression analyses for RNA-sequencing and microarray studies.’ Nucleic Acids Research,
43(7), e47. https://doi.org/10.1093/nar/gkv007

Love MI, Huber W, Anders S (2014). ’Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2.’ Genome Biology, 15, 550. https://doi.org/10.1186/s13059-014-0550-8

https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/s13059-014-0550-8

16 ASE-methods

Ruddy S, Johnson M, Purdom E (2016). ’Shrinkage of dispersion parameters in the binomial family,
with application to differential exon skipping.’ Ann. Appl. Stat. 10(2): 690-725. https://doi.
org/10.1214/15-AOAS871

Gilis J, Vitting-Seerup K, Van den Berge K, Clement L (2021). ’Scalable analysis of differen-
tial transcript usage for bulk and single-cell RNA-sequencing applications.’ F1000Research 2021,
10:374. https://doi.org/10.12688/f1000research.51749.1

Lun A, Smyth G (2017). ’No counts, no variance: allowing for loss of degrees of freedom when as-
sessing biological variability from RNA-seq data’ Stat Appl Genet Mol Biol, 017 Apr 25;16(2):83-
93. https://doi.org/10.1515/sagmb-2017-0010

Examples

Load the NxtSE object and set up the annotations
- see ?makeSE on example code of generating this NxtSE object
se <- SpliceWiz_example_NxtSE(novelSplicing = TRUE)

colData(se)$treatment <- rep(c("A", "B"), each = 3)
colData(se)$replicate <- rep(c("P","Q","R"), 2)

Limma analysis (counts modeled using log-normal distribution)

require("limma")
res_limma <- ASE_limma(se, "treatment", "A", "B")

edgeR analysis (counts modeled using negative binomial distribution)
- QL: whether quasi-likelihood method was used

require("edgeR")
res_edgeR <- ASE_edgeR(se, "treatment", "A", "B", useQL = FALSE)
res_edgeR_QL <- ASE_edgeR(se, "treatment", "A", "B", useQL = TRUE)

DoubleExpSeq analysis (counts modeled using beta binomial distribution)

require("DoubleExpSeq")
res_DES <- ASE_DoubleExpSeq(se, "treatment", "A", "B")

DESeq2 analysis (counts modeled using negative binomial distribution)

require("DESeq2")
res_DESeq <- ASE_DESeq(se, "treatment", "A", "B")

Time series examples

colData(se)$timepoint <- rep(c(1,2,3), each = 2)
colData(se)$batch <- rep(c("1", "2"), 3)

res_limma_timeseries <- ASE_limma_timeseries(se, "timepoint")
res_edgeR_timeseries <- ASE_edgeR_timeseries(se, "timepoint")
res_DESeq_timeseries <- ASE_DESeq(se, "timepoint")

https://doi.org/10.1214/15-AOAS871
https://doi.org/10.1214/15-AOAS871
https://doi.org/10.12688/f1000research.51749.1
https://doi.org/10.1515/sagmb-2017-0010

ASEFilter-class 17

ASEFilter-class SpliceWiz filters to remove low-confidence alternative splicing and in-
tron retention events

Description

SpliceWiz implements a number of novel filters designed to exclude alternative splicing events
(ASEs) that yield low-confidence estimates.

Usage

ASEFilter(
filterClass = c("Data", "Annotation"),
filterType = c("Depth", "Participation", "Consistency", "Modality", "Protein_Coding",

"NMD", "TSL", "Terminus", "ExclusiveMXE", "StrictAltSS"),
pcTRUE = 100,
minimum = 20,
maximum = 1,
minDepth = 5,
condition = "",
minCond = -1,
EventTypes = c("IR", "MXE", "SE", "A3SS", "A5SS", "AFE", "ALE", "RI")

)

Arguments

filterClass Must be either "Data" or "Annotation". See details

filterType Must be a valid "Data" or "Annotation" filter. See details

pcTRUE If conditions are set, what percentage of all samples in each of the condition
must satisfy the filter for the event to pass the filter check. Must be between 0
and 100 (default 100)

minimum Filter-dependent argument. See details

maximum Filter-dependent argument. See details

minDepth Filter-dependent argument. See details

condition (default "") If set, must match the name of an experimental condition in the
NxtSE object to be filtered, i.e. a column name in colData(se). Leave blank
to disable filtering by condition

minCond (default -1) If condition is set, how many minimum number of conditions must
pass the filter criteria. For example, if condition = "Batch", and batches are "A",
"B", or "C", setting minCond = 2 with pcTRUE = 100 means that all samples be-
longing to two of the three types of Batch must pass the filter criteria. Setting -1
means all elements of condition must pass criteria. Set to -1 when the number
of elements in the experimental condition is unknown. Ignored if condition is
left blank.

18 ASEFilter-class

EventTypes What types of events are considered for filtering. Must be one or more of
c("IR", "MXE", "SE", "A3SS", "A5SS", "AFE", "ALE", "RI"). Events not
specified in EventTypes are not filtered (i.e. they will pass the filter without
checks)

Details

Annotation Filters

• Modality: Filters for specific modalities of ASEs. All events belonging to the specified
EventTypes are removed. No additional parameters required.

• Protein_Coding: Filters for alternative splicing or IR events involving protein-coding tran-
scripts. No additional parameters required.

• NMD: Filters for events in which one isoform is a predicted NMD substrate.

• TSL: filters for events in which both isoforms have a TSL level below or equal to minimum

• Terminus: In alternate first exons, the splice junction must not be shared with another tran-
script for which it is not its first intron. For alternative last exons, the splice junction must not
be shared with another transcript for which it is not its last intron

• ExclusiveMXE: For MXE events, the two alternate casette exons must not overlap in their
genomic regions

• StrictAltSS: For A5SS / A3SS events, the two alternate splice sites must not be interupted by
detected introns

Data Filters

• Depth: Filters IR or alternative splicing events of transcripts that are "expressed" with ade-
quate Depth as calculated by the sum of all splicing and IR reads spanning the event. Events
with Depth below minimum are filtered out

• Participation: Participation means different things to IR and alternative splicing.

For IR, Participation refers to the percentage of the measured intron covered with reads. Only
introns of samples with a depth of intron coverage (intron depth) above minDepth are assessed,
where introns with coverage percentage below minimum are filtered out.

For non-IR ASEs, Participation refers to the percentage of all splicing events observed across
the genomic region (SpliceOver metric) that is compatible with either the included or excluded
event. This prevents SpliceWiz from doing differential analysis between two minor isoforms.
Instead of IntronDepth, in AS events SpliceWiz considers events where the SpliceOver metric
exceed minDepth. Then, events with a SpliceOver metric below minimum are excluded.

We recommend testing IR events for > 70% coverage and AS events for > 40% coverage
as given in the default filters which can be accessed using getDefaultFilters

• Consistency: Skipped exons (SE) and mutually exclusive exons (MXE) comprise reads aligned
to two contiguous splice junctions. Most algorithms take the average counts from both junc-
tions. This will inadvertently include transcripts that share one but not both splice events. To

ASEFilter-class 19

check that this is not happening, we require both splice junctions to have comparable counts.
This filter checks whether reads from each splice junction comprises a reasonable proportion
of the sum of these reads.

Events are excluded if either of the upstream or downstream event is lower than total splic-
ing events by a log-2 magnitude above maximum. For example, if maximum = 2, we require
both upstream and downstream events to represent at least 1/(2^2) = 1/4 of the sum of up-
stream and downstream event. If maximum = 3, then each junction must be at least 1/8 of total,
etc. This is considered for each isoform of each event, and is NOT tested when total (up-
stream+downstream) counts belonging to each isoform is below minDepth.

IR-events are also checked. For IR events, the upstream and downstream exon-intron spanning
reads must comprise a reasonable proportion of total exon-intron spanning reads.

We highly recommend using the default filters, which can be acquired using getDefaultFilters

Value

An ASEFilter object with the specified parameters

Functions

• ASEFilter(): Constructs a ASEFilter object

See Also

Run_SpliceWiz_Filters

Examples

Create a ASEFilter that filters for protein-coding ASE
f1 <- ASEFilter(filterClass = "Annotation", filterType = "Protein_Coding")

Create a ASEFilter that filters for Depth >= 20 in IR events
f2 <- ASEFilter(

filterClass = "Data", filterType = "Depth",
minimum = 20, EventTypes = c("IR", "RI")

)

Create a ASEFilter that filters for Participation > 60% in splice events
that must be satisfied in at least 2 categories of condition "Genotype"
f3 <- ASEFilter(

filterClass = "Data", filterType = "Participation",
minimum = 60, EventTypes = c("MXE", "SE", "AFE", "ALE", "A3SS", "A5SS"),
condition = "Genotype", minCond = 2

)

Create a ASEFilter that filters for Depth > 10 in all events
that must be satisfied in at least 50% of each gender
f4 <- ASEFilter(

filterClass = "Data", filterType = "Depth",
minimum = 10, condition = "gender", pcTRUE = 50

20 collateData

)

Get a description of what these filters do:
f1
f2
f3
f4

collateData Collates a dataset from (processBAM) output files of individual sam-
ples

Description

collateData() creates a dataset from a collection of processBAM output files belonging to an
experiment.

Usage

collateData(
Experiment,
reference_path,
output_path,
IRMode = c("SpliceOver", "SpliceMax"),
packageCOVfiles = FALSE,
novelSplicing = FALSE,
forceStrandAgnostic = FALSE,
novelSplicing_minSamples = 3,
novelSplicing_countThreshold = 10,
novelSplicing_minSamplesAboveThreshold = 1,
novelSplicing_requireOneAnnotatedSJ = TRUE,
novelSplicing_useTJ = TRUE,
overwrite = FALSE,
n_threads = 1,
lowMemoryMode = TRUE

)

Arguments

Experiment (Required) A 2 or 3 column data frame, ideally generated by findSpliceWizOut-
put or findSamples. The first column designate the sample names, and the 2nd
column contains the path to the processBAM output file (of type sample.txt.gz).
(Optionally) a 3rd column contains the coverage files (of type sample.cov) of
the corresponding samples. NB: all other columns are ignored.

reference_path (Required) The path to the reference generated by Build-Reference-methods

output_path (Required) The path to contain the output files for the collated dataset

collateData 21

IRMode (default SpliceOver) The algorithm to calculate ’splice abundance’ in IR quan-
tification. Valid options are SpliceOver and SpliceMax. See details

packageCOVfiles

(default FALSE) Whether COV files should be copied over to the NxtSE object.
This is useful if one wishes to transfer the NxtSE folder to a collaborator, who
can then open the NxtSE object with valid COV file paths.

novelSplicing (default FALSE) Whether collateData will use novel junction reads detected in
samples to infer novel splice variants. All tandem split reads (those bridging two
consecutive splice junctions) are used, as well as novel split reads that satisfy
abundance criteria (see novelSplicing_minSamples, novelSplicing_minSamplesAboveThreshold,
and novelSplicing_countThreshold) are used to synthesise a dataset-specific
SpliceWiz reference. See details.

forceStrandAgnostic

(default FALSE) In poorly-prepared stranded libraries, it may be better to quan-
tify in unstranded mode. Set this to TRUE if your stranded libraries may be
contaminated with unstranded reads

novelSplicing_minSamples

(default 3) Novel junctions are included in building of novel reference if number
samples with non-zero counts exceeds this number.

novelSplicing_countThreshold

(default 10) Threshold of split-reads across novel junctions; used in conjunction
with novelSplicing_minSamplesAboveThreshold

novelSplicing_minSamplesAboveThreshold

(default 1) Novel junctions are included in building of novel reference if novel
junction reads are above a pre-defined threshold exceeds this number

novelSplicing_requireOneAnnotatedSJ

(default TRUE) The default requires novel junctions to have one annotated splice
site. If this is disabled, collateData will include novel junctions where neither
splice site is annotated.

novelSplicing_useTJ

(default TRUE) For novel splicing, should SpliceWiz use reads with 2 or more
junctions to find novel exons? Ignored if novelSplicing is set to FALSE.

overwrite (default FALSE) If collateData() has previously been run using the same set
of samples, it will not be overwritten unless this is set to TRUE.

n_threads (default 1) The number of threads to use. If you run out of memory, try lowering
the number of threads

lowMemoryMode (default TRUE) collateData() will perform optimizations to conserve memory
if this is set to TRUE. Otherwise, will prioritise performance.

Details

In Windows, collateData runs using only 1 thread, as BiocParallel’s MulticoreParam is not sup-
ported.

It is assumed that all sample processBAM outputs were generated using the same reference.

The combination of junction counts and IR quantification from processBAM is used to calculate
percentage spliced in (PSI) of alternative splice events, and intron retention ratios (IR-ratio) of

22 collateData

retained introns. Also, QC information is collated. Data is organised in a H5file and FST files for
memory and processor efficient downstream access using makeSE.

The original IRFinder algorithm, see the following wiki, uses SpliceMax to estimate abundance
of spliced transcripts. This calculates the number of mapped splice events that share the boundary
coordinate of either the left or right flanking exon SpliceLeft,SpliceRight, estimating splice
abundance as the larger of the two values.

SpliceWiz proposes a new algorithm, SpliceOver, to account for the possibility that the ma-
jor isoform shares neither boundary, but arises from either of the flanking exon clusters. Exon
clusters are contiguous regions covered by exons from any transcript (except those designated as
retained_intron or sense_intronic), and are separated by obligate intronic regions (genomic
regions that are introns for all transcripts). For introns that are internal to a single exon cluster (i.e.
akin to "known-exon" introns from IRFinder), SpliceOver uses GenomicRanges::findOverlaps to
sum all splice reads that overlap the same genomic region as the intron of interest.

Detection of novel ASEs: When novelSplicing is set to TRUE, novel junctions (split reads across
unannotated junctions from samples of the dataset being collated) are used in conjunction with the
reference to compile a list of novel ASEs. To avoid being overwhelmed by a large number of false
positive novel junctions (often due to mis-alignments), a simple filtering strategy is used. This in-
volves including novel junctions only if it occurs in a minimum number of samples (default 3), or if
the number of split reads of a novel junction is above a pre-defined threshold (default 10) in a certain
number of samples (default 1). These parameters can be set using novelSplicing_minSamples,
novelSplicing_countThreshold and novelSplicing_minSamplesAboveThreshold respectively.

Value

collateData() writes to the directory given by output_path. This output directory is portable
(i.e. it can be moved to a different location after running collateData() before running makeSE),
but individual files within the output folder should not be moved.

Also, the processBAM and collateData output folders should be copied to the same destination
and their relative paths preserved. Otherwise, the locations of the "COV" files will not be recorded
in the collated data and will have to be re-assigned using covfile(se)<-. See makeSE

See Also

processBAM, makeSE

Examples

buildRef(
reference_path = file.path(tempdir(), "Reference"),
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- SpliceWiz_example_bams()
processBAM(bams$path, bams$sample,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "SpliceWiz_Output")

)

https://github.com/williamritchie/IRFinder/wiki/IRFinder-Output

coord2GR 23

expr <- findSpliceWizOutput(file.path(tempdir(), "SpliceWiz_Output"))
collateData(expr,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "Collated_output")

)

Enable novel splicing:

collateData(expr,
reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "Collated_output"),
novelSplicing = TRUE

)

coord2GR Converts genomic coordinates into a GRanges object

Description

This function takes a string vector of genomic coordinates and converts it into a GRanges object.

Usage

coord2GR(coordinates)

Arguments

coordinates A string vector of one or more genomic coordinates to be converted

Details

Genomic coordinates can take one of the following syntax:

• seqnames:start

• seqnames:start-end

• seqnames:start-end/strand

The following examples are considered valid genomic coordinates:

• "chr1:21535"

• "chr3:10550-10730"

• "X:51231-51330/-"

• "chrM:2134-5232/+"

Value

A GRanges object that corresponds to the given coordinates

24 covDataObject-class

Examples

se <- SpliceWiz_example_NxtSE()

coordinates <- rowData(se)$EventRegion

gr <- coord2GR(coordinates)

covDataObject-class Container to hold raw data for SpliceWiz coverage plots

Description

This object is generated using getCoverageData or getGenomeData methods, and is used as input
for generating coverage plots.

Usage

S4 method for signature 'covDataObject'
showEvents(object)

getCoverageData(
se,
Event,
Gene,
seqname,
start,
end,
coordinates,
strand = c("*", "+", "-"),
zoom_factor = 0.2,
bases_flanking = 100,
tracks,
condition,
...

)

getGenomeData(
reference_path,
Gene,
seqname,
start,
end,
coordinates,
zoom_factor = 0.2,
bases_flanking = 100,
...

)

covDataObject-class 25

plotAnnoTrack(
object,
Event,
view_start,
view_end,
reverseGenomeCoords = FALSE,
condensed = FALSE,
selected_transcripts = "",
plot_key_isoforms = FALSE,
usePlotly = FALSE,
...

)

Arguments

object For plotAnnoTrack(), the covDataObject created by getCoverageData() or
getGenomeData()

se A NxtSE object, created by makeSE. COV files must be linked to the NxtSE
object. To do this, see the example in makeSE. Required by plotCoverage.
Not required by plotGenome if reference_path is supplied.

Event The EventName of the IR / alternative splicing event to be displayed. Use
rownames(se) to display a list of valid events.

Gene Whether to use the range for the given Gene. If given, overrides Event (but
Event or norm_event will be used to normalise by condition). Valid Gene en-
tries include gene_id (Ensembl ID) or gene_name (Gene Symbol).

seqname, start, end

The chromosome (string) and genomic start/end coordinates (numeric) of the
region to display. If present, overrides both Event and Gene. E.g. for a given re-
gion of chr1:10000-11000, use the parameters: seqname = "chr1", start = 10000, end = 11000

coordinates A string specifying genomic coordinates can be given instead of seqname,start,end.
Must be of the format "chr:start-end", e.g. "chr1:10000-11000"

strand Whether to show coverage of both strands "*" (default), or from the "+" or "-"
strand only.

zoom_factor Zoom out from event. Each level of zoom zooms out by a factor of 3. E.g.
for a query region of chr1:10000-11000, if a zoom_factor of 1.0 is given,
chr1:99000-12000 will be displayed.

bases_flanking (Default = 100) How many bases flanking the zoomed window. Useful when
used in conjunction with zoom_factor == 0. E.g. for a given region of chr1:10000-
11000, if zoom_factor = 0 and bases_flanking = 100, the region chr1:9900-
11100 will be displayed.

tracks The names of individual samples, or the names of the different conditions to be
plotted. For the latter, set condition to the specified condition category.

condition To display normalised coverage per condition, set this to the condition category.
If omitted, tracks are assumed to refer to the names of individual samples.

... Ignored / not used

26 covDataObject-class

reference_path The path of the reference generated by Build-Reference-methods. Required by
plotGenome if a NxtSE object is not specified.

view_start, view_end

Start and end coordinates of plotting function. Note that plot coordinates may
be different from retrieval coordinates and is useful for zooming in.

reverseGenomeCoords

Whether the genomic axis should be reversed to make it more convenient to plot
reverse-stranded genes

condensed (default ‘FALSE) Whether the genomic track should be condensed to plot whole
genes, rather than transcripts. Preferred if multiple genes are plotted on a zoomed-
out plot

selected_transcripts

(default "") One or more transcript names or ID’s to be displayed on the anno-
tation track.

plot_key_isoforms

(default FALSE) If TRUE, plots only transcripts involved in the given splicing
Event.

usePlotly (default FALSE) Whether to return a plotly or ggplot object.

Value

For getCoverageData(): A covDataObject containing required data used to generate downstream
For plotAnnoTrack(): A ggplot or plotly object

Functions

• showEvents(covDataObject): Returns the EventNames for which events can be normalized
using the given covDataObject

• getCoverageData(): Get coverage / genome data for plotting coverage plots

• getGenomeData(): Get coverage / genome data for plotting coverage plots

• plotAnnoTrack(): Directly plots the annotation from a covDataObject.

See Also

covPlotObject

Examples

se <- SpliceWiz_example_NxtSE(novelSplicing = TRUE)

Assign annotation of the experimental conditions
colData(se)$treatment <- rep(c("A", "B"), each = 3)

dataObj <- getCoverageData(
se,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
tracks = colnames(se)

)

Coverage 27

Show `EventName`s of supported splicing events
contained within covDataObject

showEvents(dataObj)

A limited covDataObject containing only the reference can be generated
from the SpliceWiz reference

buildRef(
reference_path = file.path(tempdir(), "Reference"),
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

genomeObj <- getGenomeData(
reference_path = file.path(tempdir(), "Reference"),
Gene = "SRSF3"

)

Plot reference track directly from the covDataObject

NB: Event plotting is not supported for reference-derived `covDataObject`s
plotAnnoTrack(genomeObj)

plotAnnoTrack(dataObj, Event = "SE:SRSF3-203-exon4;SRSF3-202-int3")

Coverage Calls SpliceWiz’s C++ function to retrieve coverage from a COV file

Description

This function returns an RLE / RLEList or data.frame containing coverage data from the given COV
file

COV files are generated by SpliceWiz’s processBAM and BAM2COV functions. It records align-
ment coverage for each nucleotide in the given BAM file. It stores this data in "COV" format, which
is an indexed BGZF-compressed format specialised for the storage of unstranded and stranded
alignment coverage in RNA sequencing.

Unlike BigWig files, COV files store coverage for both positive and negative strands.

These functions retrieves coverage data from the specified COV file. They are computationally
efficient as they utilise random-access to rapidly search for the requested data from the COV file.

28 Coverage

Usage

getCoverage(file, seqname = "", start = 0, end = 0, strand = c("*", "+", "-"))

getCoverage_DF(
file,
seqname = "",
start = 0,
end = 0,
strand = c("*", "+", "-")

)

getCoverageRegions(
file,
regions,
strandMode = c("unstranded", "forward", "reverse")

)

getCoverageBins(
file,
region,
bins = 2000,
strandMode = c("unstranded", "forward", "reverse"),
bin_size

)

Arguments

file (Required) The file name of the COV file

seqname (Required for getCoverage_DF) A string denoting the chromosome name. If
left blank in getCoverage, retrieves RLEList containing coverage of the entire
file.

start, end 1-based genomic coordinates. If start = 0 and end = 0, will retrieve RLE of
specified chromosome.

strand Either "*", "+", or "-"

regions A GRanges object for a set of regions to obtain mean / total coverage from the
given COV file.

strandMode The stranded-ness of the RNA-seq experiment. "unstranded" means that an un-
stranded protocol was used. Stranded protocols can be either "forward", where
the first read is the same strand as the expressed transcript, or "reverse" where
the second strand is the same strand as the expressed transcript.

region In getCoverageBins, a single query region as a GRanges object

bins In getCoverageBins, the number of bins to divide the given region. If bin_size
is given, overrides this parameter

bin_size In getCoverageBins, the number of nucleotides per bin

Coverage 29

Value

For getCoverage: If seqname is left as "", returns an RLEList of the whole BAM file, with each
RLE in the list containing coverage data for one chromosome. Otherwise, returns an RLE contain-
ing coverage data for the requested genomic region

For getCoverage_DF: Returns a two-column data frame, with the first column coordinate de-
noting genomic coordinate, and the second column value containing the coverage depth for each
coordinate nucleotide.

For getCoverageRegions: Returns a GRanges object with an extra metacolumn: cov_mean, which
gives the mean coverage of each of the given ranges.

For getCoverageBins: Returns a GRanges object which spans the given region, divided by the
number of bins or by width as given by bin_size. Mean coverage in each bin is calculated (re-
turned by the cov_mean metadata column). This function is useful for retrieving coverage of a large
region for visualisation, especially when the size of the region vastly exceeds the width of the figure.

Functions

• getCoverage(): Retrieves alignment coverage as an RLE or RLElist

• getCoverage_DF(): Retrieves alignment coverage as a data.frame

• getCoverageRegions(): Retrieves total and mean coverage of a GRanges object from a COV
file

• getCoverageBins(): Retrieves coverage of a single region from a COV file, binned by the
given number of bins or bin_size

Examples

se <- SpliceWiz_example_NxtSE()

cov_file <- covfile(se)[1]

Retrieve Coverage as RLE

cov <- getCoverage(cov_file, seqname = "chrZ",
start = 10000, end = 20000,
strand = "*"

)

Retrieve Coverage as data.frame

cov.df <- getCoverage_DF(cov_file, seqname = "chrZ",
start = 10000, end = 20000,
strand = "*"

)

Retrieve mean coverage of 100-nt window regions as defined
in a GRanges object:

gr <- GenomicRanges::GRanges(
seqnames = "chrZ",

30 covPlotly-class

ranges = IRanges::IRanges(
start = seq(1, 99901, by = 100),
end = seq(100, 100000, by = 100)

), strand = "-"
)

gr.unstranded <- getCoverageRegions(cov_file,
regions = gr,
strandMode = "unstranded"

)

gr.stranded <- getCoverageRegions(cov_file,
regions = gr,
strandMode = "reverse"

)

Retrieve binned coverage of a large region

gr.fetch <- getCoverageBins(
cov_file,
region = GenomicRanges::GRanges(seqnames = "chrZ",

ranges = IRanges::IRanges(start = 100, end = 100000),
strand = "*"

),
bins = 2000

)

Plot coverage using ggplot:

require(ggplot2)

ggplot(cov.df, aes(x = coordinate, y = value)) +
geom_line() + theme_white

ggplot(as.data.frame(gr.unstranded),
aes(x = (start + end) / 2, y = cov_mean)) +
geom_line() + theme_white

ggplot(as.data.frame(gr.fetch),
aes(x = (start + end)/2, y = cov_mean)) +
geom_line() + theme_white

Export COV data as BigWig

cov_whole <- getCoverage(cov_file)
bw_file <- file.path(tempdir(), "sample.bw")
rtracklayer::export(cov_whole, bw_file, "bw")

covPlotly-class Container for plotly-based coverage plots

covPlotly-class 31

Description

A covPlotly object is created when plotView is called using a covPlotObject as input. It stores
metadata alongside the plotly object, which allows it to be drawn at various resolutions. Smaller
resolutions lead to faster draws at expense of more jagged plots.

Usage

S4 method for signature 'covPlotly'
getExonRanges(object)

S4 method for signature 'covPlotly'
setResolution(object, resolution)

S4 method for signature 'covPlotly'
showExons(object)

Arguments

object A covPlotly object

resolution How many horizontal pixels of resolution should be shown in the final plotly
object. Set to 0 to disable.

Value

For show(): A plotly object synthesised by plotView() For getExonRanges(): A named GRanges
object containing exon ranges For showExons(): A named GRanges object containing exon ranges,
and additionally "shows" the plotly coverage plot with annotation replaced by named exons For
setResolution() Returns the covPlotly object with addition of resolution set by the correspond-
ing parameter. When show() is called, the plotly object with the new coverage resolution will be
displayed.

Functions

• getExonRanges(covPlotly): Returns a named GRanges object containing exon ranges,
without showing the associated plotly object

• setResolution(covPlotly): Returns a covPlotly object after setting the output resolution
of the plotly-based coverage plots.

• showExons(covPlotly): Returns a named GRanges object containing exon ranges, and shows
the plotly object with the annotation track showing the named exons

See Also

plotView

32 covPlotObject-class

Examples

se <- SpliceWiz_example_NxtSE(novelSplicing = TRUE)

Assign annotation of the experimental conditions
colData(se)$treatment <- rep(c("A", "B"), each = 3)

Retrieve coverage data for all samples for the gene "SRSF3" (and surrounds)

dataObj <- getCoverageData(
se,
Gene = "SRSF3",
tracks = colnames(se)

)

plotObj_samples <- getPlotObject(
dataObj,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3"

)

if(interactive()) {

Create covPlotly object by setting `usePlotly = TRUE`
p <- plotView(plotObj_samples, usePlotly = TRUE)

Display plotly plot
show(p)

Set resolution to 2000; display new plot
p <- setResolution(p, resolution = 2000)
show(p)

Display exon annotation along with generated plot;
- also returns GRanges object
gr <- showExons(p)

}

covPlotObject-class Versatile coverage plots for SpliceWiz

Description

Here, we implement fast and versatile ggplot and plotly based coverage and sashimi plots. Users
can plot with unlimited number of individual, individual-normalized, or group-normalized tracks.
Also implemented is user-defined group-comparison differential plots (including t-test plots). Ad-
ditionally, users can generate ggplots subsetted by exon groups. See details below.

covPlotObject-class 33

Usage

getPlotObject(object, Event, strand = c("*", "+", "-"), tracks, condition, ...)

S4 method for signature 'covPlotObject'
tracks(object)

S4 method for signature 'covPlotObject'
condition(object)

plotView(
object,
view_start,
view_end,
oldP = covPlotly(),
centerByEvent = FALSE,
EventZoomFactor = 0.2,
EventBasesFlanking = 100,
resolution = 5000,
trackList = list(),
diff_stat = c("t-test", "none"),
diffList = list(),
reverseGenomeCoords = FALSE,
ribbon_mode = c("sd", "sem", "ci", "none"),
normalizeCoverage = FALSE,
plotAnnotations = TRUE,
plotAnnoSubTrack = TRUE,
showExonRanges = FALSE,
verticalLayout = c(4, 1, 1, 2),
horizontalLayout = c(),
filterByTranscripts = "",
filterByEventTranscripts = FALSE,
filterByExpressedTranscripts = TRUE,
condenseTranscripts = FALSE,
plotJunctions = TRUE,
plotJuncPSI = FALSE,
junctionThreshold = 0.01,
plotRanges = GRanges(),
rangesBasesFlanking = 100,
usePlotly = FALSE,
...

)

Arguments

object For getPlotObject(), a covDataObject created using getCoverageData. For
plotView(), a covPlotObject created using getPlotObject().

Event The EventName of the alternative splicing event which will be highlighted and
used for normalization

34 covPlotObject-class

strand The strand for coverage / junction plotting. Options are "+", "-", or "*" (un-
stranded - default)

tracks Sample names or condition categories
condition For condition-based group plots, the name of the condition.
... Ignored / not used
view_start, view_end

The start and end coordinates for plotting
oldP (Optional) If plotting the same tracks and track-widths, supplying the old covPlotly

object (returned from a previous call to plotView()) results in faster run-time
(as plotly::subplot is a time- consuming function)

centerByEvent (default FALSE) If true, centers the view to the specified Event
EventZoomFactor

If centerByEvent = TRUE, the zoom-out factor to plot the view. Zooms out in
exponents of 3 (i.e., zoom of 1 means 3x, 2 means 9x, and 0 means 1x)

EventBasesFlanking

(default 100) If centerByEvent = TRUE, includes how many bases flanking the
event.

resolution The number of horizontal "pixels" or data-points to plot. This is calculated per
sub-plot. Smaller numbers lead to lower resolution but faster plots. Default is
5000

trackList A list, with each element being a vector of 1 or more track names or indices to
plot. If a vector is supplied it will be coerced to a list

diff_stat (default "t-test") Which statistical method to perform differential comparisons.
diffList A list, with each element being a vector of size 2, containing names or indices

of which tracks to contrast.
reverseGenomeCoords

If TRUE, the genomic coordinate axis will be reversed to plot negative stranded
genes

ribbon_mode The statistic to represent variance. Options are "sd" - standard deviation, "sem"
- standard error of the mean, "ci" - 95% confidence interval, or "none"

normalizeCoverage

If TRUE, coverages and junctions of individual samples will be normalized by
the given Event.

plotAnnotations

Whether the main annotation track should be plotted
plotAnnoSubTrack

If plotting by exon ranges (using plotRanges), whether a separate sub-track
showing zoomed-in exons should be shown above the main annotation track
(and below the coverage plots)

showExonRanges (only applies if usePlotly = FALSE) Whether the main annotation track should
be replaced by labeled exon names. If TRUE the returned value of plotView()
is a named GRanges object containing the exon ranges

verticalLayout A vector (of length 4) containing relative heights of the following elements: (1)
main block of coverage tracks, (2) differential track, (3) annotation sub-track,
and (4) main annotation track. Default c(4,1,1,2)

covPlotObject-class 35

horizontalLayout

A vector containing relative widths of coverage tracks. Only used alongside
plotRanges with more than 1 range to plot. If omitted, plotView will attempt
to scale widths to the widths of the exon ranges.

filterByTranscripts

(default "") One or more named transcripts to filter the annotation track.

filterByEventTranscripts

(default FALSE) If TRUE, only transcripts involved in the given Event will be
plotted, if any

filterByExpressedTranscripts

(default TRUE) Only transcripts with supported junctions will be plotted on the
annotation axis. An expressed junction is that which contains more than the
minimum junctionThreshold in at least 1 track

condenseTranscripts

Whether to plot by genes TRUE or transcripts FALSE

plotJunctions Whether to plot junction counts as numbered arcs. Plots normalized junctions if
normalizeCoverage = TRUE.

plotJuncPSI If plotting group coverage plots, whether to plot mean +/- sd of normalized
junction counts FALSE, or estimated junction PSI based on SpliceOver metric
applied to each junction TRUE.

junctionThreshold

(default 0.01) Junctions with expressions below this threshold will not be plot-
ted. For raw counts, this is a fraction of maximum coverage value of the track.

plotRanges A GRanges object containing one or more exon ranges to plot. If given, view_start
and view_end will be ignored. Typical use is to use the output of the plotView(...,
usePlotly = FALSE), which returns a named GRanges object, then subset this
output by exon name.

rangesBasesFlanking

(default 100) How many flanking bases to add to each of plotRanges. Ignored
if only 1 range given (or using view_start and view_end)

usePlotly If TRUE, returns a covPlotly object containing the plotly-based interactive plot.
If FALSE, returns a ggplot object.

Details

The typical pipeline for plotting versatile coverage plots is as follows:

• A covDataObject is generated by calling getCoverageData() using an input NxtSE object.
This step retrieves coverage, junction counts and normalization data for the relevant genomic
region being queried. A new covDataObject is necessary when querying a new genomic
region.

• A covPlotObject is generated by calling getPlotObject() using an input covDataObject.
This step retrieves alternative splicing event specific data, such as normalized coverages, or
group combined coverages. A new covPlotObject is required when changing condition,
Event, strand, or when querying using a different set of tracks.

36 covPlotObject-class

• Plots can be generated by calling plotView() using a covPlotObject. Interactive plotly plots
can be generated by setting usePlotly = TRUE, otherwise, static plots are generated. For inter-
active plots, a covPlotly object is returned, which contains raw data which is downsampled
by pixel resolution prior to plotting for performance reasons. A new covPlotly is required
unless one only wishes to downsample the resolution

– see setResolution for covPlotly objects.

Tracks are now versatile (unlimited). Samples are retrieved by individual sample names at getCoverageData().
If condition is set in getPlotObject(), track names are defined by their condition categorical
names; otherwise, tracks are named by individual samples when retrieved using getPlotObject().

• When calling plotView(), trackList by default displays all tracks as ordered in the covPlotObject.
Users can supply a vector containing either the track names (or numbers, as ordered in the
covPlotObject). Alternatively, multiple traces can be stacked in a single track by using a
list, e.g. trackList = list(A = c(1,2,3), B = c(4,5,6)).

• For differential comparisons, diffList takes a list of pairs of samples. For example, if
trackList = list("A", "B"), then setting diffList = list(c("A", "B")) will compare
groups "A" and "B". This is only activated by setting diff_stat to anything other than none.
For now, only t-test is supported.

plotView() supports plotting by exon ranges, for which only static plots are currently supported.
The workflow for generating such a plot is as follows:

• A GRanges object is returned by the plotView() function and setting showExonRanges =
TRUE. plotView() will simultaneously show an annotation plot of exons labelled by their
"exon names", which is the transcript name appended with "-E" followed by the exon number.

• If plotView() is called and usePlotly = TRUE is set, a covPlotly object is returned. Calling
showExons() on this object will display a plotly plot showing exon names, and returning a
GRanges object of exon ranges.

• Exon ranges can be supplied to the plotView() function by setting the plotRanges parameter
as a GRanges object. This will generate a static plot showing coverage plots segmented by
exons.

Value

For getPlotObject(): A covPlotObject object containing Event-based data to create coverage
plots using plotView().

For plotView():

• If usePlotly = TRUE, returns a covPlotly object containing plotly-based interactive plot

• If usePlotly = FALSE, returns a patchwork-assembled static plot, unless showExonRanges =
TRUE in which it shows the plot and returns a named GRanges object containing exon ranges.

Functions

• getPlotObject(): Generates a covPlotObject object from a covDataObject. Allows users
to change parameters such as viewing window, conditions, tracks, and other parameters, for
customizing plot parameters

• tracks(covPlotObject): Returns the tracks contained in the covPlotObject object

covPlotObject-class 37

• condition(covPlotObject): Returns the condition value set in the covPlotObject object

• plotView(): Creates a coverage plot using the stored data in the covPlotObject

See Also

getCoverageData covPlotly

Examples

se <- SpliceWiz_example_NxtSE(novelSplicing = TRUE)

Assign annotation of the experimental conditions
colData(se)$treatment <- rep(c("A", "B"), each = 3)

Retrieve coverage data for all samples for the gene "SRSF3" (and surrounds)

dataObj <- getCoverageData(
se,
Gene = "SRSF3",
tracks = colnames(se)

)

Retrieves raw / normalized coverage / junction data for the
specified SRSF3 skipped exon event:

plotObj_samples <- getPlotObject(
dataObj,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3"

)

Retrieves data for samples grouped by the specified condition

plotObj_group <- getPlotObject(
dataObj,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
condition = "treatment",
tracks = c("A", "B")

)

Display tracks and conditions of covPlotObject

tracks(plotObj_group)
condition(plotObj_group)

Show static ggplots

plotView(plotObj_samples)

plotView(plotObj_group, centerByEvent = TRUE)

Plot junctions using PSI estimates based on individual junction SpliceOver
metrics

38 example-SpliceWiz-data

plotView(plotObj_group, centerByEvent = TRUE, plotJuncPSI = TRUE)

Show normalized coverages, individual samples stacked in grouped tracks

plotView(
plotObj_samples,
normalizeCoverage = TRUE,
trackList = list(A = c(1,2,3), B = c(4,5,6))

)

Show stacked group comparisons with t-test

plotView(
plotObj_group,
trackList = list(c(1,2)),
diffList = list(c("A", "B")),
diff_stat = "t-test"

)

Show interactive plotly:

if(interactive()) {
p <- plotView(plotObj_samples, usePlotly = TRUE)
show(p)

}

Show exons with coverage plot

static:
gr <- plotView(plotObj_samples, showExonRanges = TRUE)

interactive:
if(interactive()) {

p <- plotView(plotObj_samples, usePlotly = TRUE)
gr <- showExons(p)

}

Plot coverage by exons

p <- plotView(plotObj_samples,
plotRanges = gr[c("SRSF3-203-E3", "SRSF3-203-E4", "SRSF3-203-E5")],
horizontalLayout = c(1,1,1)

)

example-SpliceWiz-data

SpliceWiz Example BAMs and NxtSE Experiment Object

example-SpliceWiz-data 39

Description

SpliceWiz_example_bams() is a wrapper function to obtain and make a local copy of 6 example
files provided by the NxtIRFdata companion package to demonstrate the use of SpliceWiz. See
NxtIRFdata::example_bams for a description of the provided BAM files.

SpliceWiz_example_NxtSE() retrieves a ready-made functioning NxtSE object. The steps to re-
produce this object is shown in the example code in makeSE

Usage

SpliceWiz_example_bams()

SpliceWiz_example_NxtSE(novelSplicing = FALSE)

Arguments

novelSplicing Whether to import an example NxtSE with novel splice event discovery.

Value

In SpliceWiz_example_bams(): returns a 2-column data frame containing sample names and
BAM paths of the example dataset.

In SpliceWiz_example_NxtSE(): returns a NxtSE object.

Functions

• SpliceWiz_example_bams(): Returns a 2-column data frame, containing sample names and
sample paths (in tempdir()) of example BAM files

• SpliceWiz_example_NxtSE(): Returns a (in-memory / realized) NxtSE object that was pre-
generated using the SpliceWiz example reference and example BAM files

References

Generation of the mappability files was performed using SpliceWiz using a method analogous to
that described in:

Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E, Rasko
JE, Ritchie W. IRFinder: assessing the impact of intron retention on mammalian gene expression.
Genome Biol. 2017 Mar 15;18(1):51. doi:10.1186/s1305901711844

See Also

makeSE

Examples

returns a data frame with the first column as sample names, and the
second column as BAM paths

SpliceWiz_example_bams()

https://doi.org/10.1186/s13059-017-1184-4

40 findSamples

Returns a NxtSE object created by the example bams aligned to the
mock NxtSE reference

se <- SpliceWiz_example_NxtSE()

findSamples Convenience Function to (recursively) find all files in a folder.

Description

Often, files e.g. raw sequencing FASTQ files, alignment BAM files, or processBAM output files, are
stored in a single folder under some directory structure. They can be grouped by being in common
directory or having common names. Often, their sample names can be gleaned by these common
names or the names of the folders in which they are contained. This function (recursively) finds all
files and extracts sample names assuming either the files are named by sample names (level = 0),
or that their names can be derived from the parent folder (level = 1). Higher level also work (e.g.
level = 2) mean the parent folder of the parent folder of the file is named by sample names. See
details section below.

Usage

findSamples(sample_path, suffix = ".txt.gz", level = 0)

findFASTQ(
sample_path,
paired = TRUE,
fastq_suffix = c(".fastq", ".fq", ".fastq.gz", ".fq.gz"),
level = 0

)

findBAMS(sample_path, level = 0)

findSpliceWizOutput(sample_path, level = 0)

Arguments

sample_path The path in which to recursively search for files that match the given suffix

suffix A vector of or or more strings that specifies the file suffix (e.g. ’.bam’ denotes
BAM files, whereas ".txt.gz" denotes gzipped txt files).

level Whether sample names can be found in the file names themselves (level = 0), or
their parent directory (level = 1). Potentially parent of parent directory (level =
2). Support max level <= 3 (for sanity).

paired Whether to expect single FASTQ files (of the format "sample.fastq"), or paired
files (of the format "sample_1.fastq", "sample_2.fastq")

fastq_suffix The name of the FASTQ suffix. Options are: ".fastq", ".fastq.gz", ".fq", or
".fq.gz"

findSamples 41

Details

Paired FASTQ files are assumed to be named using the suffix _1 and _2 after their common names;
e.g. sample_1.fastq, sample_2.fastq. Alternate FASTQ suffixes for findFASTQ() include ".fq",
".fastq.gz", and ".fq.gz".

In BAM files, often the parent directory denotes their sample names. In this case, use level = 1 to
automatically annotate the sample names using findBAMS().

processBAM outputs two files per BAM processed. These are named by the given sample names.
The text output is named "sample1.txt.gz", and the COV file is named "sample1.cov", where sample1
is the name of the sample. These files can be organised / tabulated using the function findSpliceWizOutput.
The generic function findSamples will organise the processBAM text output files but exclude the
COV files. Use the latter as the Experiment in collateData if one decides to collate an experiment
without linked COV files, for portability reasons.

Value

A multi-column data frame with the first column containing the sample name, and subsequent
columns being the file paths with suffix as determined by suffix.

Functions

• findSamples(): Finds all files with the given suffix pattern. Annotates sample names based
on file or parent folder names.

• findFASTQ(): Use findSamples() to return all FASTQ files in a given folder

• findBAMS(): Use findSamples() to return all BAM files in a given folder

• findSpliceWizOutput(): Use findSamples() to return all processBAM output files in a given
folder, including COV files

Examples

Retrieve all BAM files in a given folder, named by sample names
bam_path <- tempdir()
example_bams(path = bam_path)
df.bams <- findSamples(sample_path = bam_path,

suffix = ".bam", level = 0)
equivalent to:
df.bams <- findBAMS(bam_path, level = 0)

Retrieve all processBAM() output files in a given folder,
named by sample names

expr <- findSpliceWizOutput(file.path(tempdir(), "SpliceWiz_Output"))
Not run:

Find FASTQ files in a directory, named by sample names
where files are in the form:
- "./sample_folder/sample1.fastq"
- "./sample_folder/sample2.fastq"

findFASTQ("./sample_folder", paired = FALSE, fastq_suffix = ".fastq")

42 Gene-ontology-methods

Find paired gzipped FASTQ files in a directory, named by parent directory
where files are in the form:
- "./sample_folder/sample1/raw_1.fq.gz"
- "./sample_folder/sample1/raw_2.fq.gz"
- "./sample_folder/sample2/raw_1.fq.gz"
- "./sample_folder/sample2/raw_2.fq.gz"

findFASTQ("./sample_folder", paired = TRUE, fastq_suffix = ".fq.gz")

End(Not run)

Gene-ontology-methods Gene ontology (over-representation) analysis using enriched genes of
top alternative splicing events

Description

Genes containing differential alternative splicing events (ASEs) may be enriched in key functional
pathways. This can be identified using a simple over-representation analysis. Biologists can iden-
tify key pathways of interest in order to focus on studying ASEs belonging to genes of functional
interest.

Usage

goASE(
enrichedEventNames,
universeEventNames = NULL,
se,
ontologyType = c("BP", "MF", "CC"),
pAdjustMethod = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr",

"none"),
...

)

goGenes(
enrichedGenes,
universeGenes = NULL,
ontologyRef,
ontologyType = c("BP", "MF", "CC"),
pAdjustMethod = c("BH", "holm", "hochberg", "hommel", "bonferroni", "BY", "fdr",

"none"),
...

)

extract_gene_ids_for_GO(enrichedEventNames, universeEventNames = NULL, se)

Gene-ontology-methods 43

subset_EventNames_by_GO(EventNames, go_id, se)

plotGO(
res_go = NULL,
plot_x = c("log10FDR", "foldEnrichment", "nGenes"),
plot_size = c("nGenes", "foldEnrichment", "log10FDR"),
plot_color = c("foldEnrichment", "nGenes", "log10FDR"),
filter_n_terms = 20,
filter_padj = 1,
filter_pvalue = 1,
trim_go_term = 50

)

Arguments

enrichedEventNames

A vector of EventNames. This is typically one or more EventNames of differen-
tial ASEs

universeEventNames

A vector of EventNames, typically the EventNames of all ASEs that were tested.
If left as NULL, all genes are considered background genes.

se The NxtSE object containing the GO reference and the EventNames

ontologyType One of either "BP" - biological pathways, "MF" - molecular function, or "CC" -
cellular component.

pAdjustMethod The method for p-value adjustment for FDR. See ?p.adjust

... Additional arguments to be passed to fgsea::fora()

enrichedGenes A vector of gene_id representing the list of enriched genes. To generate a list
of valid gene_id, see viewGenes

universeGenes (default NULL) A vector of gene_id representing the list of background genes.

ontologyRef A valid gene ontology reference, as generated by viewGO.
EventNames, go_id

In subset_EventNames_by_GO(), a vector of ASE EventNames to subset against
the given go_id.

res_go For plotGO, the gene ontology results data object returned by the goASE() func-
tion.

plot_x, plot_size, plot_color

What parameters should be plotted on the x-axis, bubble-size, or bubble-color?
Valid options are c("log10FDR", "foldEnrichment", "nGenes"). Defaults are "log10FDR",
"nGenes", "foldEnrichment"‘ for x-axis, bubble size/color, respectively

filter_n_terms (default 20) How many top terms to plot.
filter_padj, filter_pvalue

Whether given GO results should be filtered by adjusted p value (FDR) or nom-
inal p value, respectively, prior to plot

trim_go_term (default 50) For long GO terms, description will be trimmed by first n characters,
where trim_go_term = n

44 Gene-ontology-methods

Value

For goASE() and goGenes(), a data table containing the following:

• go_id: Gene ontology ID

• go_term: Gene ontology term

• pval: Raw p values

• padj: Adjusted p values

• overlap: Number of enriched genes (of enriched ASEs)

• size: Number of background genes (of background ASEs)

• overlapGenes: A list of gene_id’s from genes of enriched ASEs

• expected: The number of overlap genes expected by random

For extract_gene_ids_for_GO(), a list containing the following:

• genes: A vector of enriched gene_ids

• universe: A vector of background gene_ids

For subset_EventNames_by_GO(), a vector of all ASE EventNames belonging to the given gene
ontology go_id

Functions

• goASE(): Performs over-representation gene ontology analysis using a given list of enriched /
background ASEs

• goGenes(): Performs GO analysis given the set of enriched and (optionally) the background
(universe) genes.

• extract_gene_ids_for_GO(): Produces a list containing enriched and universe gene_ids of
given enriched and background ASE EventNames

• subset_EventNames_by_GO(): Returns a list of ASEs enriched in a given gene ontology
category

• plotGO(): Produces a lollipop plot based on the given gene ontology results object

See Also

Build-Reference-methods on how to generate gene ontology annotations

Examples

Generate example reference with `Homo sapiens` gene ontology

ref_path <- file.path(tempdir(), "Reference_withGO")
buildRef(

reference_path = ref_path,
fasta = chrZ_genome(),
gtf = chrZ_gtf(),

Gene-ontology-methods 45

ontologySpecies = "Homo sapiens"
)

Perform GO analysis using first 1000 genes
ontology <- viewGO(ref_path)
allGenes <- sort(unique(ontology$ensembl_id))

exampleGeneID <- allGenes[1:1000]
exampleBkgdID <- allGenes

go_df <- goGenes(
enrichedGenes = exampleGeneID,
universeGenes = exampleBkgdID,
ontologyRef = ontology

)

Plots the top 12 GO terms

plotGO(go_df, filter_n_terms = 12)

Below example code of how to use output of differential ASEs for GO analysis
It will not work with the example dataset because the reference must be
either human / mouse, or a valid `ontologySpecies` given to buildRef()
We hope the example code is simple enough to understand for users to adapt
to their own workflows.

Not run:

se <- SpliceWiz_example_NxtSE(novelSplicing = TRUE)

colData(se)$treatment <- rep(c("A", "B"), each = 3)

require("limma")
res_limma <- ASE_limma(se, "treatment", "A", "B")

Perform gene ontology analysis of the first 10 differential ASEs

go_df <- goASE(
enrichedEventNames = res_limma$EventName[1:10],
universeEventNames = res_limma$EventName,
se = se

)

Return a list of all ASEs belonging to the top enriched category

GOsubset_EventName <- subset_EventNames_by_GO(
EventNames = res_limma$EventName,
go_id = go_df$go_id[1],
se = se

)

Return a list of all ASEs belonging to the top enriched category.
- typically used if one wishes to export `gene_id` for use in other gene

46 getAvailableGO

ontology tools

gene_id_list <- extract_gene_ids_for_GO(
enrichedEventNames = res_limma$EventName[1:10],
universeEventNames = res_limma$EventName,
se = se

)

End(Not run)

getAvailableGO Builds reference files used by SpliceWiz

Description

These function builds the reference required by the SpliceWiz engine, as well as alternative splicing
annotation data for SpliceWiz. See examples below for guides to making the SpliceWiz reference.

Usage

getAvailableGO(localHub = FALSE, ah = AnnotationHub(localHub = localHub))

getResources(
reference_path = "./Reference",
fasta = "",
gtf = "",
overwrite = FALSE,
force_download = FALSE,
verbose = TRUE

)

buildRef(
reference_path = "./Reference",
fasta = "",
gtf = "",
overwrite = FALSE,
force_download = FALSE,
chromosome_aliases = NULL,
genome_type = "",
nonPolyARef = "",
MappabilityRef = "",
BlacklistRef = "",
ontologySpecies = "",
useExtendedTranscripts = TRUE,
lowMemoryMode = TRUE,
verbose = TRUE

)

getAvailableGO 47

buildFullRef(
reference_path = "./Reference",
fasta = "",
gtf = "",
use_STAR_mappability = FALSE,
overwrite = FALSE,
force_download = FALSE,
chromosome_aliases = NULL,
genome_type = "",
nonPolyARef = "",
MappabilityRef = "",
BlacklistRef = "",
ontologySpecies = "",
useExtendedTranscripts = TRUE,
verbose = TRUE,
n_threads = 4,
...

)

getNonPolyARef(genome_type)

Arguments

localHub (default FALSE) For getAvailableGO(), whether to use offline mode for Anno-
tationHub resources. If TRUE, offline mode will be used.

ah For getAvailableGO(), the AnnotationHub object. Leave as default to use the
entirety of AnnotationHub resources.

reference_path (REQUIRED) The directory path to store the generated reference files

fasta The file path or web link to the user-supplied genome FASTA file. Alternatively,
the name of the AnnotationHub record containing the genome resource. May be
omitted if getResources() has already been run using the same reference_path.

gtf The file path or web link to the user-supplied transcript GTF file (or gzipped
GTF file). Alternatively, the name of the AnnotationHub record containing the
transcript GTF file. May be omitted if getResources() has already been run
using the same reference_path.

overwrite (default FALSE) For getResources(): if the genome FASTA and gene annota-
tion GTF files already exist in the resource subdirectory, it will not be over-
written. For buildRef() and buildFullRef(): the SpliceWiz reference will
not be overwritten if one already exist. A reference is considered to exist if the
file SpliceWiz.ref.gz is present inside reference_path.

force_download (default FALSE) When online resources are retrieved, a local copy is stored in
the SpliceWiz BiocFileCache. Subsequent calls to the web resource will fetch
the local copy. Set force_download to TRUE will force the resource to be down-
loaded from the web. Set this to TRUE only if the web resource has been updated
since the last retrieval.

verbose (default TRUE) If FALSE, will silence progress messages

48 getAvailableGO

chromosome_aliases

(Highly optional) A 2-column data frame containing chromosome name con-
versions. If this is set, allows processBAM to parse BAM alignments to a
genome whose chromosomes are named differently to the reference genome.
The most common scenario is where Ensembl genome typically use chromo-
somes "1", "2", ..., "X", "Y", whereas UCSC/Gencode genome use "chr1",
"chr2", ..., "chrX", "chrY". See example below. Refer to https://github.
com/dpryan79/ChromosomeMappings for a list of chromosome alias resources.

genome_type Allows buildRef() to select default nonPolyARef and MappabilityRef for
selected genomes. Allowed options are: hg38, hg19, mm10, and mm9.

nonPolyARef (Optional) A BED file of regions defining known non-polyadenylated transcripts.
This file is used for QC analysis to measure Poly-A enrichment quality of sam-
ples. An RDS file (openable using readRDS()) of a GRanges object is ac-
ceptable. If omitted, and genome_type is defined, the default for the specified
genome will be used.

MappabilityRef (Optional) A BED file of low mappability regions due to repeat elements in
the genome. If omitted, the file generated by calculateMappability() will
be used where available, and if this is not, the default file for the specified
genome_type will be used. If genome_type is not specified, MappabilityRef
is not used. An RDS file (openable using readRDS()) of a GRanges object is
acceptable. See details.

BlacklistRef A BED file of regions to be otherwise excluded from IR analysis. If omit-
ted, a blacklist is not used (this is the default). An RDS file (openable using
readRDS()) of a GRanges object is acceptable.

ontologySpecies

(default "") The species for which gene ontology classifications should be fetched
from AnnotationHub. Ignored if genome_type is set (as human or mouse GO
will be used instead).

useExtendedTranscripts

(default TRUE) Should non-protein-coding transcripts such as anti-sense and lin-
cRNA transcripts be included in searching for IR / AS events? Setting FALSE
(vanilla IRFinder) will exclude transcripts other than protein_coding and processed_transcript
transcripts from IR analysis.

lowMemoryMode (default TRUE) By default, SpliceWiz converts FASTA files to TwoBit, then uses
the TwoBit file to fetch genome sequences. In most cases, this method uses less
memory and is faster, but can be very slow on some systems. Set this option
to FALSE (which will convert the TwoBit file back to FASTA) if you experience
very slow genome fetching (e.g. when annotating splice motifs).

use_STAR_mappability

(default FALSE) In buildFullRef(), whether to run STAR_mappability to cal-
culate low-mappability regions. We recommend setting this to FALSE for the
common genomes (human and mouse), and to TRUE for genomes not supported
by genome_type. When set to false, the MappabilityExclusion default file cor-
responding to genome_type will automatically be used.

n_threads The number of threads used to generate the STAR reference and mappability
calculations. Multi-threading is not used for SpliceWiz reference generation

https://github.com/dpryan79/ChromosomeMappings
https://github.com/dpryan79/ChromosomeMappings

getAvailableGO 49

(but multiple cores are utilised in data-table and fst file processing automatically,
where available). See STAR-methods

... For buildFullRef(), additional parameters to be parsed into STAR_buildRef
which buildFullRef() runs internally. See STAR_buildRef

Details

getResources() processes the files, downloads resources from web links or from AnnotationHub(),
and saves a local copy in the "resource" subdirectory within the given reference_path. Resources
are retrieved via either:

1. User-supplied FASTA and GTF file. This can be a file path, or a web link (e.g. ’http://’,
’https://’ or ’ftp://’). Use fasta and gtf to specify the files or web paths to use.

2. AnnotationHub genome and gene annotation (Ensembl): supply the names of the genome
sequence and gene annotations to fasta and gtf.

buildRef() will first run getResources() if resources are not yet saved locally (i.e. getResources()
is not already run). Then, it creates the SpliceWiz references. Typical run-times are 5 to 10 minutes
for human and mouse genomes (after resources are downloaded).

NB: the parameters fasta and gtf can be omitted in buildRef() if getResources() is already
run.

buildFullRef() builds the STAR aligner reference alongside the SpliceWiz reference. The STAR
reference will be located in the STAR subdirectory of the specified reference path. If use_STAR_mappability
is set to TRUE this function will empirically compute regions of low mappability. This function re-
quires STAR to be installed on the system (which only runs on linux-based systems).

getNonPolyARef() returns the path of the non-polyA reference file for the human and mouse
genomes.

Typical usage involves running buildRef() for human and mouse genomes and specifying the
genome_type to use the default MappabilityRef and nonPolyARef files for the specified genome.
For non-human non-mouse genomes, use one of the following alternatives:

• Create the SpliceWiz reference without using Mappability Exclusion regions. To do this,
simply run buildRef() and omit MappabilityRef. This is acceptable assuming the introns
assessed are short and do not contain intronic repeats

• Calculating Mappability Exclusion regions using the STAR aligner, and building the SpliceWiz
reference. This can be done using the buildFullRef() function, on systems where STAR is
installed

• Instead of using the STAR aligner, any genome splice-aware aligner could be used. See
Mappability-methods for an example workflow using the Rsubread aligner. After producing
the MappabilityExclusion.bed.gz file (in the Mappability subfolder), run buildRef()
using this file (or simply leave it blank).

BED files are tab-separated text files containing 3 unnamed columns specifying chromosome, start
and end coordinates. To view an example BED file, open the file specified in the path returned by
getNonPolyARef("hg38")

If MappabilityRef, nonPolyARef and BlacklistRef are left blank, the following will be used (by
priority):

50 getAvailableGO

1. The previously used Mappability, non-polyA and/or Blacklist file resource from a previous
run, if available,

2. The resource implied by the genome_type parameter, if specified,
3. No resource is used.

To rebuild a SpliceWiz reference using existing resources This is typically run when updating an
old resource to a new SpliceWiz version. Simply run buildRef(), specifying the existing reference
directory, leave the fasta and gtf parameters blank, and set overwrite = TRUE. SpliceWiz will use
the previously-used resources to re-create the reference.

See examples below for common use cases.

Value

For getResources: creates the following local resources:

• reference_path/resource/genome.2bit: Local copy of the genome sequences as a TwoBit-
File.

• reference_path/resource/transcripts.gtf.gz: Local copy of the gene annotation as a
gzip-compressed file.

For buildRef() and buildFullRef(): creates a SpliceWiz reference which is written to the given
directory specified by reference_path. Files created includes:

• reference_path/settings.Rds: An RDS file containing parameters used to generate the
SpliceWiz reference

• reference_path/SpliceWiz.ref.gz: A gzipped text file containing collated SpliceWiz ref-
erence files. This file is used by processBAM

• reference_path/fst/: Contains fst files for subsequent easy access to SpliceWiz generated
references

• reference_path/cov_data.Rds: An RDS file containing data required to visualise genome
/ transcript tracks.

buildFullRef() also creates a STAR reference located in the STAR subdirectory inside the desig-
nated reference_path

For getNonPolyARef(): Returns the file path to the BED file for the nonPolyA loci for the specified
genome.

Functions

• getAvailableGO(): Returns available species on Bioconductor’s AnnotationHub. Currently,
only Bioconductor’s OrgDb/Ensembl gene ontology annotations are supported.

• getResources(): Processes / downloads a copy of the genome and gene annotations and
stores this in the "resource" subdirectory of the given reference path

• buildRef(): First calls getResources() (if required). Afterwards creates the SpliceWiz
reference in the given reference path

• buildFullRef(): One-step function that fetches resources, creates a STAR reference (includ-
ing mappability calculations), then creates the SpliceWiz reference

• getNonPolyARef(): Returns the path to the BED file containing coordinates of known non-
polyadenylated transcripts for genomes hg38, hg19, mm10 and mm9,

getAvailableGO 51

See Also

Mappability-methods for methods to calculate low mappability regions

STAR-methods for a list of STAR wrapper functions

AnnotationHub

https://github.com/alexchwong/SpliceWizResources for RDS files of Mappability Exclu-
sion GRanges objects (for hg38, hg19, mm10 and mm9) that can be use as input files for MappabilityRef
in buildRef(). These resources are intended for SpliceWiz users on older Bioconductor versions
(3.13 or earlier)

Examples

Quick runnable example: generate a reference using SpliceWiz's example genome

example_ref <- file.path(tempdir(), "Reference")
getResources(

reference_path = example_ref,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)
buildRef(

reference_path = example_ref
)

NB: the above is equivalent to:

example_ref <- file.path(tempdir(), "Reference")
buildRef(

reference_path = example_ref,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

Get the path to the Non-PolyA BED file for hg19

getNonPolyARef("hg19")

View available species for AnnotationHub's Ensembl/orgDB-based GO resources

availSpecies <- getAvailableGO()

Build example reference with `Homo sapiens` Ens/orgDB gene ontology

ont_ref <- file.path(tempdir(), "Reference_withGO")
buildRef(

reference_path = ont_ref,
fasta = chrZ_genome(),
gtf = chrZ_gtf(),
ontologySpecies = "Homo sapiens"

https://github.com/alexchwong/SpliceWizResources

52 getAvailableGO

)

Not run:

Long examples

Generate a SpliceWiz reference from user supplied FASTA and GTF files for a
hg38-based genome:

buildRef(
reference_path = "./Reference_user",
fasta = "genome.fa", gtf = "transcripts.gtf",
genome_type = "hg38"

)

NB: Setting `genome_type = hg38`, will automatically use default
nonPolyARef and MappabilityRef for `hg38`

Reference generation from Ensembl's FTP links:

FTP <- "ftp://ftp.ensembl.org/pub/release-94/"
buildRef(

reference_path = "./Reference_FTP",
fasta = paste0(FTP, "fasta/homo_sapiens/dna/",

"Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz"),
gtf = paste0(FTP, "gtf/homo_sapiens/",

"Homo_sapiens.GRCh38.94.chr.gtf.gz"),
genome_type = "hg38"

)

Get AnnotationHub record names for Ensembl release-94:

First, search for the relevant AnnotationHub record names:

ah <- AnnotationHub::AnnotationHub()
AnnotationHub::query(ah, c("Homo Sapiens", "release-94"))

buildRef(
reference_path = "./Reference_AH",
fasta = "AH65745",
gtf = "AH64631",
genome_type = "hg38"

)

Build a SpliceWiz reference, setting chromosome aliases to allow
this reference to process BAM files aligned to UCSC-style genomes:

chrom.df <- GenomeInfoDb::genomeStyles()$Homo_sapiens

buildRef(
reference_path = "./Reference_UCSC",
fasta = "AH65745",
gtf = "AH64631",

Graphics-User-Interface 53

genome_type = "hg38",
chromosome_aliases = chrom.df[, c("Ensembl", "UCSC")]

)

One-step generation of SpliceWiz and STAR references, using 4 threads.
NB1: requires a linux-based system with STAR installed.
NB2: A STAR reference genome will be generated in the `STAR` subfolder
inside the given `reference_path`.
NB3: A custom Mappability Exclusion file will be calculated using STAR
and will be used to generate the SpliceWiz reference.

buildFullRef(
reference_path = "./Reference_with_STAR",
fasta = "genome.fa", gtf = "transcripts.gtf",
genome_type = "hg38",
use_STAR_mappability = TRUE,
n_threads = 4

)

NB: the above is equivalent to running the following in sequence:

getResources(
reference_path = "./Reference_with_STAR",
fasta = "genome.fa", gtf = "transcripts.gtf"

)
STAR_buildRef(

reference_path = reference_path,
also_generate_mappability = TRUE,
n_threads = 4

)
buildRef(

reference_path = "./Reference_with_STAR",
genome_type = ""

)

End(Not run)

Graphics-User-Interface

Launches the SpliceWiz Graphics User Interface (GUI) using Shiny
Dashboard

Description

This function launches the SpliceWiz interactive app using Shiny Dashboard This is (by default) a
dialog window within the RStudio application with the resolution specified by the res parameter.
Alternatively, setting mode = "browser" will launch a resizable browser window (using the default
internet browser). The demo mode can be launched by setting demo = TRUE. See the SpliceWiz
Quick-Start for a guide to using the SpliceWiz GUI.

../doc/SW_QuickStart.html
../doc/SW_QuickStart.html

54 isCOV

Usage

spliceWiz(
mode = c("dialog", "browser"),
res = c("1080p", "720p", "960p", "1440p"),
demo = FALSE

)

Arguments

mode (default "dialog") "dialog" displays SpliceWiz in a dialog box with speci-
fied width and height. "browser" opens SpliceWiz in a browser-like resizable
window.

res (default "1080p") Sets width and height of the app to pre-defined dimensions.
Possible options are "720p, "960p", "1080p", "1440p", which specifies the height
of the app. All are displayed in aspect ratio 16x9

demo (default FALSE) If set to TRUE, SpliceWiz will place demo reference and BAM
files into the temporary directory.

Value

Runs an interactive shinydashboard SpliceWiz app with the specified mode.

Functions

• spliceWiz(): Launches the SpliceWiz GUI

Examples

if(interactive()) {

Launches interactive ShinyDashboard SpliceWiz app as fixed-size dialog box
1080p = 1920 x 1080 pixels

spliceWiz(mode = "dialog", res = "1080p")

Launches interactive ShinyDashboard SpliceWiz app as browser window
spliceWiz(mode = "browser")

}

isCOV Validates the given file as a valid COV file

Description

This function takes the path of a possible COV file and checks whether its format complies with
that of the COV format defined by this package.

makeSE 55

Usage

isCOV(coverage_files)

Arguments

coverage_files A vector containing the file names of files to be checked

Details

COV files are BGZF-compressed files. The first 4 bytes of the file must always be ’COV\1’, distin-
guishing it from BAM or other files in BGZF format. This function checks whether the given file
complies with this.

Value

TRUE if all files are valid COV files. FALSE otherwise

See Also

processBAM collateData

Examples

se <- SpliceWiz_example_NxtSE()

cov_files <- covfile(se)

isCOV(cov_files) # returns true if these are true COV files

makeSE Imports a collated dataset into the R session as an NxtSE object

Description

Creates a NxtSE object from the data (that was collated using collateData). This object is used for
downstream differential analysis of IR and alternative splicing events using ASE-methods, data gen-
eration for visualization of scatter plots and heatmaps via make_plot_data methods, and coverage
visualisation using plotCoverage

Usage

makeSE(
collate_path,
colData,
RemoveOverlapping = TRUE,
realize = FALSE,
verbose = TRUE

)

56 makeSE

Arguments

collate_path (Required) The output path of collateData pointing to the collated data

colData (Optional) A data frame containing the sample annotation information. The first
column must contain the sample names. Omit colData to generate a NxtSE
object of the whole dataset without any assigned annotations. Alternatively, if
the names of only a subset of samples are given, then makeSE() will construct
the NxtSE object based only on the samples given. The colData can be set later
using colData

RemoveOverlapping

(default = TRUE) Whether to filter out overlapping novel IR events belonging to
minor isoforms. See details.

realize (default = FALSE) Whether to load all assay data into memory. See details

verbose (default = TRUE) Whether loading messages are displayed

Details

makeSE retrieves the data collated by collateData, and initialises a NxtSE object. It references the
required on-disk assay data using DelayedArrays, thereby utilising ’on-disk’ memory to conserve
memory usage.

For extremely large datasets, loading the entire data into memory may consume too much memory.
In such cases, make a subset of the NxtSE object (e.g. subset by samples) before loading the
data into memory (RAM) using realize_NxtSE. Alternatively supply a data frame to the colData
parameter of the makeSE() function. Only samples listed in the first column of the colData data
frame will be imported into the NxtSE object.

It should be noted that downstream applications of SpliceWiz, including ASE-methods, plotCover-
age, are much faster if the NxtSE is realized. It is recommended to realize the NxtSE object before
extensive usage.

If COV files assigned via collateData have been moved relative to the collate_path, the created
NxtSE object will not be linked to any COV files and plotCoverage cannot be used. To reassign
these files, a vector of file paths corresponding to all the COV files of the data set can be assigned
using covfile(se) <- vector_of_cov_files. See the example below for details.

If RemoveOverlapping = TRUE, makeSE will try to identify which introns belong to major isoforms,
then remove introns of minor introns that overlaps those of major isoforms. Non-overlapping in-
trons are then reassessed iteratively, until all introns are included or excluded in this way. This is
important to ensure that overlapping novel IR events are not ’double-counted’.

Value

A NxtSE object containing the compiled data in DelayedArrays (or as matrices if realize = TRUE),
pointing to the assay data contained in the given collate_path

Examples

The following code can be used to reproduce the NxtSE object
that can be fetched with SpliceWiz_example_NxtSE()

buildRef(

make_plot_data 57

reference_path = file.path(tempdir(), "Reference"),
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- SpliceWiz_example_bams()
processBAM(bams$path, bams$sample,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "SpliceWiz_Output")

)

expr <- findSpliceWizOutput(file.path(tempdir(), "SpliceWiz_Output"))
collateData(expr,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "Collated_output")

)

se <- makeSE(collate_path = file.path(tempdir(), "Collated_output"))

"Realize" NxtSE object to load all H5 assays into memory:

se <- realize_NxtSE(se)

If COV files have been removed since the last call to collateData()
reassign them to the NxtSE object, for example:

covfile_path <- system.file("extdata", package = "SpliceWiz")
covfile_df <- findSamples(covfile_path, ".cov")

covfile(se) <- covfile_df$path

make_plot_data Construct data of percent-spliced-in (PSI) matrices and group-
average PSIs

Description

makeMatrix() constructs a matrix of PSI values of the given alternative splicing events (ASEs).

makeMeanPSI() constructs a table of "average" PSI values, with samples grouped by a number
of given conditions (e.g. "group A" and "group B") of a given condition category (e.g. condition
"treatment"). See details below.

Usage

makeMatrix(
se,
event_list,

58 make_plot_data

sample_list = colnames(se),
method = c("PSI", "logit", "Z-score"),
depth_threshold = 10,
logit_max = 5,
na.percent.max = 0.1

)

makeMeanPSI(
se,
event_list = rownames(se),
condition,
conditionList,
depth_threshold = 10,
logit_max = 10

)

Arguments

se (Required) A NxtSE object generated by makeSE

event_list A character vector containing the names of ASE events (as given by the EventName
column of differential ASE results table generated by one of the ASE-methods,
or the rownames of the NxtSE object)

sample_list (default = colnames(se)) In makeMatrix(), a list of sample names in the given
experiment to be included in the returned matrix

method In makeMatrix(), rhe values to be returned (default = "PSI"). It can alternately
be "logit" which returns logit-transformed PSI values, or "Z-score" which re-
turns Z-score-transformed PSI values

depth_threshold

(default = 10) Samples with the number of reads supporting either included or
excluded isoforms below this values are excluded

logit_max PSI values close to 0 or 1 are rounded up/down to plogis(-logit_max) and
plogis(logit_max), respectively. See details.

na.percent.max (default = 0.1) The maximum proportion of values in the given dataset that were
transformed to NA because of low splicing depth. ASE events where there are a
higher proportion (default 10%) NA values will be excluded from the final matrix.
Most heatmap functions will spring an error if there are too many NA values in
any given row. This option caps the number of NA values to avoid returning this
error.

condition The name of the column containing the condition values in colData(se)

conditionList A list (or vector) of condition values of which to calculate mean PSIs

Details

Note that this function takes the geometric mean of PSI, by first converting all values to logit(PSI),
taking the average logit(PSI) values of each condition, and then converting back to PSI using inverse
logit.

Mappability-methods 59

Samples with low splicing coverage (either due to insufficient sequencing depth or low gene expres-
sion) are excluded from calculation of mean PSIs. The threshold can be set using depth_threshold.
Excluding these samples is appropriate because the uncertainty of PSI is high when the total in-
cluded / excluded count is low. Note that events where all samples in a condition is excluded will
return a value of NaN.

Using logit-transformed PSI values is appropriate because PSI values are bound to the (0,1) interval,
and are often thought to be beta-distributed. The link function often used with beta-distributed
models is the logit function, which is defined as logit(x) = function(x) log(x / (1 - x)), and
is equivalent to stats::qlogis. Its inverse is equivalent to stats::plogis.

Users wishing to calculate arithmetic means of PSI are advised to use makeMatrix, followed by
rowMeans on subsetted sample columns.

Value

For makeMatrix: A matrix of PSI (or alternate) values, with columns as samples and rows as ASE
events.

For makeMeanPSI: A 3 column data frame, with the first column containing event_list list of ASE
events, and the last 2 columns containing the average PSI values of the nominator and denominator
conditions.

Functions

• makeMatrix(): constructs a matrix of PSI values of the given alternative splicing events
(ASEs)

• makeMeanPSI(): constructs a table of "average" PSI values

Examples

se <- SpliceWiz_example_NxtSE()

colData(se)$treatment <- rep(c("A", "B"), each = 3)

event_list <- rowData(se)$EventName

mat <- makeMatrix(se, event_list[1:10])

diag_values <- makeMeanPSI(se, event_list,
condition = "treatment",
conditionList = list("A", "B")

)

Mappability-methods Calculate low mappability genomic regions

Description

These functions empirically calculate low-mappability (Mappability Exclusion) regions using the
given reference. A splice-aware alignment software capable of aligning reads to the genome is
required. See details and examples below.

60 Mappability-methods

Usage

generateSyntheticReads(
reference_path,
read_len = 70,
read_stride = 10,
error_pos = 35,
verbose = TRUE,
alt_fasta_file

)

calculateMappability(
reference_path,
aligned_bam = file.path(reference_path, "Mappability", "Aligned.out.bam"),
threshold = 4,
n_threads = 1

)

Arguments

reference_path The directory of the reference prepared by getResources

read_len The nucleotide length of the synthetic reads

read_stride The nucleotide distance between adjacent synthetic reads

error_pos The position of the procedurally-generated nucleotide error from the start of
each synthetic reads

verbose Whether additional status messages are shown

alt_fasta_file (Optional) The path to the user-supplied genome fasta file, if different to that
found inside the resource subdirectory of the reference_path. If getRe-
sources has already been run, this parameter should be omitted.

aligned_bam The BAM file of alignment of the synthetic reads generated by generateSyntheticReads().
Users should use a genome splice-aware aligner, preferably the same aligner
used to align the samples in their experiment.

threshold Genomic regions with this alignment read depth (or below) in the aligned syn-
thetic read BAM are defined as low mappability regions.

n_threads The number of threads used to calculate mappability exclusion regions from
aligned bam file of synthetic reads.

Details

Creating a Mappability Exclusion BED file is a three-step process.

• First, using generateSyntheticReads(), synthetic reads are systematically generated using
the given genome contained within reference_path, prepared via getResources. Alterna-
tively, use alt_fasta_file to set the genome sequence if this is different to that prepared by
getResources or if getResources is not yet run.

Mappability-methods 61

• Second, an aligner such as STAR (preferably the same aligner used for the subsequent RNA-
seq experiment) is required to align these reads to the source genome. Poorly mapped regions
of the genome will be reflected by regions of low coverage depth.

• Finally, the BAM file containing the aligned reads is analysed using calculateMappability(),
to identify low-mappability regions to compile the Mappability Exclusion BED file.

It is recommended to leave all parameters to their default settings. Regular users should only specify
reference_path, aligned_bam and n_threads, as required.

NB: STAR_mappability runs all 3 steps required, using the STAR aligner. This only works in systems
where STAR is installed.

NB2: buildFullRef builds the STAR reference, then calculates mappability. It then uses the calcu-
lated mappability regions to build the SpliceWiz reference.

NB3: In systems where STAR is not available, consider using HISAT2 or Rsubread. A working
example using Rsubread is shown below.

Value

• For generateSyntheticReads: writes Reads.fa to the Mappability subdirectory inside the
given reference_path.

• For calculateMappability: writes a gzipped BED file named MappabilityExclusion.bed.gz
to the Mappability subdirectory inside reference_path. This BED file is automatically
used by buildRef if its MappabilityRef parameter is not specified.

Functions

• generateSyntheticReads(): Generates synthetic reads from a genome FASTA file, for map-
pability calculations.

• calculateMappability(): Generate a BED file defining low mappability regions, using
reads generated by generateSyntheticReads(), aligned to the genome.

See Also

Build-Reference-methods

Examples

(1a) Creates genome resource files

ref_path <- file.path(tempdir(), "refWithMapExcl")

getResources(
reference_path = ref_path,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

(1b) Systematically generate reads based on the example genome:

generateSyntheticReads(

62 NxtSE-class

reference_path = ref_path
)
Not run:

(2) Align the generated reads using Rsubread:

(2a) Build the Rsubread genome index:

subreadIndexPath <- file.path(ref_path, "Rsubread")
if(!dir.exists(subreadIndexPath)) dir.create(subreadIndexPath)
Rsubread::buildindex(

basename = file.path(subreadIndexPath, "reference_index"),
reference = chrZ_genome()

)

(2b) Align the synthetic reads using Rsubread::subjunc()

Rsubread::subjunc(
index = file.path(subreadIndexPath, "reference_index"),
readfile1 = file.path(ref_path, "Mappability", "Reads.fa"),
output_file = file.path(ref_path, "Mappability", "AlignedReads.bam"),
useAnnotation = TRUE,
annot.ext = chrZ_gtf(),
isGTF = TRUE

)

(3) Analyse the aligned reads in the BAM file for low-mappability regions:

calculateMappability(
reference_path = ref_path,
aligned_bam = file.path(ref_path, "Mappability", "AlignedReads.bam")

)

(4) Build the example reference using the calculated Mappability Exclusions

buildRef(ref_path)

NB the default is to search for the BED file generated by
`calculateMappability()` in the given reference_path

End(Not run)

NxtSE-class The NxtSE class

Description

The NxtSE class inherits from the SummarizedExperiment class and is constructed using makeSE.
NxtSE extends SummarizedExperiment by housing additional assays pertaining to IR and splice
junction counts.

NxtSE-class 63

Usage

NxtSE(...)

S4 method for signature 'NxtSE'
up_inc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
down_inc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
up_exc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
down_exc(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
covfile(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
sampleQC(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
sourcePath(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
row_gr(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
ref(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
junc_PSI(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
junc_counts(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
junc_counts_uns(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
junc_gr(x, withDimnames = TRUE, ...)

S4 method for signature 'NxtSE'
update_NxtSE(x, ...)

S4 method for signature 'NxtSE'
realize_NxtSE(x, includeJunctions = FALSE, withDimnames = TRUE, ...)

64 NxtSE-class

S4 replacement method for signature 'NxtSE'
up_inc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
down_inc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
up_exc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
down_exc(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
covfile(x, withDimnames = TRUE) <- value

S4 replacement method for signature 'NxtSE'
sampleQC(x, withDimnames = TRUE) <- value

S4 method for signature 'NxtSE,ANY,ANY,ANY'
x[i, j, ..., drop = TRUE]

S4 replacement method for signature 'NxtSE,ANY,ANY,NxtSE'
x[i, j, ...] <- value

S4 method for signature 'NxtSE'
cbind(..., deparse.level = 1)

S4 method for signature 'NxtSE'
rbind(..., deparse.level = 1)

Arguments

... In NxtSE(), additional arguments to be passed onto SummarizedExperiment()

x A NxtSE object

withDimnames (default TRUE) Whether exported assays should be supplied with row and col-
umn names of the NxtSE object. See SummarizedExperiment

includeJunctions

When realizing a NxtSE object, include whether junction counts and PSIs should
be realized into memory. Not recommended for general use, as they are only
used for coverage plots.

value The value to replace. Must be a matrix for the up_inc<-, down_inc<-, up_exc<-
and down_exc<- replacers, and a character vector for covfile<-

i, j Row and column subscripts to subset a NxtSE object.

drop A logical(1), ignored by these methods.

deparse.level See base::cbind for a description of this argument.

NxtSE-class 65

Value

See Functions section (below) for details

Functions

• NxtSE(): Constructor function for NxtSE; akin to SummarizedExperiment(...)

• up_inc(NxtSE): Gets upstream included events (SE/MXE), or upstream exon-intron spanning
reads (IR)

• down_inc(NxtSE): Gets downstream included events (SE/MXE), or downstream exon-intron
spanning reads (IR)

• up_exc(NxtSE): Gets upstream excluded events (MXE only)

• down_exc(NxtSE): Gets downstream excluded events (MXE only)

• covfile(NxtSE): Gets a named vector with the paths to the corresponding COV files

• sampleQC(NxtSE): Gets a data frame with the QC parameters of the samples

• sourcePath(NxtSE): Retrieves the directory path containing the source data for this NxtSE
object.

• row_gr(NxtSE): Retrieves a GRanges object representing the genomic spans of the ASEs
(EventRegion as GRanges)

• ref(NxtSE): Retrieves a list of annotation data associated with this NxtSE object; primarily
used in plotCoverage()

• junc_PSI(NxtSE): Getter for junction PSI DelayedMatrix; primarily used in plotCoverage()

• junc_counts(NxtSE): Getter for junction counts DelayedMatrix; primarily used in plotCov-
erage()

• junc_counts_uns(NxtSE): Getter for (unstranded) junction counts DelayedMatrix; primarily
used in plotCoverage()

• junc_gr(NxtSE): Getter for junction GenomicRanges coordinates; primarily used in plot-
Coverage()

• update_NxtSE(NxtSE): Updates NxtSE object to the latest version.

• realize_NxtSE(NxtSE): Converts all DelayedMatrix assays as matrices (i.e. performs all
delayed calculation and loads resulting object to RAM)

• up_inc(NxtSE) <- value: Sets upstream included events (SE/MXE), or upstream exon-intron
spanning reads (IR)

• down_inc(NxtSE) <- value: Sets downstream included events (SE/MXE), or downstream
exon-intron spanning reads (IR)

• up_exc(NxtSE) <- value: Sets upstream excluded events (MXE only)

• down_exc(NxtSE) <- value: Sets downstream excluded events (MXE only)

• covfile(NxtSE) <- value: Sets the paths to the corresponding COV files

• sampleQC(NxtSE) <- value: Sets the values in the data frame containing sample QC

• x[i: Subsets a NxtSE object

• `[`(x = NxtSE, i = ANY, j = ANY) <- value: Sets a subsetted NxtSE object

• cbind(NxtSE): Combines two NxtSE objects (by samples - columns)

• rbind(NxtSE): Combines two NxtSE objects (by AS/IR events - rows)

66 NxtSE-class

Examples

Run the full pipeline to generate a NxtSE object:

buildRef(
reference_path = file.path(tempdir(), "Reference"),
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- SpliceWiz_example_bams()
processBAM(bams$path, bams$sample,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "SpliceWiz_Output")

)

expr <- findSpliceWizOutput(file.path(tempdir(), "SpliceWiz_Output"))
collateData(expr,

reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "Collated_output")

)

se <- makeSE(collate_path = file.path(tempdir(), "Collated_output"))

Coerce NxtSE -> SummarizedExperiment
se_raw <- as(se, "SummarizedExperiment")

Coerce SummarizedExperiment -> NxtSE
se_NxtSE <- as(se_raw, "NxtSE")
identical(se, se_NxtSE) # Returns TRUE

Update NxtSE object to the latest version
- useful if an NxtSE object made with old SpliceWiz version
- was stored as an RDS obejct

se <- update_NxtSE(se)

Get directory path of NxtSE (i.e., collate_path)
sourcePath(se)

Get Main Assay Counts
assay(se, "Included") # Junction (or IR depth) counts for included isoform
assay(se, "Excluded") # Junction (or IR depth) counts for excluded isoform

Get Auxiliary Counts (for filter use only)
assay(se, "Coverage") # Participation ratio (intron coverage for IR/RI)
assay(se, "minDepth") # SpliceOver junction counts (Intron Depths for IR/RI)
assay(se, "Depth") # Sum of intron depth and SpliceOver (used for

coverage normalization factor

Get Junction reads of SE / MXE and spans-reads of IR events
up_inc(se) # Upstream included junction counts (IR/MXE/SE/RI)
down_inc(se) # Downstream included junction counts (IR/MXE/SE/RI)

NxtSE-class 67

up_exc(se) # Upstream excluded junction counts (MXE only)
down_exc(se) # Downstream excluded junction counts (MXE only)

Get Junction counts
junc_counts(se) # stranded (if RNA-seq is auto-detected as stranded)
junc_counts_uns(se) # unstranded (sum of junction reads from both strand)
junc_PSI(se) # PSI of junction (as proportion of SpliceOver metric)

Get Junction GRanges object
junc_gr(se)

Get EventRegion as GRanges object
row_gr(se)

Get list of available coverage files
covfile(se)

Get sample QC information
sampleQC(se)

Get resource data (used internally for plotCoverage())
cov_data <- ref(se)
names(cov_data)

Subset functions
se_by_samples <- se[,1:3]
se_by_events <- se[1:10,]
se_by_rowData <- subset(se, EventType == "IR")

Cbind (bind event_identical NxtSE by samples)
se_by_samples_1 <- se[,1:3]
se_by_samples_2 <- se[,4:6]
se_cbind <- cbind(se_by_samples_1, se_by_samples_2)
identical(se, se_cbind) # should return TRUE

Rbind (bind sample_identical NxtSE by events)
se_IR <- subset(se, EventType == "IR")
se_SE <- subset(se, EventType == "SE")
se_IRSE <- rbind(se_IR, se_SE)
identical(se_IRSE, subset(se, EventType %in% c("IR", "SE"))) # TRUE

Convert HDF5-based NxtSE to in-memory se
makeSE() creates a HDF5-based NxtSE object where all assay data is stored
as an h5 file instead of in-memory. All operations are performed as
delayed operations as per DelayedArray package.
To realize the NxtSE object as an in-memory object, use:

se_real <- realize_NxtSE(se)
identical(se, se_real) # should return FALSE

To check the difference, run:
class(up_inc(se))
class(up_inc(se_real))

68 plotCoverage

plotCoverage RNA-seq Coverage Plots and Genome Tracks

Description

Generate plotly / ggplot RNA-seq genome and coverage plots from command line. Note that these
are legacy functions. More expansive functionality is available using getCoverageData / getPlotO-
bject / plotView functions.

Usage

plotCoverage(
se,
Event,
Gene,
seqname,
start,
end,
coordinates,
strand = c("*", "+", "-"),
zoom_factor = 0.2,
bases_flanking = 100,
tracks,
track_names = tracks,
condition,
ribbon_mode = c("sd", "ci", "sem", "none"),
selected_transcripts = "",
reverseGenomeCoords = FALSE,
plotJunctions = FALSE,
junctionThreshold = 0.01,
plot_key_isoforms = FALSE,
condense_tracks = FALSE,
stack_tracks = FALSE,
t_test = FALSE,
norm_event,
usePlotly = FALSE

)

plotGenome(
se,
reference_path,
Event,
Gene,
seqname,
start,

plotCoverage 69

end,
coordinates,
zoom_factor = 0.2,
bases_flanking = 100,
reverseGenomeCoords = FALSE,
condense_tracks = FALSE,
selected_transcripts = "",
plot_key_isoforms = FALSE,
usePlotly = FALSE

)

Arguments

se A NxtSE object, created by makeSE. COV files must be linked to the NxtSE
object. To do this, see the example in makeSE. Required by plotCoverage.
Not required by plotGenome if reference_path is supplied.

Event The EventName of the IR / alternative splicing event to be displayed. Use
rownames(se) to display a list of valid events.

Gene Whether to use the range for the given Gene. If given, overrides Event (but
Event or norm_event will be used to normalise by condition). Valid Gene en-
tries include gene_id (Ensembl ID) or gene_name (Gene Symbol).

seqname, start, end

The chromosome (string) and genomic start/end coordinates (numeric) of the
region to display. If present, overrides both Event and Gene. E.g. for a given re-
gion of chr1:10000-11000, use the parameters: seqname = "chr1", start = 10000, end = 11000

coordinates A string specifying genomic coordinates can be given instead of seqname,start,end.
Must be of the format "chr:start-end", e.g. "chr1:10000-11000"

strand Whether to show coverage of both strands "*" (default), or from the "+" or "-"
strand only.

zoom_factor Zoom out from event. Each level of zoom zooms out by a factor of 3. E.g.
for a query region of chr1:10000-11000, if a zoom_factor of 1.0 is given,
chr1:99000-12000 will be displayed.

bases_flanking (Default = 100) How many bases flanking the zoomed window. Useful when
used in conjunction with zoom_factor == 0. E.g. for a given region of chr1:10000-
11000, if zoom_factor = 0 and bases_flanking = 100, the region chr1:9900-
11100 will be displayed.

tracks The names of individual samples, or the names of the different conditions to be
plotted. For the latter, set condition to the specified condition category.

track_names The names of the tracks to be displayed. If omitted, the track_names will default
to the input in tracks

condition To display normalised coverage per condition, set this to the condition category.
If omitted, tracks are assumed to refer to the names of individual samples.

ribbon_mode (default "sd") Whether coverage ribbons signify standard deviation "sd", 95%
confidence interval "ci", standard error of the mean "sem", or none "none".
Only applicable when condition is set.

70 plotCoverage

selected_transcripts

(Optional) A vector containing transcript ID or transcript names of transcripts
to be displayed on the gene annotation track. Useful to remove minor isoforms
that are not relevant to the samples being displayed.

reverseGenomeCoords

(default FALSE) Whether to reverse the genomic coordinates - helpful for intu-
itive plotting of negative-strand genes

plotJunctions (default FALSE) If TRUE, sashimi plot junction arcs are plotted. Currently only
implemented for plots of individual samples.

junctionThreshold

(default 0.01) The threshold expression of junction reads below which junc-
tion arcs will be omitted. This removes cluttering of junction arcs from lowly-
expressed (rare) junctions. For individual tracks, this is the fraction of coverage
height. For by-condition tracks, this is a PSI threshold.

plot_key_isoforms

(default FALSE) If TRUE, only transcripts involved in the selected Event or pair
of Events will be displayed.

condense_tracks

(default FALSE) Whether to collapse the transcript track annotations by gene.

stack_tracks (default FALSE) Whether to graph all the conditions on a single coverage track.
If set to TRUE, each condition will be displayed in a different colour on the same
track. Ignored if condition is not set.

t_test (default FALSE) Whether to perform a pair-wise T-test. Only used if there are
TWO condition tracks.

norm_event Whether to normalise by an event different to that given in "Event". The dif-
ference between this and Event is that the genomic coordinates can be centered
around a different Event, Gene or region as given in seqname/start/end. If
norm_event is different to Event, norm_event will be used for normalisation
and Event will be used to define the genomic coordinates of the viewing win-
dow. norm_event is required if Event is not set and condition is set.

usePlotly If TRUE, returns a covPlotly object containing the plotly-based interactive plot.
If FALSE, returns a ggplot object.

reference_path The path of the reference generated by Build-Reference-methods. Required by
plotGenome if a NxtSE object is not specified.

Details

In RNA sequencing, alignments to spliced transcripts will "skip" over genomic regions of introns.
This can be illustrated in a plot using a horizontal genomic axis, with the vertical axis representing
the number of alignments covering each nucleotide. As a result, the coverage "hills" represent the
expression of exons, and "valleys" to introns.

Different alternatively-spliced isoforms thus produce different coverage patterns. The change in the
coverage across an alternate exon relative to its constitutively-included flanking exons, for exam-
ple, represents its alternative inclusion or skipping. Similarly, elevation of intron valleys represent
increased intron retention.

plotCoverage 71

With multiple replicates per sample, coverage is dependent on library size and gene expression.
To compare alternative splicing ratios, normalisation of the coverage of the alternate exon (or al-
ternatively retained intron) relative to their constitutive flanking exons, is required. There is no
established method for this normalisation, and can be confounded in situations where flanking ele-
ments are themselves alternatively spliced.

SpliceWiz performs this coverage normalisation using the same method as its estimate of spliced
/ intronic transcript abundance using the SpliceOver method (see details section in collateData).
This normalisation can be applied to correct for library size and gene expression differences be-
tween samples of the same experimental condition. After normalisation, mean and variance of
coverage can be computed as ratios relative to total transcript abundance. This method can visu-
alise alternatively included genomic regions including casette exons, alternate splice site usage, and
intron retention.

plotCoverage generates plots showing depth of alignments to the genomic axis. Plots can be
generated for individual samples or samples grouped by experimental conditions. In the latter,
mean and 95% confidence intervals are shown.

plotGenome generates genome transcript tracks only. Protein-coding regions are denoted by thick
rectangles, whereas non-protein coding transcripts or untranslated regions are denoted with thin
rectangles. Introns are denoted as lines.

Value

For plotCoverage and plotGenome:

• If usePlotly = FALSE returns a patchwork-assembled static plot

• If usePlotly = TRUE returns a covPlotly object, which generates a plotly interactive plot when
shown using show()

Functions

• plotCoverage(): Legacy function - works by internally calling getCoverageData(), getPlo-
tObject(), then plotView()

• plotGenome(): Legacy function - works by internally calling getGenomeData(), followed by
plotAnnoTrack()

Examples

se <- SpliceWiz_example_NxtSE(novelSplicing = TRUE)

Assign annotation of the experimental conditions
colData(se)$treatment <- rep(c("A", "B"), each = 3)

Verify that the COV files are linked to the NxtSE object:
covfile(se)

Plot the genome track only, with specified gene:
plotGenome(se, Gene = "SRSF3")

View the genome track, specifying a genomic region via coordinates:
plotGenome(se, coordinates = "chrZ:10000-20000")

72 plotCoverage

Return a list of ggplot and plotly objects, also plotting junction counts
plotCoverage(

se = se,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
tracks = colnames(se)[1:4], plotJunctions = TRUE

)

Plot the same, but as a plotly interactive plot

if(interactive()) {
p <- plotCoverage(

se = se,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
tracks = colnames(se)[1:4], plotJunctions = TRUE,
usePlotly = TRUE

)
show(p)

}

Plot by condition "treatment", including provisional PSIs
plotCoverage(

se = se,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
tracks = c("A", "B"), condition = "treatment", plotJunctions = TRUE

)

As above, but stack all traces into the same track
- NB: plotJunctions is disabled when `stack_tracks = TRUE`
plotCoverage(

se = se,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
tracks = c("A", "B"), condition = "treatment", stack_tracks = TRUE

)

Plot the above, but unstancked, and with t-test track
- NB: plotJunctions is disabled when `stack_tracks = TRUE`
plotCoverage(

se = se,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
tracks = c("A", "B"), condition = "treatment", t_test = TRUE

)

Select only transcripts involved in the selected alternative splicing event
plotCoverage(

se = se,
Event = "SE:SRSF3-203-exon4;SRSF3-202-int3",
tracks = colnames(se)[1:4],
plot_key_isoforms = TRUE

)

processBAM 73

processBAM Runs the OpenMP/C++ based SpliceWiz algorithm

Description

These function calls the SpliceWiz C++ routine on one or more BAM files.

The routine is an improved version over the original IRFinder, with OpenMP-based multi-threading
and the production of compact "COV" files to record alignment coverage. A SpliceWiz reference
built using Build-Reference-methods is required.

After processBAM() is run, users should call collateData to collate individual outputs into an ex-
periment / dataset.

BAM2COV creates COV files from BAM files without running processBAM().

See details for performance info.

Usage

BAM2COV(
bamfiles = "./Unsorted.bam",
sample_names = "sample1",
output_path = "./cov_folder",
n_threads = 1,
useOpenMP = TRUE,
overwrite = FALSE,
verbose = FALSE,
multiRead = FALSE

)

processBAM(
bamfiles = "./Unsorted.bam",
sample_names = "sample1",
reference_path = "./Reference",
output_path = "./SpliceWiz_Output",
n_threads = 1,
useOpenMP = TRUE,
overwrite = FALSE,
run_featureCounts = FALSE,
verbose = FALSE,
skipCOVfiles = FALSE,
multiRead = FALSE

)

Arguments

bamfiles A vector containing file paths of 1 or more BAM files

74 processBAM

sample_names The sample names of the given BAM files. Must be a vector of the same length
as bamfiles

output_path The output directory of this function

n_threads (default 1) The number of threads to use. See details.

useOpenMP (default TRUE) Whether to use OpenMP. If set to FALSE, BiocParallel will be
used if n_threads is set

overwrite (default FALSE) If output files already exist, will not attempt to re-run. If run_featureCounts
is TRUE, will not overwrite gene counts of previous run unless overwrite is
TRUE.

verbose (default FALSE) Set to TRUE to allow processBAM() to output progress bars and
messages

multiRead (default FALSE) Whether SpliceWiz/ompBAM should use one (set to FALSE) or
all available threads (set to TRUE) to read BAM files from the storage drive. In
SSD drives or high performance computing clusters, setting to TRUE may slightly
improve performance, whereas if reading from disk is the speed bottleneck, the
default setting FALSE should result in higher performance.

reference_path The directory containing the SpliceWiz reference
run_featureCounts

(default FALSE) Whether this function will run Rsubread::featureCounts on the
BAM files after counting spliced reads. If so, the output will be saved to "main.FC.Rds
in the output_path directory as a list object.

skipCOVfiles (default FALSE) Whether processBAM should skip the production of COV files
(containing coverage data). Default is to create COV files unless this is set to
TRUE. COV files can be generated separately using BAM2COV

Details

Typical run-times for a 100-million paired-end alignment BAM file takes 10 minutes using a single
core. Using 8 threads, the runtime is approximately 2-5 minutes, depending on your system’s file
input / output speeds. Approximately 10 Gb of RAM is used when OpenMP is used. If OpenMP is
not used (see below), this memory usage is multiplied across the number of processor threads (i.e.
40 Gb if n_threads = 4).

OpenMP is natively available to Linux / Windows compilers, and OpenMP will be used if useOpenMP
is set to TRUE, using multiple threads to process each BAM file. On Macs, if OpenMP is not avail-
able at compilation, BiocParallel will be used, processing BAM files simultaneously, with one BAM
file per thread.

Value

Output will be saved to output_path. Output files will be named using the given sample_names.
For processBAM():

• sample.txt.gz: The main output file containing the quantitation of IR and splice junctions, as
well as QC information

processBAM 75

• sample.cov: Contains coverage information in compressed binary. See getCoverage

• main.FC.Rds: A single file containing gene counts for the whole dataset (only if run_featureCounts
== TRUE)

For BAM2COV():

• sample.cov: Contains coverage information in compressed binary. See getCoverage

Functions

• BAM2COV(): Converts BAM files to COV files without running processBAM()

• processBAM(): Processes BAM files. Requires a SpliceWiz reference generated by buildRef()

See Also

Build-Reference-methods collateData isCOV

Examples

Run BAM2COV, which only produces COV files but does not run `processBAM()`:

bams <- SpliceWiz_example_bams()

BAM2COV(bams$path, bams$sample,
output_path = file.path(tempdir(), "SpliceWiz_Output"),
n_threads = 2, overwrite = TRUE

)

Run processBAM(), which produces:
- text output of intron coverage and spliced read counts
- COV files which record read coverages

example_ref <- file.path(tempdir(), "Reference")

buildRef(
reference_path = example_ref,
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

bams <- SpliceWiz_example_bams()

processBAM(bams$path, bams$sample,
reference_path = file.path(tempdir(), "Reference"),
output_path = file.path(tempdir(), "SpliceWiz_Output"),
n_threads = 2

)

76 Run_SpliceWiz_Filters

Run_SpliceWiz_Filters Filtering for IR and Alternative Splicing Events

Description

These function implements filtering of alternative splicing events, based on customisable criteria.
See ASEFilter for details on how to construct SpliceWiz filters

Usage

getDefaultFilters()

applyFilters(se, filters = getDefaultFilters())

runFilter(se, filterObj)

Arguments

se the NxtSE object to filter

filters A vector or list of one or more ASEFilter objects. If left blank, the SpliceWiz
default filters will be used.

filterObj A single ASEFilter object.

Details

We highly recommend using the default filters, which are as follows:

• (1) Depth filter of 20,

• (2) Participation filter requiring 70% coverage in IR events.

• (3) Participation filter requiring 40% coverage in MXE, SE, A5SS and A3SS events (i.e. In-
cluded + Excluded isoforms must cover at least 40% of all junction events across the given
region)

• (4) Consistency filter requring log difference of 2 (for skipped exon and mutually exclusive
exon events, each junction must comprise at least 1/(2^2) = 1/4 of all reads associated with
each isoform). For retained introns, the exon-intron overhangs must not differ by 1/4

• (5) Terminus filter: In alternate first exons, the splice junction must not be shared with another
transcript for which it is not its first intron. For alternative last exons, the splice junction must
not be shared with another transcript for which it is not its last intron

• (6) ExclusiveMXE filter: For MXE events, the two alternate casette exons must not overlap in
their genomic regions

• (7) StrictAltSS filter: For A5SS / A3SS events, the two alternate splice sites must not be
interrupted by an intron

Run_SpliceWiz_Filters 77

In all data-based filters, we require at least 80% samples (pcTRUE = 80) to pass this filters from the
entire dataset (minCond = -1).

Threshold depths for Participation filters:

For IR/RI, Participation filter is only applied for IR events for which the intron depth is above a
certain threshold (set by minDepth). This avoids the filters running on samples for which there is
no IR.

For non-IR ASEs, Participation is only run on events with splice depth (SpliceOver metric) higher
than minDepth. This avoids filters running on events with low total participation (i.e., (Inc+Exc)/SpliceOver)

Threshold depths for Consistency filters: Consistency filters are only applied for events where the
sum of upstream and downstream junction counts surpass a given threshold minDepth. This is
applied on both included and excluded counts (the latter only applies to MXE). This avoids consis-
tency filters running on events with insufficient junction counts (leading to high variance between
up/downstream values).

For an explanation of the various parameters mentioned here, see ASEFilter

Value

For runFilter and applyFilters: a vector of type logical, representing the rows of NxtSE that
should be kept.

For getDefaultFilters: returns a list of default recommended filters that should be parsed into
applyFilters.

Functions

• getDefaultFilters(): Returns a vector of recommended default SpliceWiz filters

• applyFilters(): Run a vector or list of ASEFilter objects on a NxtSE object

• runFilter(): Run a single filter on a NxtSE object

See Also

ASEFilter for details describing how to create and assign settings to ASEFilter objects.

Examples

see ?makeSE on example code of how this object was generated

se <- SpliceWiz_example_NxtSE()

Get the list of SpliceWiz recommended filters

filters <- getDefaultFilters()

View a description of what these filters do:

filters

Filter the NxtSE using the first default filter ("Depth")

78 STAR-methods

se.depthfilter <- se[runFilter(se, filters[[1]]),]

Filter the NxtSE using all four default filters

se.defaultFiltered <- se[applyFilters(se, getDefaultFilters()),]

setSWthreads Sets the number of threads used by SpliceWiz

Description

SpliceWiz uses the computationally efficient packages fst and data.table to compute file and data
operations, respectively. Both packages make use of parallelisation. If excessive number of threads
are allocated, it may impact the running of other operations on your system. Use this function to
manually allocate the desired number of threads

Usage

setSWthreads(threads = 0)

Arguments

threads (default 0) The number of threads for SpliceWiz to use. Set as 0 to use the
recommended number of threads appropriate for the system (approximately half
the available threads)

Value

Nothing.

Examples

setSWthreads(0)

STAR-methods STAR wrappers for building reference for STAR, and aligning RNA-
sequencing

Description

These STAR helper / wrapper functions allow users to (1) create a STAR genome reference (with or
without GTF), (2) align one or more RNA-seq samples, and (3) calculate regions of low mappability.
STAR references can be created using one-step (genome and GTF), or two-step (genome first, then
on-the-fly with injected GTF) approaches.

STAR-methods 79

Usage

STAR_version()

STAR_buildRef(
reference_path,
STAR_ref_path = file.path(reference_path, "STAR"),
n_threads = 4,
overwrite = FALSE,
sjdbOverhang = 100,
sparsity = 1,
also_generate_mappability = FALSE,
map_depth_threshold = 4,
additional_args = NULL,
...

)

STAR_alignExperiment(
Experiment,
STAR_ref_path,
BAM_output_path,
n_threads = 4,
overwrite = FALSE,
two_pass = FALSE,
trim_adaptor = "AGATCGGAAG",
additional_args = NULL

)

STAR_alignReads(
fastq_1 = c("./sample_1.fastq"),
fastq_2 = NULL,
STAR_ref_path,
BAM_output_path,
n_threads = 4,
overwrite = FALSE,
two_pass = FALSE,
trim_adaptor = "AGATCGGAAG",
memory_mode = "NoSharedMemory",
additional_args = NULL

)

STAR_buildGenome(
reference_path,
STAR_ref_path = file.path(reference_path, "STAR"),
n_threads = 4,
overwrite = FALSE,
sparsity = 1,
also_generate_mappability = FALSE,
map_depth_threshold = 4,

80 STAR-methods

additional_args = NULL,
...

)

STAR_loadGenomeGTF(
reference_path,
STAR_ref_path,
STARgenome_output = file.path(tempdir(), "STAR"),
n_threads = 4,
overwrite = FALSE,
sjdbOverhang = 100,
extraFASTA = "",
additional_args = NULL

)

STAR_mappability(
reference_path,
STAR_ref_path = file.path(reference_path, "STAR"),
map_depth_threshold = 4,
n_threads = 4,
...

)

Arguments

reference_path The path to the reference. getResources must first be run using this path as its
reference_path

STAR_ref_path (Default - the "STAR" subdirectory under reference_path) The directory con-
taining the STAR reference to be used or to contain the newly-generated STAR
reference

n_threads The number of threads to run the STAR aligner.

overwrite (default FALSE) For STAR_buildRef, STAR_buildGenome and STAR_loadGenomeGTF
- if STAR genome already exists, should it be overwritten. For STAR_alignExperiment
and STAR_alignReads - if BAM file already exists, should it be overwritten.

sjdbOverhang (Default = 100) A STAR setting indicating the length of the donor / acceptor
sequence on each side of the junctions. Ideally equal to (mate_length - 1). See
the STAR aligner manual for details.

sparsity (default 1) Sets STAR’s --genomeSAsparseD option. For human (and mouse)
genomes, set this to 2 to allow STAR to perform genome generation and map-
ping using < 16 Gb of RAM, albeit with slightly lower mapping rate (~ 0.1%
lower, according to STAR’s author). Setting this to higher values is experimental
(and not tested)

also_generate_mappability

Whether STAR_buildRef() and STAR_buildGenome() also calculate Mappa-
bility Exclusion regions.

map_depth_threshold

(Default 4) The depth of mapped reads threshold at or below which Mappability

STAR-methods 81

exclusion regions are defined. See Mappability-methods. Ignored if also_generate_mappability
= FALSE

additional_args

A character vector of additional arguments to be parsed into STAR. See exam-
ples below.

... Additional arguments to be parsed into generateSyntheticReads(). See Mappability-
methods.

Experiment A two or three-column data frame with the columns denoting sample names,
forward-FASTQ and reverse-FASTQ files. This can be conveniently generated
using findFASTQ

BAM_output_path

The path under which STAR outputs the aligned BAM files. In STAR_alignExperiment(),
STAR will output aligned BAMS inside subdirectories of this folder, named by
sample names. In STAR_alignReads(), STAR will output directly into this
path.

two_pass Whether to use two-pass mapping. In STAR_alignExperiment(), STAR first-
pass will align every sample to generate a list of splice junctions but not BAM
files. The junctions are then given to STAR to generate a temporary genome
containing information about novel junctions, thereby improving novel junction
detection. In STAR_alignReads(), STAR will use --twopassMode Basic

trim_adaptor The sequence of the Illumina adaptor to trim via STAR’s --clip3pAdapterSeq
option

fastq_1, fastq_2

In STAR_alignReads: character vectors giving the path(s) of one or more FASTQ
(or FASTA) files to be aligned. If single reads are to be aligned, omit fastq_2

memory_mode The parameter to be parsed to --genomeLoad; either NoSharedMemory or LoadAndKeep
are used.

STARgenome_output

The output path of the created on-the-fly genome

extraFASTA (default "") One or more FASTA files containing spike-in genome sequences
(e.g. ERCC, Sequins), as required.

Details

Pre-requisites

STAR_buildRef() and STAR_buildGenome() require prepared genome and gene annotation refer-
ence retrieved using getResources, which is run internally by buildRef

STAR_loadGenomeGTF() requires the above, and additionally a STAR genome created using STAR_buildGenome()

STAR_alignExperiment(), STAR_alignReads(), and STAR_mappability(): requires a STAR genome,
which can be built using STAR_buildRef() or STAR_buildGenome() followed by STAR_loadGenomeGTF()

Function Description

For STAR_buildRef: this function will create a STAR genome reference using the same genome
FASTA and gene annotation GTF used to create the SpliceWiz reference. Optionally, it will run
STAR_mappability if also_generate_mappability is set to TRUE

82 STAR-methods

For STAR_alignExperiment: aligns a set of FASTQ or paired FASTQ files using the given STAR
genome using the STAR aligner. A data.frame specifying sample names and corresponding FASTQ
files are required

For STAR_alignReads: aligns a single or pair of FASTQ files to the given STAR genome using the
STAR aligner.

For STAR_buildGenome: Creates a STAR genome reference, using ONLY the FASTA file used
to create the SpliceWiz reference. This allows users to create a single STAR reference for use
with multiple transcriptome (GTF) references (on different occasions). Optionally, it will run
STAR_mappability if also_generate_mappability is set to TRUE

For STAR_loadGenomeGTF: Creates an "on-the-fly" STAR genome, injecting GTF from the given
SpliceWiz reference_path, setting sjdbOverhang setting, and (optionally) any spike-ins via the
extraFASTA parameter. This allows users to create a single STAR reference for use with multiple
transcriptome (GTF) references, with different sjdbOverhang settings, and/or spike-ins (on different
occasions or for different projects).

For STAR_mappability: this function will first will run generateSyntheticReads, then use the given
STAR genome to align the synthetic reads using STAR. The aligned BAM file will then be pro-
cessed using calculateMappability to calculate the lowly-mappable genomic regions, producing the
MappabilityExclusion.bed.gz output file.

Value

For STAR_version(): The STAR version

For STAR_buildRef(): None

For STAR_alignExperiment(): None

For STAR_alignReads(): None

For STAR_buildGenome(): None

For STAR_loadGenomeGTF(): The path of the on-the-fly STAR genome, typically in the subdirec-
tory "_STARgenome" within the given STARgenome_output directory

For STAR_mappability(): None

Functions

• STAR_version(): Checks whether STAR is installed, and its version

• STAR_buildRef(): Creates a STAR genome reference, using both FASTA and GTF files used
to create the SpliceWiz reference

• STAR_alignExperiment(): Aligns multiple sets of FASTQ files, belonging to multiple sam-
ples

• STAR_alignReads(): Aligns a single sample (with single or paired FASTQ or FASTA files)

• STAR_buildGenome(): Creates a STAR genome reference, using ONLY the FASTA file used
to create the SpliceWiz reference

• STAR_loadGenomeGTF(): Creates an "on-the-fly" STAR genome, injecting GTF from the
given SpliceWiz reference_path, setting sjdbOverhang setting, and (optionally) any spike-
ins as extraFASTA

• STAR_mappability(): Calculates lowly-mappable genomic regions using STAR

STAR-methods 83

See Also

Build-Reference-methods findSamples Mappability-methods

The latest STAR documentation

Examples

0) Check that STAR is installed and compatible with SpliceWiz

STAR_version()
Not run:

The below workflow illustrates
1) Getting the reference resource
2) Building the STAR Reference, including Mappability Exclusion calculation
3) Building the SpliceWiz Reference, using the Mappability Exclusion file
4) Aligning (a) one or (b) multiple raw sequencing samples.

1) Reference generation from Ensembl's FTP links

FTP <- "ftp://ftp.ensembl.org/pub/release-94/"

getResources(
reference_path = "Reference_FTP",
fasta = paste0(FTP, "fasta/homo_sapiens/dna/",

"Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz"),
gtf = paste0(FTP, "gtf/homo_sapiens/",

"Homo_sapiens.GRCh38.94.chr.gtf.gz")
)

2) Generates STAR genome within the SpliceWiz reference. Also generates
mappability exclusion gzipped BED file inside the "Mappability/" sub-folder

STAR_buildRef(
reference_path = "Reference_FTP",
STAR_ref_path = file.path("Reference_FTP", "STAR"),
n_threads = 8,
also_generate_mappability = TRUE

)

2a) Generates STAR genome of the example SpliceWiz genome.
This demonstrates using custom STAR parameters, as the example
SpliceWiz genome is ~100k in length,
so --genomeSAindexNbases needs to be
adjusted to be min(14, log2(GenomeLength)/2 - 1)

getResources(
reference_path = "Reference_chrZ",
fasta = chrZ_genome(),
gtf = chrZ_gtf()

)

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf

84 STAR-methods

STAR_buildRef(
reference_path = "Reference_chrZ",
STAR_ref_path = file.path("Reference_chrZ", "STAR"),
n_threads = 8,
additional_args = c("--genomeSAindexNbases", "7"),
also_generate_mappability = TRUE

)

3) Build SpliceWiz reference using the newly-generated
Mappability exclusions

#' NB: also specifies to use the hg38 nonPolyA resource

buildRef(reference_path = "Reference_FTP", genome_type = "hg38")

4a) Align a single sample using the STAR reference

STAR_alignReads(
fastq_1 = "sample1_1.fastq", fastq_2 = "sample1_2.fastq",
STAR_ref_path = file.path("Reference_FTP", "STAR"),
BAM_output_path = "./bams/sample1",
n_threads = 8

)

4b) Align multiple samples, using two-pass alignment

Experiment <- data.frame(
sample = c("sample_A", "sample_B"),
forward = file.path("raw_data", c("sample_A", "sample_B"),

c("sample_A_1.fastq", "sample_B_1.fastq")),
reverse = file.path("raw_data", c("sample_A", "sample_B"),

c("sample_A_2.fastq", "sample_B_2.fastq"))
)

STAR_alignExperiment(
Experiment = Experiment,
STAR_ref_path = file.path("Reference_FTP", "STAR"),
BAM_output_path = "./bams",
n_threads = 8,
two_pass = TRUE

)

- Building a STAR genome (only) reference, and injecting GTF as a
subsequent step
#
This is useful for users who want to create a single STAR genome, for
experimentation with different GTF files.
It is important to note that the chromosome names of the genome (FASTA)
file and the GTF file needs to be identical. Thus, Ensembl and Gencode
GTF files should not be mixed (unless the chromosome GTF names have
been fixed)

theme_white 85

- also set sparsity = 2 to build human genome so that it will fit in
16 Gb RAM. NB: this step's RAM usage can be set using the
`--limitGenomeGenerateRAM` parameter

STAR_buildGenome(
reference_path = "Reference_FTP",
STAR_ref_path = file.path("Reference_FTP", "STAR_genomeOnly"),
n_threads = 8, sparsity = 2,
additional_args = c("--limitGenomeGenerateRAM", "16000000000")

)

- Injecting a GTF into a genome-only STAR reference
#
This creates an on-the-fly STAR genome, using a GTF file
(derived from a SpliceWiz reference) into a new location.
This allows a single STAR reference to use multiple GTFs
on different occasions.

STAR_new_ref <- STAR_loadGenomeGTF(
reference_path = "Reference_FTP",
STAR_ref_path = file.path("Reference_FTP", "STAR_genomeOnly"),
STARgenome_output = file.path(tempdir(), "STAR"),
n_threads = 4,
sjdbOverhang = 100

)

This new reference can then be used to align your experiment:

STAR_alignExperiment(
Experiment = Experiment,
STAR_ref_path = STAR_new_ref,
BAM_output_path = "./bams",
n_threads = 8,
two_pass = TRUE

)

Typically, one should `clean up` the on-the-fly STAR reference (as it is
large!). If it is in a temporary directory, it will be cleaned up
when the current R session ends; otherwise this needs to be done manually:

unlink(file.path(tempdir(), "STAR"), recursive = TRUE)

End(Not run)

theme_white ggplot2 themes

Description

A ggplot theme object for white background figures +/- a legend

86 View-Reference-methods

Usage

theme_white

theme_white_legend

theme_white_legend_plot_track

Format

An object of class theme (inherits from gg) of length 10.

An object of class theme (inherits from gg) of length 9.

An object of class theme (inherits from gg) of length 10.

Functions

• theme_white: White theme without figure legend

• theme_white_legend: White theme but with a figure legend (if applicable)

• theme_white_legend_plot_track: White theme with figure legend but without horizontal
grid lines. Used internally in PlotGenome

See Also

plotCoverage

Examples

library(ggplot2)
df <- data.frame(

gp = factor(rep(letters[1:3], each = 10)),
y = rnorm(30))

ggplot(df, aes(gp, y)) +
geom_point() +
theme_white

View-Reference-methods

View SpliceWiz Reference in read-able data frames

Description

These functions allow users to construct tables containing SpliceWiz’s reference of alternate splic-
ing events, intron retention events, and other relevant data

View-Reference-methods 87

Usage

viewASE(reference_path)

viewIR(reference_path, directional = TRUE)

viewIntrons(reference_path)

viewIR_NMD(reference_path)

viewExons(reference_path)

viewGenes(reference_path)

viewGO(reference_path)

viewProteins(reference_path)

viewTranscripts(reference_path)

Arguments

reference_path The directory containing the SpliceWiz reference

directional (default TRUE) Whether to view IR events for stranded RNAseq TRUE or un-
stranded protocol FALSE

Value

A data frame containing the relevant info. See details

Functions

• viewASE(): Outputs summary of alternative splicing events constructed by SpliceWiz

• viewIR(): Outputs summary of assessed IRFinde-like IR events, constructed by SpliceWiz

• viewIntrons(): Outputs summary of all introns from the annotation, constructed by SpliceWiz

• viewIR_NMD(): Outputs information for every intron - whether retention of the intron will
convert the transcript to an NMD substrate

• viewExons(): Outputs information for every exon from the annotation.

• viewGenes(): Outputs information for every gene from the annotation.

• viewGO(): Outputs information for every gene from the annotation.

• viewProteins(): Outputs information for every protein-coding exon from the annotation.

• viewTranscripts(): Outputs information for every transcript from the annotation.

See Also

Build-Reference-methods

88 View-Reference-methods

Examples

ref_path <- file.path(tempdir(), "Reference_withGO")
buildRef(

reference_path = ref_path,
fasta = chrZ_genome(),
gtf = chrZ_gtf(),
ontologySpecies = "Homo sapiens"

)

df <- viewASE(ref_path)

df <- viewIR(ref_path, directional = TRUE)

df <- viewIntrons(ref_path)

df <- viewIR_NMD(ref_path)

df <- viewExons(ref_path)

df <- viewGenes(ref_path)

df <- viewProteins(ref_path)

df <- viewTranscripts(ref_path)

df <- viewGO(ref_path)

Index

∗ datasets
theme_white, 85

∗ package
example-SpliceWiz-data, 38
SpliceWiz-package, 3

[,NxtSE,ANY,ANY,ANY-method
(NxtSE-class), 62

[<-,NxtSE,ANY,ANY,NxtSE-method
(NxtSE-class), 62

addPSI_edgeR (ASE-GLM-edgeR), 5
AnnotationHub, 51
applyFilters, 4, 6, 12
applyFilters (Run_SpliceWiz_Filters), 76
ASE-GLM-edgeR, 5, 13
ASE-methods, 4, 7, 10, 13, 55, 56, 58
ASE_DESeq (ASE-methods), 10
ASE_DoubleExpSeq (ASE-methods), 10
ASE_edgeR (ASE-methods), 10
ASE_edgeR_timeseries (ASE-methods), 10
ASE_limma (ASE-methods), 10
ASE_limma_timeseries (ASE-methods), 10
ASEFilter, 4, 76, 77
ASEFilter (ASEFilter-class), 17
ASEFilter-class, 17

BAM2COV, 27, 74
BAM2COV (processBAM), 73
base::cbind, 64
Build-Reference-methods, 4, 20, 26, 44, 61,

70, 73, 75, 83, 87
Build-Reference-methods

(getAvailableGO), 46
buildFullRef, 61
buildFullRef (getAvailableGO), 46
buildRef, 3, 61, 81
buildRef (getAvailableGO), 46

calculateMappability, 82

calculateMappability
(Mappability-methods), 59

calculateMappability(), 48
cbind,NxtSE-method (NxtSE-class), 62
coerce,SummarizedExperiment,NxtSE-method

(NxtSE-class), 62
colData, 4, 56
collateData, 4, 6, 12, 14, 20, 22, 41, 55, 56,

71, 73, 75
condition (covPlotObject-class), 32
condition,covPlotObject-method

(covPlotObject-class), 32
coord2GR, 23
covDataObject-class, 24
Coverage, 27
covfile (NxtSE-class), 62
covfile,NxtSE-method (NxtSE-class), 62
covfile<- (NxtSE-class), 62
covfile<-,NxtSE-method (NxtSE-class), 62
covPlotly, 37, 71
covPlotly-class, 30
covPlotObject, 26
covPlotObject-class, 32

DESeq2::results, 15
DoubleExpSeq::DBGLM1, 15
down_exc (NxtSE-class), 62
down_exc,NxtSE-method (NxtSE-class), 62
down_exc<- (NxtSE-class), 62
down_exc<-,NxtSE-method (NxtSE-class),

62
down_inc (NxtSE-class), 62
down_inc,NxtSE-method (NxtSE-class), 62
down_inc<- (NxtSE-class), 62
down_inc<-,NxtSE-method (NxtSE-class),

62

edgeR::topTags, 15
example-SpliceWiz-data, 38

89

90 INDEX

extract_gene_ids_for_GO
(Gene-ontology-methods), 42

findBAMS (findSamples), 40
findFASTQ, 81
findFASTQ (findSamples), 40
findSamples, 20, 40, 83
findSpliceWizOutput, 20
findSpliceWizOutput (findSamples), 40
fitASE_edgeR (ASE-GLM-edgeR), 5
fitASE_edgeR_custom (ASE-GLM-edgeR), 5

Gene-ontology-methods, 42
generateSyntheticReads, 82
generateSyntheticReads

(Mappability-methods), 59
GenomicRanges::findOverlaps, 22
getAvailableGO, 46
getCoverage, 75
getCoverage (Coverage), 27
getCoverage_DF (Coverage), 27
getCoverageBins (Coverage), 27
getCoverageData, 37, 68
getCoverageData (covDataObject-class),

24
getCoverageRegions (Coverage), 27
getDefaultFilters, 18, 19
getDefaultFilters

(Run_SpliceWiz_Filters), 76
getExonRanges (covPlotly-class), 30
getExonRanges,covPlotly-method

(covPlotly-class), 30
getGenomeData (covDataObject-class), 24
getNonPolyARef (getAvailableGO), 46
getPlotObject, 68
getPlotObject (covPlotObject-class), 32
getResources, 60, 80, 81
getResources (getAvailableGO), 46
goASE (Gene-ontology-methods), 42
goGenes (Gene-ontology-methods), 42
Graphics-User-Interface, 53
GUI (Graphics-User-Interface), 53

isCOV, 54, 75

junc_counts (NxtSE-class), 62
junc_counts,NxtSE-method (NxtSE-class),

62
junc_counts_uns (NxtSE-class), 62

junc_counts_uns,NxtSE-method
(NxtSE-class), 62

junc_gr (NxtSE-class), 62
junc_gr,NxtSE-method (NxtSE-class), 62
junc_PSI (NxtSE-class), 62
junc_PSI,NxtSE-method (NxtSE-class), 62

limma::topTable, 14

make_plot_data, 4, 55, 57
makeMatrix, 7, 14, 59
makeMatrix (make_plot_data), 57
makeMeanPSI, 7, 14
makeMeanPSI (make_plot_data), 57
makeSE, 4, 22, 25, 39, 55, 58, 62, 69
Mappability-methods, 49, 51, 59, 81, 83

NxtIRFdata::example_bams, 39
NxtSE, 4, 6, 12, 25, 26, 39, 55, 56, 58, 69, 70,

76
NxtSE (NxtSE-class), 62
NxtSE-class, 62
NxtSE-methods (NxtSE-class), 62

ompBAM::ompBAM-package, 3

plotAnnoTrack (covDataObject-class), 24
plotCoverage, 4, 7, 14, 55, 56, 68, 86
plotGenome (plotCoverage), 68
plotGO (Gene-ontology-methods), 42
plotView, 31, 68
plotView (covPlotObject-class), 32
processBAM, 3, 4, 20–22, 27, 40, 41, 48, 50,

55, 73

rbind,NxtSE-method (NxtSE-class), 62
realize_NxtSE, 56
realize_NxtSE (NxtSE-class), 62
realize_NxtSE,NxtSE-method

(NxtSE-class), 62
ref (NxtSE-class), 62
ref,NxtSE-method (NxtSE-class), 62
row_gr (NxtSE-class), 62
row_gr,NxtSE-method (NxtSE-class), 62
rowData, 4
rowMeans, 59
Rsubread::featureCounts, 74
Run_SpliceWiz_Filters, 19, 76
runFilter (Run_SpliceWiz_Filters), 76

INDEX 91

sampleQC (NxtSE-class), 62
sampleQC,NxtSE-method (NxtSE-class), 62
sampleQC<- (NxtSE-class), 62
sampleQC<-,NxtSE-method (NxtSE-class),

62
setResolution, 36
setResolution (covPlotly-class), 30
setResolution,covPlotly-method

(covPlotly-class), 30
setSWthreads, 78
showEvents (covDataObject-class), 24
showEvents,covDataObject-method

(covDataObject-class), 24
showExons (covPlotly-class), 30
showExons,covPlotly-method

(covPlotly-class), 30
sourcePath (NxtSE-class), 62
sourcePath,NxtSE-method (NxtSE-class),

62
spliceWiz (Graphics-User-Interface), 53
SpliceWiz-package, 3
SpliceWiz_example_bams

(example-SpliceWiz-data), 38
SpliceWiz_example_NxtSE

(example-SpliceWiz-data), 38
STAR-methods, 4, 49, 51, 78
STAR_alignExperiment (STAR-methods), 78
STAR_alignReads (STAR-methods), 78
STAR_buildGenome (STAR-methods), 78
STAR_buildRef, 49
STAR_buildRef (STAR-methods), 78
STAR_loadGenomeGTF (STAR-methods), 78
STAR_mappability, 48, 61
STAR_mappability (STAR-methods), 78
STAR_version (STAR-methods), 78
stats::plogis, 59
stats::qlogis, 59
subset_EventNames_by_GO

(Gene-ontology-methods), 42
SummarizedExperiment, 4, 62, 64

testASE_edgeR (ASE-GLM-edgeR), 5
theme_white, 85
theme_white_legend (theme_white), 85
theme_white_legend_plot_track

(theme_white), 85
tracks (covPlotObject-class), 32
tracks,covPlotObject-method

(covPlotObject-class), 32

up_exc (NxtSE-class), 62
up_exc,NxtSE-method (NxtSE-class), 62
up_exc<- (NxtSE-class), 62
up_exc<-,NxtSE-method (NxtSE-class), 62
up_inc (NxtSE-class), 62
up_inc,NxtSE-method (NxtSE-class), 62
up_inc<- (NxtSE-class), 62
up_inc<-,NxtSE-method (NxtSE-class), 62
update_NxtSE (NxtSE-class), 62
update_NxtSE,NxtSE-method

(NxtSE-class), 62

View-Reference-methods, 86
viewASE (View-Reference-methods), 86
viewExons (View-Reference-methods), 86
viewGenes, 43
viewGenes (View-Reference-methods), 86
viewGO, 43
viewGO (View-Reference-methods), 86
viewIntrons (View-Reference-methods), 86
viewIR (View-Reference-methods), 86
viewIR_NMD (View-Reference-methods), 86
viewProteins (View-Reference-methods),

86
viewTranscripts

(View-Reference-methods), 86

	SpliceWiz-package
	ASE-GLM-edgeR
	ASE-methods
	ASEFilter-class
	collateData
	coord2GR
	covDataObject-class
	Coverage
	covPlotly-class
	covPlotObject-class
	example-SpliceWiz-data
	findSamples
	Gene-ontology-methods
	getAvailableGO
	Graphics-User-Interface
	isCOV
	makeSE
	make_plot_data
	Mappability-methods
	NxtSE-class
	plotCoverage
	processBAM
	Run_SpliceWiz_Filters
	setSWthreads
	STAR-methods
	theme_white
	View-Reference-methods
	Index

