Package ‘ODER’

October 1, 2023

Title Optimising the Definition of Expressed Regions
Version 1.6.0
Date 2021-04-13

Description The aim of ODER is to identify previously unannotated expressed
regions (ERs) using RNA-sequencing data. For this purpose, ODER defines and
optimises the definition of ERs, then connected these ERs to genes using
junction data. In this way, ODER improves gene annotation. Gene annotation
is a staple input of many bioinformatic pipelines and a more complete gene
annotation can enable more accurate interpretation of disease associated
variants.

License Artistic-2.0
URL https://github.com/eolagbhaju/ODER

BugReports https://support.bioconductor.org/t/0DER

biocViews Software, GenomeAnnotation, Transcriptomics, RNASeq,
GeneExpression, Sequencing, Datalmport

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2

Suggests BiocStyle, covr, knitr, recount, RefManageR, rmarkdown,
sessioninfo, SummarizedExperiment, testthat (>= 3.0.0),
GenomicFeatures, xfun

Config/testthat/edition 3
Config/testthat/parallel true
VignetteBuilder knitr

Imports BiocGenerics, BiocFileCache, dasper, derfinder, dplyr,
IRanges, GenomelInfoDb, GenomicRanges, ggplot2, ggpubr, ggrepel,
magrittr, rtracklayer, S4Vectors, stringr, data.table,
megadepth, methods, plyr, purrr, tibble, utils

Depends R (>=4.1)

https://github.com/eolagbaju/ODER
https://support.bioconductor.org/t/ODER

PackageStatus Deprecated

git_url https://git.bioconductor.org/packages/ODER
git_branch RELEASE_3_17

git_last_commit bba2c50

git_last_commit_date 2023-04-25
Date/Publication 2023-10-01

Author Emmanuel Olagbaju [aut],

David Zhang [aut, cre] (<https://orcid.org/0000-0003-2382-8460>),
Sebastian Guelfi [ctb],
Siddharth Sethi [ctb]

Maintainer David Zhang <david.zhang.12@ucl.ac.uk>

R topics documented:

Index

add_expressed_geneso
annotatERs
file_cache
get.chriinfo. L
get_Ccount_matriXt e e e e e
GEL_COVEIAZE . . . v v v e et i e e e e e e
GELLETS . v v v v e e e e e e e e e e e
GEL_CXONS
gtex_SRP012682_SRX222703_lung_auc_1
gtex_SRP012682_SRX222703_lung_coverage_1
gtex_SRP012682_SRX222703_lung_erdelta_1
gtex_SRP012682_SRX222703_lung_ers_1
lung_junc_21.22
ODER e
plot_erso
pseudogene e
refine ERS
tISSUE_OPLIONS v oo e e e e

add_expressed_genes

add_expressed_genes Adding the nearest expressed genes

Description

Updating expressed regions with the expressed gene that is closest to it. After entering the tissue
that has been sequenced, the nearest gene and nearest expressed gene will be added to the metadata
columns of the annotated ERs.

https://orcid.org/0000-0003-2382-8460

add_expressed_genes 3

Usage

add_expressed_genes(
input_file = NULL,

tissue,
gtf,
species = "Homo_sapiens”,
annot_ers,
type_col_name = "type"
)
Arguments
input_file GTEX median expression file, if left as NULL the default file will be used.
tissue Tissue to filter for. See tissue_options for options
gtf Either a string containg the path to a .gtf file or a pre-imported gtf using rtracklayer: :import
. Provides gene data to help determine the nearest gene and nearest expressed
gene.
species character string containing the species to filter for, Homo sapiens is the default
annot_ers annotated ERs i.e. the product of annotatERs, should have an mcols column

called "annotation"

type_col_name column name in the gtf file to filter on genes. Default is "type

Value

Granges with annotated ERs and details of their nearest expressed genes

Examples

gtf_url <- pasted(
"http://ftp.ensembl.org/pub/release-103/gtf/",
"homo_sapiens/Homo_sapiens.GRCh38.103.chr.gtf.gz"

)

gtf_path <- file_cache(gtf_url)

gtf_gr <- rtracklayer::import(gtf_path)

ex_opt_ers <- GenomicRanges: :GRanges(
seqnames = S4Vectors::Rle(c("chr21”, "chr22"), c(2, 2)),
ranges = IRanges::IRanges(
start = c(5116369, 5118691, 5125879, 5128214),
end = c(5117231, 5118847, 5125988, 5128403)

ex_opt_ers_w_exp_genes <- add_expressed_genes(
tissue = "lung", gtf = gtf_gr,
annot_ers = ex_opt_ers

ex_opt_ers_w_exp_genes

4 annotatERs

annotatERs Connects ERs to genes using junction data, then classifies ERs into

"o "o

"exonic", "intronic", "intergenic", or a combination of these categories

Description

Finds the overlap between junctions and ERs, then adds gene info and junction info as metadata
columns. Then, uses a gtf file or a Txdb passed in to generate a genomic state used to label each
ER as to whether they are exonic, intronic, intergenic or none.

Usage

annotatERs(opt_ers, junc_data, genom_state, gtf, txdb)

Arguments
opt_ers optimally defined ERs (the product of the ODER function)
junc_data junction data that should match the ERs passed into opt_ers
genom_state a genomic state object
gtf gtf in a GRanges object, pre-imported using rtracklayer::import . This is
used to provide the gene information for annotation.
txdb TxDb-class (txdb object) to create genomic state. This is used to annotate the
expressed regions as exonic, intronic or intergenic.
Value
annotated ERs
Examples

gtf_url <- pasted(
"http://ftp.ensembl.org/pub/release-103/gtf/",
"homo_sapiens/Homo_sapiens.GRCh38.103.chr.gtf.gz"
)
file_cache is an internal function to download a bigwig file from a link
if the file has been downloaded recently, it will be retrieved from a cache
gtf_path <- file_cache(gtf_url)

gtf_gr <- rtracklayer::import(gtf_path)

ex_opt_ers <- GenomicRanges: :GRanges(
seqnames = S4Vectors::Rle(c("chr21"), c(5)),
ranges = IRanges: :IRanges(
start = c(5032176, 5033408, 5034717, 5035188, 5036577),
end = c(5032217, 5033425, 5034756, 5035189, 5036581)

file_cache 5

junctions <- SummarizedExperiment::rowRanges(dasper::junctions_example)
chrs_to_keep <- c("21", "22")

#i### preparing the txdb and genomstate object(s)

hg38_chrominfo <- GenomeInfoDb: :getChromInfoFromUCSC("hg38")
new_info <- hg38_chrominfo$size[match(
chrs_to_keep,
GenomeInfoDb: :mapSeqlevels(hg38_chrominfo$chrom, "Ensembl™)
)]
names(new_info) <- chrs_to_keep
gtf_gr_tx <- GenomeInfoDb: :keepSeqlevels(gtf_gr,
chrs_to_keep,
pruning.mode = "tidy"
)
GenomeInfoDb: :seqglengths(gtf_gr_tx) <- new_info
GenomelInfoDb::seqlevelsStyle(gtf_gr_tx) <- "UCSC"
rtracklayer: :genome(gtf_gr_tx) <- "hg38"

ucsc_txdb <- GenomicFeatures: :makeTxDbFromGRanges(gtf_gr_tx)
genom_state <- derfinder::makeGenomicState(txdb = ucsc_txdb)
ens_txdb <- ucsc_txdb

GenomelInfoDb: :seqlevelsStyle(ens_txdb) <- "Ensembl"”

annot_ers1 <- annotatERs(

opt_ers = ex_opt_ers, junc_data = junctions,
gtf = gtf_gr, txdb = ens_txdb, genom_state = genom_state

annot_ers]

file_cache Cache a file if it is not found locally

Description
file_cache will use: BiocFileCache and will then cache the file for faster repeated retrival, if it is
not found locally (i.e. a URL).

Usage
file_cache(file_path)

Arguments

file_path a path to file of interest.

Value

file_path of cached file or unchanged file_path if found locally.

6 get_chr_info

Examples

rec_url <- recount::download_study(
project = "SRPQ12682",
type = "samples”,
download = FALSE

)
eg_bwfile <- file_cache(rec_url[1])
eg_bwfile
get_chr_info Get information from UCSC about the chromosomes passed in
Description

Download information about each of the chromosomes passed in, most importantly the size.

Usage

get_chr_info(chrs, genome)

Arguments

chrs chromosomes to look up (must match UCSC format)

genome the UCSC genome to look at see https://genome.ucsc.edu/.
Value

a dataframe with data on the passed in chromosomes

Examples
eg_info <- get_chr_info(chrs = c("chr21”, "chr22"), genome = "hg38")

eg_info

https://genome.ucsc.edu/

get_count_matrix 7

get_count_matrix Generate the count matrix

Description

Scores the mean coverage of the expressed regions as a count matrix

Usage

get_count_matrix(bw_paths, annot_ers, cols = NULL)

Arguments
bw_paths Vector containing the bigwig file paths to read in
annot_ers GRangesList containing the annotated ERs (product of annotatERs)
cols A dataframe containing the information to be used as colData for the output. If
NULL then the bw_paths will be used for the colData
Value

A Ranged Summarized Experiment containing the gene counts as an assay

Examples

megadepth: :install_megadepth()

rec_url <- recount::download_study(
project = "SRPQ12682",
type = "samples”,
download = FALSE
)
file_cache is an internal function to download a bigwig file from a link
if the file has been downloaded recently, it will be retrieved from a cache
bw_path <- file_cache(rec_url[1])

ex_opt_ers <- GenomicRanges: :GRanges(
segnames = S4Vectors::Rle(c("chr1”, "chr2"), c(4, 1)),
ranges = IRanges::IRanges(
start = c(1:5),
end = seq(100, 500, 100)

)

example_cm <- get_count_matrix(
bw_paths = c(bw_path, bw_path),
annot_ers = ex_opt_ers

)

example_cm

8 get_coverage

get_coverage Obtain the mean coverage across multiple BigWig files

Description

get_coverage returns the mean coverage of the BigWig files passed in. Internally, this operates
through derfinder: :loadCoverage.

Usage
get_coverage(
bw_paths,
auc_raw,
auc_target,
Chr‘S - n u’
genome = "hg38",
bw_chr = "chr”
)
Arguments
bw_paths path(s) to bigwig file(s) with the RNA-seq data that you want the #’ coverage
of.
auc_raw vector containing AUCs(Area Under Coverage) matching the order of bigwig
path(s).
auc_target total AUC to normalise all samples to e.g. 40e6 * 100 would be the estimated
total auc for sample sequenced to 40 million reads of 100bp in length.
chrs chromosomes to obtain mean coverage for, default is "" giving every chromo-
some. Can take UCSC format(chrs = "chr1") or just the chromosome i.e. chrs =
c(1,X)
genome the UCSC genome you want to use, the default is hg38.
bw_chr specifies whether the bigwig files has the chromosomes labelled with a "chr"
preceding the chromosome i.e. "chrl" vs "1". Can be either "chr" or "nochr"
with "chr" being the default.
Value

a list of Rles detailing the mean coverage per chromosome passed in.

Examples

rec_url <- recount::download_study(
project = "SRPQ12682",
type = "samples”,
download = FALSE

get_ers 9

bw_path <- file_cache(rec_url[1])
As of rtracklayer 1.25.16, BigWig is not supported on Windows.
if (I!xfun::is_windows()) {
eg_coverage <- get_coverage(
bw_paths = bw_path,
auc_raw = 11872688252,
auc_target = 40e6 * 100,
chrs = c("chr21”, "chr22")
)

eg_coverage

get_ers Define sets of ERs

Description

get_ers defines expressed regions across an inputted range of mean coverage cut-offs (MCCs) and
max region gaps (MRGs) from the coverage.

get_strand_ers defines ERs across an inputted range of mean coverage cut-offs (MCCs) and max
region gaps (MRGs) from the coverage.

Usage

get_ers(coverage, mccs, mrgs)

get_strand_ers(
bw_pos,
bw_neg,
auc_raw_pos,
auc_raw_neg,

auc_target,
chrs,
mccs,
mrgs,
bw_chr = "chr”
)
Arguments
coverage the coverage of the bigwig files passed into get_coverage.
mccs mean coverage cut-offs to apply.
mrgs max region gaps to apply.
bw_pos positive strand bigwig file
bw_neg negative strand bigwig file
auc_raw_pos vector containing AUCs(Area Under Coverage) matching the order of the posi-

tive bigwig paths.

10 get_ers

auc_raw_neg vector containing AUCs(Area Under Coverage) matching the order of the nega-
tive bigwig paths.
auc_target total AUC to normalise all samples to. E.g. 40e6 * 100 would be the estimated

total auc for sample sequenced to 40 million reads of 100bp in length.

chrs chromosomes to obtain mean coverage for, default is "" giving every chromo-
some. Can take UCSC format(chrs = "chr1") or just the chromosome i.e. chrs =
c(1,X)

bw_chr specifies whether the bigwig files has the chromosomes labelled with a "chr"

preceding the chromosome i.e. "chrl" vs "1". Can be either "chr" or "nochr"
with "chr" being the default.

Value

list containing sets of ERs, each generated using a particular combination of MCC and MRG.

list containing sets of stranded ERs, each generated using a particular combination of MCC and
MRG.

Functions

* get_strand_ers: Method for getting ers from stranded BigWig files

Examples

data(gtex_SRP012682_SRX222703_lung_coverage_1, package = "ODER")

eg_ers <- get_ers(
coverage = gtex_SRPQ12682_SRX222703_lung_coverage_1,
mccs = c(5, 10),
mrgs = c(10, 20)

eg_ers
library("magrittr”)
gtex_metadata <- recount::all_metadata("gtex")
gtex_metadata <- gtex_metadata %>%
as.data.frame() %>%
dplyr::filter(project == "SRP012682")

rec_url <- recount::download_study(
project = "SRPQ12682",
type = "samples”,
download = FALSE
)
file_cache is an internal function to download a bigwig file from a link
if the file has been downloaded recently, it will be retrieved from a cache
bw_plus <- file_cache(rec_url[58])
bw_minus <- file_cache(rec_url[84])

As of rtracklayer 1.25.16, BigWig is not supported on Windows.
if (Ixfun::is_windows()) {

get_exons 11

stranded_ers <- get_strand_ers(
bw_pos = bw_plus, bw_neg = bw_minus,
auc_raw_pos = gtex_metadatal["auc"]11[58],
auc_raw_neg = gtex_metadatal[["auc"]][84], auc_target = 40e6 * 100,
chrs = "chr21”, mccs = c(5, 10), mrgs = c(10, 20)
)

stranded_ers

get_exons Obtain set of non-overlapping exons

Description

Downloads a well-defined set of exons to be used in obtaining the optimum set of Expressed regions.
These exons are used in calculating the exon deltas.

Calculates the median exon delta and the number of ERs with an exon delta of 0 by comparing each
combination of MCC and MRG with the optimum exons from the ensembl database.

Uses a delta calculating function and a well defined set of exons to find which combination of MCC
and MRG gives the best definition of the Expressed regions.

Usage
get_exons(gtf, ucsc_chr, ignore.strand = TRUE, biotype = "Non-overlapping")

get_ers_delta(ers, opt_exons, delta_fun = NULL)

get_opt_ers(ers, ers_delta)

Arguments
gtf Either a string containg the path to a .gtf file or a pre-imported gtf using rtracklayer: : import
ucsc_chr logical scalar, determining whether to add "chr" prefix to the seqnames of non-

overlapping exons and change "chrMT" -> "chrM". Note, if set to TRUE and
seqnames already have "chr", it will not add another.

ignore.strand logical value for input into findOverlaps, default is True.

biotype Filters the GTF file passed in to what would be considered the "Gold Stan-
dard" exons. The Default is "Non-overlapping” but the options are: "Non-
overlapping" (exons that don’t intersect each other), "Three Prime" (3° UTR),
"Five Prime" (5° UTR), "Internal" (Internal coding), "IncRNA" (Long Non-
Coding RNA), "ncRNA" (Non-Coding RNA) and "Pseudogene”

ers Sets of ERs across various MCCs/MRGs - output of get_ers.

opt_exons GRanges object that contains the regions that ideally, you want the ER defini-
tions to match - output of get_exons.

12 get_exons

delta_fun Function that calculates the delta between ERs and opt_exons. Takes as input a
set of ERs from ers and opt_exons. Then outputs a tibble/dataframe containing
the summarised delta scores for that set of one set of ERs.

ers_delta tibble/dataframe containing summarised delta values. One row per set of ERs.

Value

GRanges object containing non-overlapping exons.
tibble/dataframe containing summarised delta values. One row per set of ERs.

list containing optimised ERs, optimal pair of MCC/MRGs and delta_df

Functions

» get_exons: Filter for the exons to calculate the deltas against

* get_ers_delta: Method to get ers delta to help determine the optimum ers

Examples

gtf_url <- pasteo(
"http://ftp.ensembl.org/pub/release-103/gtf/",
"homo_sapiens/Homo_sapiens.GRCh38.103.chr.gtf.gz"

)

gtf_path <- file_cache(gtf_url)

gtf_gr <- rtracklayer::import(gtf_path)

eg_opt_exons <- get_exons(
gtf = gtf_gr,
ucsc_chr = TRUE,
ignore.strand = TRUE

eg_opt_exons
data(gtex_SRP012682_SRX222703_lung_ers_1, package = "ODER")

eg_ers_delta <- get_ers_delta(
ers = gtex_SRPQ12682_SRX222703_lung_ers_1,
opt_exons = eg_opt_exons

)

eg_ers_delta
data(gtex_SRP012682_SRX222703_lung_ers_1, package = "ODER")
opt_ers <- get_opt_ers(

ers = gtex_SRPQ12682_SRX222703_lung_ers_1,

ers_delta = eg_ers_delta

)

opt_ers

gtex_SRP012682_SRX222703_lung_auc_1 13

gtex_SRPO12682_SRX222703_lung_auc_1
An example AUC value

Description
An Area Under Coverage (AUC) value for a user to try out the package and to pass in for tests.
From the GTEX data set and project SRP012682, the actual value is 11872688252.

Usage

data(gtex_SRPQO12682_SRX222703_lung_auc_1)

Format

A numeric value

Source

See example.R in data-raw

gtex_SRPQ12682_SRX222703_lung_coverage_1
An example object containing coverage

Description
Coverage generated for a user to try out the package and to pass in for tests. Coverage of chromo-
somes 21 and 22 from the project SRP012682.

Usage

data(gtex_SRPQ12682_SRX222703_lung_coverage_1)

Format

A list of length 2 containing 2 Rles for chromosomes 21 and 22 respectively

Source

See example.R in data-raw

14 gtex_SRP012682_SRX222703_lung_ers_1

gtex_SRPO12682_SRX222703_lung_erdelta_1
An example set of ER deltas

Description

This set of deltas was calculated using gtex_lung_ers_1 and exons from ensembl.

Usage
data(gtex_SRPQ12682_SRX222703_lung_erdelta_1)

Format
A tibble/dataframe with the sums, means, medians, n_eq_0 and propor_eq_0 for each combination
of mccs (5 & 10) and mrgs (10 & 20)

Source

See example.R in data-raw

gtex_SRPO12682_SRX222703_lung_ers_1
An example set of Expressed Regions

Description

An example set of Expressed Regions generated for a user to try out the package and to pass in
for tests. Generated using gtex_SRP012682_SRX222703_lung_coverage_1 and MCCs of 5 and 10
and MRGs of 10 and 20.

Usage

data(gtex_SRPO12682_SRX222703_lung_ers_1)

Format
A list containing two lists (for each mcc) each with a set of genomic ranges for the different combi-
nations of mcc and mrg

Source

See example.R in data-raw

lung_junc_21_22 15

lung_junc_21_22 Junction data of chromosomes 21 and 22 from a lung tissue sample

Description

These junctions were sampled from a local junction file.

Usage

data(lung_junc_21_22)

Format
A dataframe with the junction ID, chromosome, start and ends, strand, number of samples, acceptor
and donor

Source

GTEx

ODER ODER: Optimising the Definition of Expressed Regions

Description

The aim of ODER is to identify previously unannotated expressed regions (ERs) using RNA-
sequencing data. For this purpose, ODER defines and optimises the definition of ERs, then con-
nected these ERs to genes using junction data. In this way, ODER improves gene annotation. Gene
annotation is a staple input of many bioinformatic pipelines and a more complete gene annotation
can enable more accurate interpretation of disease associated variants.

Returns the optimum definition of the expressed regions by finding the ideal MCC (Mean Cover-
age Cutoff) and MRG (Max Region Gap). The combination of MCC and MRG that returns the
expressed region with the smallest exon delta is the most ideal.

Usage

ODER(
bw_paths,
auc_raw,
auc_target,
chrs = "",
genome = "hg38",
mccs,
mrgs,
gtf = NULL,

16 ODER

ucsc_chr,

ignore.strand,
exons_no_overlap = NULL,
biotype = "Non-overlapping”,
bw_chr = "chr",

file_type = "non-stranded”,
bw_pos = NULL,

bw_neg = NULL,

auc_raw_pos = NULL,
auc_raw_neg = NULL

)
Arguments

bw_paths path(s) to bigwig file(s) with the RNA-seq data that you want the #’ coverage
of.

auc_raw vector containing AUCs(Area Under Coverage) matching the order of bigwig
path(s).

auc_target total AUC to normalise all samples to e.g. 40e6 * 100 would be the estimated
total auc for sample sequenced to 40 million reads of 100bp in length.

chrs chromosomes to obtain mean coverage for, default is "" giving every chromo-
some. Can take UCSC format(chrs = "chr1") or just the chromosome i.e. chrs =
c(1,X)

genome the UCSC genome you want to use, the default is hg38.

mccs mean coverage cut-offs to apply.

mrgs max region gaps to apply.

gtf Either a string containg the path to a .gtf file or a pre-imported gtf using rtracklayer: : import

ucsc_chr logical scalar, determining whether to add "chr" prefix to the seqnames of non-

overlapping exons and change "chrMT" -> "chrM". Note, if set to TRUE and
seqnames already have "chr", it will not add another.

ignore.strand logical value for input into findOverlaps, default is True.
exons_no_overlap
Optimum set of exons to help calculate deltas

biotype Filters the GTF file passed in to what would be considered the "Gold Stan-
dard" exons. The Default is "Non-overlapping” but the options are: "Non-
overlapping" (exons that don’t intersect each other), "Three Prime" (3° UTR),
"Five Prime" (5° UTR), "Internal" (Internal coding), "IncRNA" (Long Non-
Coding RNA), "ncRNA" (Non-Coding RNA) and "Pseudogene”

bw_chr specifies whether the bigwig files has the chromosomes labelled with a "chr"
preceding the chromosome i.e. "chrl" vs "1". Can be either "chr" or "nochr"
with "chr" being the default.

file_type Describes if the BigWigs are stranded or not. Either "stranded" or non-stranded

bw_pos positive strand bigwig file

plot_ers 17

bw_neg negative strand bigwig file

auc_raw_pos vector containing AUCs(Area Under Coverage) matching the order of the posi-
tive bigwig paths.

auc_raw_neg vector containing AUCs(Area Under Coverage) matching the order of the nega-

tive bigwig paths.

Value

list containing optimised ERs, optimal pair of MCC/MRGs and delta_df

Examples

rec_url <- recount::download_study(
project = "SRPQ12682",
type = "samples”,
download = FALSE

)

file_cache is an internal function to download a bigwig file from a link
if the file has been downloaded recently, it will be retrieved from a cache
bw_path <- file_cache(rec_url[1])
gtf_url <- pasted(
"http://ftp.ensembl.org/pub/release-103/gtf/",
"homo_sapiens/Homo_sapiens.GRCh38.103.chr.gtf.gz"

)
gtf_path <- file_cache(gtf_url)

As of rtracklayer 1.25.16, BigWig is not supported on Windows.

data(gtex_SRP012682_SRX222703_lung_auc_1, package = "ODER")

if (!'xfun::is_windows()) {

opt_ers <- ODER(

bw_paths = bw_path,
auc_raw = gtex_SRP@12682_SRX222703_lung_auc_1,
auc_target = 40e6 * 100, chrs = c("chr21", "chr22"),
genome = "hg38", mccs = c(5, 10), mrgs = c(10, 20),
gtf = gtf_path, ucsc_chr = TRUE, ignore.strand = TRUE,

exons_no_overlap = NULL, bw_chr = "chr”
)
opt_ers
3
plot_ers Plot Expressed regions
Description

Plots the median deltas and the number of ERs with a delta of 0 against the MCCs on two separate
graphs with a line for each of the various MRGs.

18 pseudogene

Usage

plot_ers(ers_delta, opt_mcc_mrg)

Arguments
ers_delta tibble/dataframe containing summarised delta values. One row per set of ERs.
opt_mcc_mrg vector containing the optimum mcc and mrg, in that order

Value

Plot of MCC against median delta and number of ERS with a delta of 0

Examples

data(gtex_SRP@12682_SRX222703_lung_erdelta_1, package = "ODER")

eg_plots <- plot_ers(
ers_delta = gtex_SRP@12682_SRX222703_lung_erdelta_1, opt_mcc_mrg = c(
"mcc_10",
"mrg_20"

)

eg_plots

pseudogene Different transcript biotypes that count as pseudogene

Description

These are the various transcript biotypes typically found in the transcript biotype column of a gtf
file.

Usage

data(pseudogene)

Format

A character vector with all of the different pseudogene categories get_exons function.

Source

See exon_biotypes.R in data-raw

refine_ERs 19

refine_ERs Refines the ERs start and end points

Description

Uses the junctions added by annotatERs to modify the starts and ends of the expressed regions.
When a junction intersects an expressed region depending on whether it is the start or end or both,
the regions corresponding starts and ends will be modified.

Usage

refine_ERs(annot_ers)

Arguments

annot_ers ERs that have been annotated (result of annotatER)

Details

As junctions mark intron boundaries, the expressed region will be changed to either being one less
or one more than the junction end.

Value

Genomic ranges with refined base pair starts and ends

Examples

create example set of ers to save runtime
ex_annot_ers <- GenomicRanges: :GRanges(
seqnames = S4Vectors::Rle(c("chr21"), c(3)),
ranges = IRanges: :IRanges(
start = c(5093576, 5097663, 5162182),
end = c(5093833, 5097762, 5162257)
),
grl = GenomicRanges: :GRangesList(
GenomicRanges: : GRangesList(
GenomicRanges: : GRanges(
segnames = S4Vectors::Rle(c("chr21"), c(1)),
ranges = IRanges::IRanges(
start = c(5093712),
end = c(5093744)
)
),
GenomicRanges: : GRanges(
seqnames = S4Vectors::Rle(c("chr21"), c(1)),
ranges = IRanges::IRanges(
start = c(5097642),
end = c(5097669)

20 tissue_options

)
),
GenomicRanges: : GRanges(
segnames = S4Vectors::Rle(c("chr21"”), c(1)),
ranges = IRanges::IRanges(
start = c(5162249),
end = c(5162287)

)
)!

annotation = c("intron”, "intron”, "intron")

refined_ers <- refine_ERs(ex_annot_ers)

refined_ers

tissue_options The different tissues that can be filtered on for gene expression

Description

These options were derived from the contents of the GTEx analysis gene median RPKM file.

Usage

data(tissue_options)

Format
A character vector with all of the tissue options available to filter on. These are to be used in
conjunction with the add_expressed_genes function.

Source

local data

Index

* datasets plot_ers, 17
gtex_SRP012682_SRX222703_lung_auc_1, pseudogene, 18
13
gtex_SRPO12682_SRX222703_lung_coverage_1,refine_ERs, 19
13
gtex_SRPQ12682_SRX222703_lung_erdelta_1, tissue_options, 3,20
14 TxDb-class, 4
gtex_SRPQ12682_SRX222703_lung_ers_1,
14

lung_junc_21_22, 15
pseudogene, 18
tissue_options, 20

add_expressed_genes, 2, 20
annotatERs, 3, 4, 19

BiocFileCache, 5

file_cache, 5
findOverlaps, 11, 16

get_chr_info, 6
get_count_matrix, 7
get_coverage, 8, 9
get_ers, 9,11
get_ers_delta (get_exons), 11
get_exons, 11,11, 18
get_opt_ers (get_exons), 11
get_strand_ers (get_ers), 9
gtex_SRPO12682_SRX222703_lung_auc_1,
13
gtex_SRPQ12682_SRX222703_lung_coverage_1,
13
gtex_SRPO12682_SRX222703_lung_erdelta_1,
14
gtex_SRPO12682_SRX222703_lung_ers_1,
14

lung_junc_21_22, 15

ODER, 15

21

	add_expressed_genes
	annotatERs
	file_cache
	get_chr_info
	get_count_matrix
	get_coverage
	get_ers
	get_exons
	gtex_SRP012682_SRX222703_lung_auc_1
	gtex_SRP012682_SRX222703_lung_coverage_1
	gtex_SRP012682_SRX222703_lung_erdelta_1
	gtex_SRP012682_SRX222703_lung_ers_1
	lung_junc_21_22
	ODER
	plot_ers
	pseudogene
	refine_ERs
	tissue_options
	Index

