
1bottomly@ohsu.edu

plethy vignette

Daniel Bottomly1

November 1, 2022

Contents

1 The plethy package . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Exporting the Buxco CSV file . . . . . . . . . . . . . . . . . . . . 1

3 Description of the Buxco file format . . . . . . . . . . . . . . . . 2

4 An initial example . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 The plethy package
The goal of the plethy package is to enable efficient import, storage and retrieval of plethys-
mography and other related data for statistical analysis in R. Currently, the plethy package
contains functionality to parse .csv files derived from Buxco whole body plethysmography in-
struments and import the resulting data into a SQLite database for convenient access. Once
created, the database contains an organized representation of the Buxco file that can be eas-
ily queried through pre-defined R code or through lower-level SQL access using the RSQLite
package. One of the features is the ability to add new data and/or annotations based on
existing data within the database without modifying the old data. An example of this is the
computation of the number of days past the first measurement as well as the assignment of
experimental labels such as whether the measurement is part of acclimation or experimental
data as is demonstrated below. Subsets of the data are retrieved in data.frame form for use
with statistical analysis software packages in R such as nlme.

2 Exporting the Buxco CSV file
The Buxco Whole Body Plethysmographer is run through the Finepointe software suite
(Buxco Research Systems, Wilmington, NC). Finepointe has explicit experimental set-up
tools that should be used to set up the structure of the Buxco experiment. We suggest
setting the number of measurments output to be every 2 seconds as opposed to every 150
events during this experimental set-up. Experimental treatments (e.g. viral infection) can
alter respiratory function and animal activity, which impacts the number of extracted dat-
apoints if events are used, as opposed to time. Following completion of the experiment,
data can be extracted as a .csv or .txt file from the tool menu in Finepointe. Depending on
whether the user included gas analysis or other measures during their study, the user might
need to trim some header lines from the extracted file before being useable in plethy .

http://bioconductor.org/packages/plethy
http://bioconductor.org/packages/plethy
http://bioconductor.org/packages/plethy
http://bioconductor.org/packages/plethy
https://CRAN.R-project.org/package=nlme
http://bioconductor.org/packages/plethy


plethy vignette

3 Description of the Buxco file format
The parsing code contained within this package is designed to handle Buxco files which con-
tain data of the form:

Time,Subject,Phase,Recording,f,TVb,MVb,Penh,PAU,Rpef,Comp,PIFb,PEFb,Ti,Te,EF50,Tr,Tbody,Tc,RH,Rinx

Which is further organized into subsections containing either experimental or acclimation data
based on the following pattern:

table.delim table name
header line
acclimation (ACC) for animal 1
burn.in.lines

acclimation (ACC) for animal 2
experimental readings (EXP) for animal 1
burn.in.lines

acclimation (ACC) for animal 3
experimental readings (EXP for animal 2

Where the indicated lines correspond to default parameters in the current implementation
of the parse.buxco function. Unless the file format changes, these should not have to be
modified.

4 An initial example
To begin we will parse the example file ’BuxcoR_sample.csv’ into an SQLite database. Note
that the chunk.size parameter controls the number of lines read in at a given time. Although
this can be useful for limiting the memory consumption of the program at the expense of
runtime, there is a limit to its benefit as the data for several entire file sections are currently
held in memory at a given time.

> file.name <- buxco.sample.data.path()

> chunk.size <- 500

> db.name <- file.path(tempdir(), "bux_test.db")

> parse.buxco(file.name=file.name, chunk.size=chunk.size, db.name=db.name, verbose=FALSE)

BuxcoDB object:

Database: /tmp/RtmpCTEw2t/bux_test.db

Annotation Table: Additional_labels

| PARSE_DATE: 2022-11-01 18:28:26

| DBSCHEMA: Buxco

| package: plethy

| Db type: BuxcoDB

| DBSCHEMAVERION: 1.0

>

The resulting database (bux_test.db) can be accessed conveniently through an S4 object
oriented interface where a BuxcoDb object can be create and accessed through several defined
methods. For instance the defined samples, variables and tables can be retrieved from the
database as follows:

2



plethy vignette

> bux.db <- makeBuxcoDB(db.name=db.name)

> samples(bux.db)

[1] "8034x13140_5" "8034x13140_11" "8034x13140_2" "8034x13140_3"

[5] "8034x13140_1" "8034x13140_9" "8034x13140_4" "8034x13140_10"

> variables(bux.db)

[1] "f" "TVb" "MVb" "Penh" "PAU" "Rpef" "Comp" "PIFb" "PEFb"

[10] "Ti" "Te" "EF50" "Tr" "Tbody" "Tc" "RH" "Rinx"

> tables(bux.db)

[1] "WBPth"

>

Also, we can retrieve data for analysis. This is done most conveniently through the retrieve

Data method. This method without any arguments will retrieve all the data and return it in a
data.frame. This can take a lot of memory and will be a little slower than specifying the data
subsets the user is interested in. By passing in character or numeric variables as arguments
to the method as shown below then smaller subsets of the data can be retrieved quickly and
then be used for downstream statistical or graphical analysis.

> data.1 <- retrieveData(bux.db, samples="8034x13140_1", variables="Penh")

> head(data.1)

Sample_Name P_Time Break_sec_start Variable_Name Bux_table_Name

1 8034x13140_1 2012-09-28 10:07:17 0 Penh WBPth

2 8034x13140_1 2012-09-28 10:07:19 0 Penh WBPth

3 8034x13140_1 2012-09-28 10:07:21 2 Penh WBPth

4 8034x13140_1 2012-09-28 10:07:23 4 Penh WBPth

5 8034x13140_1 2012-09-28 10:07:25 6 Penh WBPth

6 8034x13140_1 2012-09-28 10:07:27 8 Penh WBPth

Rec_Exp_date Break_number Value

1 D-3 5 0.7851210

2 D-3 6 0.7239651

3 D-3 6 0.8044858

4 D-3 6 0.5304968

5 D-3 6 0.4664128

6 D-3 6 0.7347313

>

values can also be specified as vectors

> data.2 <- retrieveData(bux.db, samples=c("8034x13140_1", "8034x13140_10"), variables=c("Penh", "f"))

> head(data.2)

Sample_Name P_Time Break_sec_start Variable_Name Bux_table_Name

1 8034x13140_1 2012-09-28 10:07:17 0 f WBPth

2 8034x13140_1 2012-09-28 10:07:17 0 Penh WBPth

3 8034x13140_1 2012-09-28 10:07:19 0 f WBPth

4 8034x13140_1 2012-09-28 10:07:19 0 Penh WBPth

5 8034x13140_1 2012-09-28 10:07:21 2 f WBPth

6 8034x13140_1 2012-09-28 10:07:21 2 Penh WBPth

3



plethy vignette

Rec_Exp_date Break_number Value

1 D-3 5 598.2654419

2 D-3 5 0.7851210

3 D-3 6 582.1941528

4 D-3 6 0.7239651

5 D-3 6 606.6564941

6 D-3 6 0.8044858

> table(data.1$Sample_Name, data.1$Variable_Name)

Penh

8034x13140_1 151

>

Note that at this point the data in the database consists of values directly parsed from the
raw file. Adding additional labels or computations can be done through the addAnnotation

method by specifying the BuxcoDB object and a function returning the SQL query. There are
currently two functions that are defined, though users can define their own as well with some
familiarity of the database structure. The first, day.infer.query computes the number of
days past the first measurement for a given animal. The second break.type.query labels the
measurements as ’ACC’ for acclimation, ’EXP’ for experimental, ’UNK’ for unknown (where
there is only one set of measurements for a given animal and given time point) or ’ERR’
which likely represents an error in the parsing or query. Examples are shown below.

> addAnnotation(bux.db, query=day.infer.query, index=FALSE)

> addAnnotation(bux.db, query=break.type.query, index=TRUE)

>

The index argument specifies whether an index should be added to the columns. There should
not really be any harm in adding them at each stage though as the method tries to create a
set of covering indices to maximize retrieval speed, I would recommend waiting until the last
call to addAnnotation. Again we can extract the data as before using retrieveData though
this time in order to specify constraints on any column defined through addAnnotation we
need to type in the column name and the constraint vector at the end.

For this it is useful to figure out the names and different values of the annotation columns.

> annoCols(bux.db)

[1] "Days" "Break_type_label"

> annoLevels(bux.db)

$Days

[1] 0

$Break_type_label

[1] "ACC" "EXP"

>

First we can get data as before and examine its structure.

> data.3 <- retrieveData(bux.db, samples="8034x13140_2", variables="Penh")

> with(data.3, table(Days, Break_type_label))

4



plethy vignette

Break_type_label

Days ACC EXP

0 1 150

>

Similar to above but placing constraints on the annotation columns.

> data.4 <- retrieveData(bux.db, samples="8034x13140_2", variables="Penh", Days = 0)

> with(data.4, table(Days, Break_type_label))

Break_type_label

Days ACC EXP

0 1 150

> data.5 <- retrieveData(bux.db, samples="8034x13140_2", variables="Penh", Days = 0,

+ Break_type_label = 'EXP')

> with(data.5, table(Days, Break_type_label))

Break_type_label

Days EXP

0 150

>

Putting it all together we can easily perform descriptive analyses comparing the different
samples using the enhanced pause (Penh) phenotype.

> exp.penh <- retrieveData(bux.db, variables="Penh", Break_type_label = 'EXP')

> head(exp.penh)

Sample_Name P_Time Break_sec_start Variable_Name Bux_table_Name

1 8034x13140_5 2012-09-28 10:07:19 0 Penh WBPth

2 8034x13140_5 2012-09-28 10:07:21 2 Penh WBPth

3 8034x13140_5 2012-09-28 10:07:23 4 Penh WBPth

4 8034x13140_5 2012-09-28 10:07:25 6 Penh WBPth

5 8034x13140_5 2012-09-28 10:07:27 8 Penh WBPth

6 8034x13140_5 2012-09-28 10:07:29 10 Penh WBPth

Rec_Exp_date Break_number Days Break_type_label Value

1 D-3 2 0 EXP 0.9725345

2 D-3 2 0 EXP 1.0310636

3 D-3 2 0 EXP 0.9750971

4 D-3 2 0 EXP 0.6979190

5 D-3 2 0 EXP 0.6075242

6 D-3 2 0 EXP 0.8080077

> boxplot(Value~Sample_Name, data=exp.penh)

>

5



plethy vignette

8034x13140_1 8034x13140_2 8034x13140_5

0.
5

1.
0

1.
5

2.
0

2.
5

Sample_Name

V
al

ue

> plot(Value~Break_sec_start, data=exp.penh, subset=Sample_Name=="8034x13140_5", type="l",

+ xlab="Seconds past start")

>

6



plethy vignette

0 50 100 150 200 250 300

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Seconds past start

V
al

ue

7


	1 The plethy package
	2 Exporting the Buxco CSV file
	3 Description of the Buxco file format
	4 An initial example

