
Test association between phenotype and gene

expression

Evarist Planet

Bioinformatics & Biostatistics Unit

IRB Barcelona

Contents

1 Introduction 1

2 Individual gene(s) association with phenotype(s) 2
2.1 Creating an epheno . 2
2.2 Useful methods for the epheno object 4
2.3 Export an epheno . 7

3 Gene set(s) association with phenotype(s) 7
3.1 Plots that use epheno as input 8
3.2 GSEA (Gene Set Enrichment Analysis) 10

1 Introduction

Imagine a situation where we have gene expression and phenotype variables
and we want to test the association of each gene with phenotype. We would
probably be interested in testing association of groups of genes (or gene sets)
with phenotype. This library provides the tools to do both things in a way
that is e�cient, structured, fast and scalable. We also provide tools to do
GSEA (Gene set enrichment analysis) of all phenotype variables at once.

The functions and methods presented on this vignette provide tools to
easily test association between gene expression levels of individual genes or
gene sets of genes and the selected phenotypes of a given gene expression
dataset. These can be particularly useful for datasets arising from RNAseq
or microarray gene expression studies.

We will load the ExpressionSet of a cohort (GSE2034) we downloaded
from GEO.

1

http://www.ncbi.nlm.nih.gov/geo/

> options(width=100)

> library(phenoTest)

> data(eset)

> eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 1000 features, 100 samples

element names: exprs

protocolData: none

phenoData

sampleNames: GSM36793 GSM36796 ... GSM36924 (100 total)

varLabels: PID GEOaccession ... BrainRelapse (7 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: hgu133a

For illustration purposes we selected the �rst 1000 genes and the �rst
100 samples, created a continuous variable (named Tumor.size) and added a
new category to the categorical variable lymph.node.status to illustrate the
functionality of the package.

> Tumor.size <- rnorm(ncol(eset),50,2)

> pData(eset) <- cbind(pData(eset),Tumor.size)

> pData(eset)[1:20,'lymph.node.status'] <- 'positive'

2 Individual gene(s) association with phenotype(s)

2.1 Creating an epheno

The epheno object will contain the univariate association between a list of
phenotype variables and the gene expression from the given ExpressionSet.
We will use the ExpressionPhenoTest function to create the epheno ob-
ject. We will have to tell this function which phenotype variables we want
to test and the type of these variables (if they are ordinal, continuous, cat-
egorical or survival variables). For this purpose we will create a variable
called (for instance) vars2test. This variable has to be of class list with
components continuous, categorical, ordinal and survival indicating which
phenotype variables should be tested. continuous, categorical and ordinal

must be character vectors, survival a matrix with columns named time and
event. The names must match names in names(pData(eset)) (being eset

the ExpressionSet of the cohort we are interested in).

> head(pData(eset))

PID GEOaccession lymph.node.status Months2Relapse Relapse ER.Status BrainRelapse

GSM36793 3 GSM36793 positive 101 0 0 0

GSM36796 5 GSM36796 positive 118 0 1 0

GSM36797 6 GSM36797 positive 9 1 0 0

2

GSM36798 7 GSM36798 positive 106 0 0 0

GSM36800 8 GSM36800 positive 37 1 0 0

GSM36801 9 GSM36801 positive 125 0 1 0

Tumor.size

GSM36793 49.35029

GSM36796 52.66878

GSM36797 48.13452

GSM36798 50.79289

GSM36800 52.95834

GSM36801 55.07542

> survival <- matrix(c("Relapse","Months2Relapse"),ncol=2,byrow=TRUE)

> colnames(survival) <- c('event','time')

> vars2test <- list(survival=survival,categorical='lymph.node.status',continuous='Tumor.size')

> vars2test

$survival

event time

[1,] "Relapse" "Months2Relapse"

$categorical

[1] "lymph.node.status"

$continuous

[1] "Tumor.size"

Now we have everything we need to create the epheno object:

> epheno <- ExpressionPhenoTest(eset,vars2test,p.adjust.method='none')

Performing analysis for continuous variable Tumor.size

Performing analysis for categorical variable lymph.node.status

Performing analysis for survival variable Relapse

> epheno

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)

phenoNames: Tumor.size, lymph.node.status, Relapse. (3) phenotype(s)

P-value adjustment method: none

Annotation: hgu133a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods

P values can also be adjusted afterwards:

> p.adjust.method(epheno)

[1] "none"

> epheno <- pAdjust(epheno,method='BH')

> p.adjust.method(epheno)

[1] "BH"

3

The epheno object extends the ExpressionSet object and therefore meth-
ods that are available for ExpressionSets are also available for ephenos.

The e�ect of both continuous, categorical and ordinal phenotype variables
on gene expression levels are tested via lmFit from package limma (Smyth
[2005]). For ordinal variables a single coe�cient is used to test its e�ect on
gene expression (trend test), which is then used to obtain a P-value. Gene
expression e�ects on survival are tested via Cox proportional hazards model
(Cox [1972]), as implemented in function coxph from package survival.

If we want we can compute posterior probabilities instead of pvalues we
can set the argument approach='bayesian'. The default value is 'frequentist'.

ExpressionPhenoTest implements parallel computing via the function
mclapply from the package multicore. Currently multicore only operates
on Unix systems. If you are a windows user you should set mc.cores=1 (the
default).

2.2 Useful methods for the epheno object

Some of the methods for the epheno objects are shown here.
The object can be subseted by phenotype names:

> phenoNames(epheno)

[1] "Tumor.size" "lymph.node.status" "Relapse"

> epheno[,'Tumor.size']

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)

phenoNames: Tumor.size. (1) phenotype(s)

P-value adjustment method: BH

Annotation: hgu133a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods

> epheno[,2]

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)

phenoNames: Tumor.size. (1) phenotype(s)

P-value adjustment method: BH

Annotation: hgu133a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods

or by class (class can be ordinal, continuous, categorical or survival):

> phenoClass(epheno)

4

Tumor.size lymph.node.status Relapse

"continuous" "categorical" "survival"

> epheno[,phenoClass(epheno)=='survival']

Object of class 'epheno'

featureNames: 1007_s_at, 1053_at, 117_at ... (1000) feature(s)

phenoNames: Relapse. (1) phenotype(s)

P-value adjustment method: BH

Annotation: hgu133a

Approach: frequentist

Type "showMethods(classes='epheno')" for a list of ALL methods

epheno objects contain information summarizing the association between
genes and phenotypes. getMeans can be used to obtain the average expres-
sion for each group in categorical and ordinal variables, as well as for cate-
gorized version of the continuous variables.

> head(getMeans(epheno))

Tumor.size.[45.9,49.6) Tumor.size.[49.6,51.2) Tumor.size.[51.2,56.2]

1007_s_at 11.789552 11.819409 11.783700

1053_at 7.655586 7.918583 7.649990

117_at 7.863181 7.898399 7.935997

121_at 10.188289 10.202758 10.310558

1255_g_at 5.568219 6.052759 6.089963

1294_at 9.492069 9.486301 9.356654

lymph.node.status.negative lymph.node.status.positive

1007_s_at 11.779693 11.868594

1053_at 7.700153 7.902028

117_at 7.882203 7.965347

121_at 10.217469 10.297187

1255_g_at 5.856978 6.073553

1294_at 9.444534 9.449257

Here we see that tumor size has been categorized into 3 groups. The num-
ber of categories can be changed with the argument continuousCategories
in the call to ExpressionPhenoTest.

epheno objects also contain fold changes and hazard ratios (for survival
variables). These can be accessed with getSummaryDif, getFc and getHr.

> head(getSummaryDif(epheno))

Tumor.size.fc.[49.6,51.2) Tumor.size.fc.[51.2,56.2] lymph.node.status.positive.fc

1007_s_at 1.020911 -1.004064 1.063559

1053_at 1.199969 -1.003886 1.150192

117_at 1.024711 1.051768 1.059324

121_at 1.010080 1.088445 1.056812

1255_g_at 1.399140 1.435690 1.161972

1294_at -1.004006 -1.098408 1.003280

Relapse.HR

1007_s_at -1.299526

1053_at -1.138198

117_at 1.175962

121_at 1.100616

1255_g_at 1.093210

1294_at 1.006512

5

> head(getFc(epheno))

Tumor.size.fc.[49.6,51.2) Tumor.size.fc.[51.2,56.2] lymph.node.status.positive.fc

1007_s_at 1.020911 -1.004064 1.063559

1053_at 1.199969 -1.003886 1.150192

117_at 1.024711 1.051768 1.059324

121_at 1.010080 1.088445 1.056812

1255_g_at 1.399140 1.435690 1.161972

1294_at -1.004006 -1.098408 1.003280

> head(getHr(epheno))

Relapse.HR

1007_s_at -1.299526

1053_at -1.138198

117_at 1.175962

121_at 1.100616

1255_g_at 1.093210

1294_at 1.006512

ExpressionPhenoTest also computes P-values. eBayes from limma pack-
age is used for continuous, categorical and ordinal phenotypes. A Cox propor-
tional hazards likelihood-ratio test is used for survival phenotypes. P-values
can be accessed with getSignif. Notice that a single P-value is reported for
each phenotype variable. For categorical variables these corresponds to the
overall null hypothesis that there are no di�erences between groups.

> head(getSignif(epheno))

Tumor.size lymph.node.status.positive.pval Relapse

1007_s_at 0.9956441 0.9022639 0.9801106

1053_at 0.9956441 0.7988976 0.9801106

117_at 0.9956441 0.9225719 0.9801106

121_at 0.9911626 0.8689036 0.9803989

1255_g_at 0.9911626 0.8254344 0.9803989

1294_at 0.9956441 0.9965107 0.9907749

We can also ask for the variables we sent to the ExpressionPhenoTest

function:

> getVars2test(epheno)

$continuous

[1] "Tumor.size"

$categorical

[1] "lymph.node.status"

$survival

event time

[1,] "Relapse" "Months2Relapse"

6

2.3 Export an epheno

Functions export2csv and epheno2html can be used to export to a comma
separated value (csv) or an html �le. The html �le will have useful links to
online databases that will provide information about each known gene. For
more information about how to use these functions and examples read their
help manuals.

3 Gene set(s) association with phenotype(s)

Gene sets can be stored in a list object. Each element of the list will contain
one gene set. The names of the list will be the names of the gene sets. Here
we select genes at random to build our gene sets:

> set.seed(777)

> sign1 <- sample(featureNames(eset))[1:20]

> sign2 <- sample(featureNames(eset))[1:50]

> mySignature <- list(sign1,sign2)

> names(mySignature) <- c('My first signature','Another signature')

> mySignature

$`My first signature`

[1] "200003_s_at" "200985_s_at" "200069_at" "201172_x_at" "200982_s_at" "201174_s_at"

[7] "200062_s_at" "1487_at" "201250_s_at" "201444_s_at" "201393_s_at" "200737_at"

[13] "200616_s_at" "200047_s_at" "200924_s_at" "201138_s_at" "201263_at" "201006_at"

[19] "201037_at" "201463_s_at"

$`Another signature`

[1] "200745_s_at" "200970_s_at" "200066_at" "201417_at" "200733_s_at" "200844_s_at"

[7] "201224_s_at" "201100_s_at" "201402_at" "201005_at" "201445_at" "201348_at"

[13] "200617_at" "200030_s_at" "200661_at" "200688_at" "201437_s_at" "200791_s_at"

[19] "201040_at" "200984_s_at" "200829_x_at" "200653_s_at" "201123_s_at" "200089_s_at"

[25] "201102_s_at" "201165_s_at" "200752_s_at" "200834_s_at" "200036_s_at" "201414_s_at"

[31] "201332_s_at" "201313_at" "200082_s_at" "201006_at" "201109_s_at" "201076_at"

[37] "200022_at" "200762_at" "201396_s_at" "200995_at" "200959_at" "200898_s_at"

[43] "200647_x_at" "201471_s_at" "201223_s_at" "1598_g_at" "201061_s_at" "201130_s_at"

[49] "201344_at" "200672_x_at"

Gene sets can also be stored in gene set collection objects. From here
on all functions have methods for gene sets stored as lists, GeneSets or
GeneSetCollections. You can use the one you feel more confortable with.
We will work with GeneSetCollection:

> library(GSEABase)

> myGeneSetA <- GeneSet(geneIds=sign1, setName='My first signature')

> myGeneSetB <- GeneSet(geneIds=sign2, setName='Another signature')

> mySignature <- GeneSetCollection(myGeneSetA,myGeneSetB)

> mySignature

GeneSetCollection

names: My first signature, Another signature (2 total)

unique identifiers: 200003_s_at, 200985_s_at, ..., 200672_x_at (69 total)

types in collection:

geneIdType: NullIdentifier (1 total)

collectionType: NullCollection (1 total)

7

My first signature Another signature

Down−regulated
Up−regulated

%
 d

iff
er

en
tia

lly
 e

xp
re

ss
ed

 g
en

es

0
10

20
30

40

P=1

P=1

Figure 1: barplotSignifSignatures: Number of diferentially expressed
genes in each gene set that are statistically signi�cant. P-values test for
di�erences in each signature between the number of up and down regulated
genes.

3.1 Plots that use epheno as input

barplotSignifSignatures will plot the percentage of up regulated and
down regulated genes that are statistically signi�cant in each signature. In
our random selection of genes we did not �nd any statistically signi�cant
genes. Therefore, and just to show the plot we set the alpha value 0.99. The
plot can be seen in Figure 1.

> barplotSignifSignatures(epheno[,'lymph.node.status'],mySignature,alpha=0.99)

By default barplotSignifSignatures performs a binomial test (binom.test
from package stats) for each signature to test if the proportions of up regu-
lated and down regulated genes are di�erent. For example, Figure 1 indicates
that in the �rst signature the proportion of up regulated genes is higher than
the proportion of down regulated genes. The second signature shows no
signi�cant statistical di�erences.

Sometimes we want to compare the proportions of up and down regulated
genes in our signature with the proportions of up and down regulated of all
genes in the genome. In this case we may provide a reference signature via the

8

My first signature Another signature

Tumor.size

lo
g2

 F
ol

d
C

ha
ng

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: barplotSignatures: Averge fold change or hazard ratio.

argument referenceSignature. When providing the referenceSignature
argument a chi-square test comparing the proportion of up and down regu-
lated genes in each signature with the proportion in the reference set will be
computed.

When a reference gene set is provided and parameter testUpDown is TRUE
(by default it is FALSE) the proportion of up regulated genes is compared with
those of the reference gene set. The same is done for down regulated genes.

barplotSignatures plots the average log2 fold change or hazard ratio of
each phenotype for each gene set. Figure 2 shows an example of it.

> barplotSignatures(epheno[,'Tumor.size'],mySignature, ylim=c(0,1))

We can also cluster our samples in two clusters based on the expression
levels of one gene set of genes and then test the e�ect of cluster on phe-
notypes. For ordinal and continuous variables a Kruskal-Wallis Rank Sum
test is used, for categorical variables a chi-square test is used and for sur-
vival variables a Cox proportional hazards likelihood-ratio test is used. The
heatmapPhenoTest function can be used to this end. Its results can be seen
in Figure 3 and 4.

> pvals <- heatmapPhenoTest(eset,mySignature[[1]],vars2test=vars2test[1],heat.kaplan='heat')

> pvals

9

201006_at

200737_at

200924_s_at

200069_at

200047_s_at

200616_s_at

201138_s_at

201172_x_at

1487_at

200982_s_at

201263_at

201250_s_at

201444_s_at

201463_s_at

201393_s_at

200003_s_at

200062_s_at

201174_s_at

200985_s_at

201037_at

Relapse (P=0.1247)

Figure 3: Heatmap produced with heatmapPhenoTest function. All variables
in vars2test that are of class logical will be plotted under the heatmap.

Months2Relapse

"(P=0.1247)"

> pvals <- heatmapPhenoTest(eset,mySignature[[1]],vars2test=vars2test[1],heat.kaplan='kaplan')

> pvals

Months2Relapse

"(P=0.1247)"

3.2 GSEA (Gene Set Enrichment Analysis)

A popular way to test association between gene sets' gene expression and
phenotype is GSEA (Subramanian [2005]). The main idea is to test the
association between the gene set as a whole and a phenotype.

Although GSEA and several extensions are already available in other
Biconductor packages, here we implement a slightly di�erent extension. Most
GSEA-like approaches assess statistical signi�cance by permuting the values
of the phenotype of interest. From a statisticall point of view this tests the
null hypothesis that no genes are associated with phenotype. However in

10

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l (
R

el
ap

se
)

HR= 1.642
P= 0.1247

Figure 4: Kaplan-Meier produced with heatmapPhenoTest function.

many applications one is actually interested in testing if the proportion of
genes associated with phenotype in the gene set is greater than that outside
of the gene set. As a simple example, imagine a cancer study where 25%
of the genes are di�erentially expressed. In this setup a randomly chosen
gene set will have around 25% of di�erentially expressed genes, and classical
GSEA-like approaches will tend to �ag the gene set as statistically signi�cant.
In contrast, our implementation will tend to select only gene sets with more
than 25% of di�erentially expressed genes.

We will use the gsea method to compute enrichment scores (see Subra-
manian [2005] for details about the enrichment scores) and simulated enrich-

ment scores (by permuting the selection of genes). The simulated enrichment

scores are used to compute P-values and FDR. We can summarize the re-
sults obtained using the summary method. The following chunk of code is an
illustrative example of it:

> my.gsea <- gsea(x=epheno,gsets=mySignature,B=1000,p.adjust='BH')

2 gene set(s) were provided and 1000 permutations were assigned,

therefore 500 permutations will be computed on each gene set.

2 gene set(s) were provided and 1000 permutations were assigned,

therefore 500 permutations will be computed on each gene set.

2 gene set(s) were provided and 1000 permutations were assigned,

therefore 500 permutations will be computed on each gene set.

11

2 gene set(s) were provided and 1000 permutations were assigned,

therefore 500 permutations will be computed on each gene set.

> my.gsea

Object of class 'gseaData'

You can use the summary method to produce result summaries.

You can use the getEs, getNes, getEsSim and getFcHr methods to easily acces its data.

Gam approximation was not used.

The tested variables are:

Tumor.size.fc.[49.6,51.2), Tumor.size.fc.[51.2,56.2], lymph.node.status.positive.fc, Relapse.HR

The tested gene sets (for each variable) are:

My first signature, Another signature

> summary.gseaData(my.gsea)

variable geneSet n es nes pval.es pval.nes

1 Tumor.size.fc.[49.6,51.2) My first signature 20 -0.4458816 -1.3170150 0.2612448 0.2359414

2 Tumor.size.fc.[49.6,51.2) Another signature 50 0.2766422 1.0109861 0.4578030 0.4563606

3 Tumor.size.fc.[51.2,56.2] My first signature 20 -0.3587048 -0.9980889 0.8480060 0.8395884

4 Tumor.size.fc.[51.2,56.2] Another signature 50 -0.2215990 -0.7512410 0.8480060 0.8395884

5 lymph.node.status.positive.fc My first signature 20 -0.4138455 -1.1779948 0.2725070 0.2701077

6 lymph.node.status.positive.fc Another signature 50 0.3190696 1.1344498 0.2725070 0.2701077

7 Relapse.HR My first signature 20 -0.3636399 -1.1201729 0.4508479 0.4530801

8 Relapse.HR Another signature 50 -0.2645231 -1.0121094 0.4508479 0.4530801

fdr

1 0.1179707

2 0.4563606

3 0.9419920

4 0.8395884

5 0.2390689

6 0.2701077

7 0.6147916

8 0.4530801

We receive one message for each phenotype we are testing.
We can produce plots as follows:

> plot.gseaData(my.gsea)

This will produce two plots (one for enrichment score and another for
normalised enrichment score) for every phenotype and gene set (in our case
12 plots). Following code shows an example on plotting only enrichment

score for variable Relapse on the �rst gene set of genes. Plot can be seen in
Figure 5.

> my.gsea <- gsea(x=epheno[,'Relapse'],gsets=mySignature[1],B=100,p.adjust='BH')

1 gene set(s) were provided and 100 permutations were assigned,

therefore 100 permutations will be computed on each gene set.

> summary.gseaData(my.gsea)

variable geneSet n es nes pval.es pval.nes fdr

1 Relapse.HR My first signature 20 -0.3636399 -1.155416 0.2977998 0.297801 0.297801

12

ES plot / variable:Relapse.HR / signature:My first signature (pval=0.298) *

E
S

−
0.

2
0.

0
0.

2

R
el

ap
se

.H
R

 (
lo

g)

−
0.

4
0.

0
0.

4

(*) pvalue adjustment method: BH
Gene list rank

1 200 400 600 800 1000

Figure 5: GSEA plot.

13

> plot.gseaData(my.gsea,es.nes='es',selGsets='My first signature')

gsea can be used not only with epheno objects but also with objects of
class numeric or matrix. For more information read the gsea function help.

Following similar ideas to Virtaneva [2001] we also implemented aWilcoxon
test. This can be used instead of the permutation test which can be slow if
we use a lot of permutations and we can not use the multicore package. The
plot we will obtain will also be di�erent. Instead of plotting the enrichment

scores we will plot the density function and the mean log2 fold change or
hazard ratio of the genes that belong to our gene set. This will allow us to
compare how similar/di�erent from 0 the mean of our gene set is. The plot
using Wilcoxon test can be seen in Figure 6.

> my.gsea <- gsea(x=epheno[,'Relapse'],gsets=mySignature,B=100,test='wilcox',p.adjust='BH')

2 gene set(s) were provided and 100 permutations were assigned,

therefore 50 permutations will be computed on each gene set.

> summary.gseaData(my.gsea)

variable geneSet n es pval

1 Relapse.HR My first signature 20 -0.03030989 0.6235886

2 Relapse.HR Another signature 50 -0.01083301 0.9691988

> plot.gseaData(my.gsea,selGsets='My first signature')

Notice that using a Wilcoxon test is conceptually very similar to the
average gene set fold change presented in �gure 2.

A current limitation of gseaSignatures is that it does not consider the
existance of dependence between genes in the gene set. This will be addressed
in future versions. Nevertheless we believe gseaSignatures is usefull in that
it targets the correct null hypothesis that gene set is as enriched as a randomly
selected gene set, opposed to testing that there are no enriched genes in the
set as is done in GSEA.

References

D.R. Cox. Regression models and life tables. Journal of the Royal Statistical
Society Series B, 34:187�220, 1972.

G.K. Smyth. Limma: linear models for microarray data. In R. Gentleman,
V. Carey, S. Dudoit, R. Irizarry, and W. Huber, editors, Bioinformatics

and Computational Biology Solutions using R and Bioconductor, pages
397�420. Springer, New York, 2005.

14

0.6 0.4 0.2 0.0 −0.2 −0.4

0.
0

0.
5

1.
0

1.
5

2.
0

ES plot / variable:Relapse.HR / signature:My first signature (pval=0.624) *

N = 20 Bandwidth = 0.08532

D
en

si
ty

R
el

ap
se

.H
R

 (
lo

g)

−
0.

4
0.

0
0.

4

(*) pvalue adjustment method: BH
Gene list rank

1 200 400 600 800 1000

Figure 6: GSEA plot using Wilcoxon test.

15

Aravind Subramanian. Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression pro�les. PNAS, 102,
2005.

K. Virtaneva. Expression pro�ling reveals fundamental biological di�erences
in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics.
Proc Natl Acad Sci U S A, 98(98):1124�1129, January 2001. doi: http://
dx.doi.org/10.1073/pnas.98.3.1124. URL http://dx.doi.org/10.1073/

pnas.98.3.1124.

16

http://dx.doi.org/10.1073/pnas.98.3.1124
http://dx.doi.org/10.1073/pnas.98.3.1124

	Introduction
	Individual gene(s) association with phenotype(s)
	Creating an epheno
	Useful methods for the epheno object
	Export an epheno

	Gene set(s) association with phenotype(s)
	Plots that use epheno as input
	GSEA (Gene Set Enrichment Analysis)

