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1 Introduction

maSigPro is a R package that initially was developed for the analysis of single and multiseries
time course microarray experiments (Conesa et al., 2006). maSigPro has been adapted to
deal also with Next Generation-Sequencing (NGS) series of data in a proper way (Nueda
et al., 2014). The usage of this opcion is explained in 6 section.
maSigPro also includes several tools for the analysis of alternative isoform expression in time
course transcriptomics experiments. In 7 section the usage of this opcion is explained.
maSigPro follows a two steps regression strategy to find genes with significant temporal
expression changes and significant differences between experimental groups. The method de-
fines a general regression model for the data where the experimental groups are identified by
dummy variables. The procedure first adjusts this global model by the least-squared technique
to identify differentially expressed genes and selects significant genes applying false discov-
ery rate control procedures. Secondly, stepwise regression is applied as a variable selection
strategy to study differences between experimental groups and to find statistically significant
different profiles. The coefficients obtained in this second regression model will be useful to
cluster together significant genes with similar expression patterns and to visualize the results.
This document is a example-based guide for the use of maSigPro. We recommend to open
a R sesion and go through this tutorial running the code given at the different sections. The
guide does not provide a detailed description of the functions of the package or demonstrates
the statistical basis of the methodology. The later is described in the work by (Conesa et al.,
2006) and (Nueda et al., 2014).

2 Getting started

The maSigPro package can be obtained from the Bioconductor repository or downloaded
from http://www.ua.es/personal/mj.nueda and http://bioinfo.cipf.es/downloads. Load
maSigPro by typing at the R prompt:

> library(maSigPro) # load maSigPro library

The on-line help of maSigPro can be started by typing at the R prompt:

>help(package="maSigPro") #for package help

>?p.vector #for function help

The analysis approach implemented in maSigPro is executed in 5 major steps (Figure 1)
which are run by the package core functions make.design.matrix(), p.vector(), T.fit(),
get.siggenes() and see.genes(). Additionally, the package provides the wrapping function
maSigPro() which executes the entire analysis in one go.
In the following section we will explain the usage of each of these funcions using as example a
data set from a multiple series time course experiment. At the end of this document we will
also explain how to apply maSigPro to other experimental designs.

3 Multiple Series Time Course Experiment

For this section we will use a public data set from a plant abiotic stress study performed at
the TIGR Institute by (Rensink et al., 2005). In this study, potato plants were subjected
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Figure 1: maSigPro pipeline. Major functions.

to three different types of abiotic stresses and gene expression was monitored at three time
points after the start of the treatments. RNA was also collected from non-stressed plants at
the same time points and all samples where hybridased against a common control on a 11K
cDNA potato chip. There are three biological replicates for each experimental condition. For
speed in this example we will use a random 1000 genes data subset of this study. This data
set is part of the data supplied by the maSigPro package. The original data can be found
at http://www.tigr.org/tdb/potato/index.shtml.

Before proceeding with this tutorial we will define some of the terms that will be used along
this document. We denote experimental groups as the experimental factor for which temporal
profiles are defined, like ”Treatment A”, ”Tissue1”, etc; conditions are each experimental group
vs. time combination like ”Treatment A at Time 0” conditions can have or not replicates.
Variables are the regression variables defined by the maSigPro approach for the experi-
ment regression model. maSigPro defines dummy variables to model differences between
experimental groups. Dummy variables, Time and their interactions are the variables of the
regression model. Load the data in your workspace:

> data(data.abiotic)

> data(edesign.abiotic)

The edesign.abiotic object describes the experimental design of this experiment in maSig-
Pro format.

> edesign.abiotic

Time Replicate Control Cold Heat Salt

Control_3H_1 3 1 1 0 0 0

Control_3H_2 3 1 1 0 0 0
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Control_3H_3 3 1 1 0 0 0

Control_9H_1 9 2 1 0 0 0

Control_9H_2 9 2 1 0 0 0

Control_9H_3 9 2 1 0 0 0

Control_27H_1 27 3 1 0 0 0

Control_27H_2 27 3 1 0 0 0

Control_27H_3 27 3 1 0 0 0

Cold_3H_1 3 4 0 1 0 0

Cold_3H_2 3 4 0 1 0 0

Cold_3H_3 3 4 0 1 0 0

Cold_9H_1 9 5 0 1 0 0

Cold_9H_2 9 5 0 1 0 0

Cold_9H_3 9 5 0 1 0 0

Cold_27H_1 27 6 0 1 0 0

Cold_27H_2 27 6 0 1 0 0

Cold_27H_3 27 6 0 1 0 0

Heat_3H_1 3 7 0 0 1 0

Heat_3H_2 3 7 0 0 1 0

Heat_3H_3 3 7 0 0 1 0

Heat_9H_1 9 8 0 0 1 0

Heat_9H_2 9 8 0 0 1 0

Heat_9H_3 9 8 0 0 1 0

Heat_27H_1 27 9 0 0 1 0

Heat_27H_2 27 9 0 0 1 0

Heat_27H_3 27 9 0 0 1 0

Salt_3H_1 3 10 0 0 0 1

Salt_3H_2 3 10 0 0 0 1

Salt_3H_3 3 10 0 0 0 1

Salt_9H_1 9 11 0 0 0 1

Salt_9H_2 9 11 0 0 0 1

Salt_9H_3 9 11 0 0 0 1

Salt_27H_1 27 12 0 0 0 1

Salt_27H_2 27 12 0 0 0 1

Salt_27H_3 27 12 0 0 0 1

Note that arrays are given in rows and experiment descriptors are provided in columns. The
first column shows the value that variable Time takes in each array. Replicates column
is an index column that indicates the replicated arrays: all arrays belonging to the same
experimental condition must be given the same number. The remaining columns are binary
columns that give the assignment of arrays to experimental groups. There are as many binary
columns as experimental groups and arrays take the value 1 or 0 whether they belong or not
to that experimental group.
The data.abiotic object is a matrix with normalized gene expression data. Genes must
be in rows and arrays in columns. maSigPro uses row and colunm names of the data and
edesign objects throughout the package. Array names are the labels of the rows of the edesign
object and columns of the data object that must be in the same order. GeneIDs are the labels
of the rows in the data object. And experiment descriptors are put in the column names of
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the edesign object.

> colnames(data.abiotic)

> rownames(edesign.abiotic)

> colnames(edesign.abiotic)

> rownames(data.abiotic)

3.1 Defining the regression model

Create a regression matrix for the full regression model:

> design <- make.design.matrix(edesign.abiotic, degree = 2)

This example has three time points, so we can consider up to a quadratic regression model
(degree = 2). Larger number of time points would potentially allow a higher polynomial de-
gree. design is a list. Its element dis is the actual regression design matrix. groups.vector
contains the assignment of regression variables to experimental groups.

> design$groups.vector

[1] "ColdvsControl" "HeatvsControl" "SaltvsControl" "Control"

[5] "ColdvsControl" "HeatvsControl" "SaltvsControl" "Control"

[9] "ColdvsControl" "HeatvsControl" "SaltvsControl"

3.2 Finding significant genes

The next step is to compute a regression fit for each gene. This is done by the function
p.vector(). This function also computes the p-value associated to the F -Statistic of the
model, which is used to select significant genes. By default maSigPro corrects this p-value
for multiple comparisons by applying the linear step-up (B-H) false discovery rate (FDR) pro-
cedure (Benjamini and Hochberg, 1995). This procedure can be modified by choosing another
option of the p.adjust function that is controlled by the function parameter MT.adjust of
p.vector. The level of FDR control is given by the function parameter Q.

> fit <- p.vector(data.abiotic, design, Q = 0.05, MT.adjust = "BH", min.obs = 20)

p.vector() returns a list of values:

> fit$i # returns the number of significant genes

> fit$alfa # gives p-value at the Q false discovery control level

> fit$SELEC # is a matrix with the significant genes and their expression values

3.3 Finding significant differences

Once significant genes have been found, maSigPro applies a variable selection procedure to
find significant variables for each gene. This will ultimatelly be used to find which are the
profile differences between experimental groups. This step is done by the T.fit() function.

> tstep <- T.fit(fit, step.method = "backward", alfa = 0.05)

5



T.fit() executes stepwise regression. The step.method can be ”backward” or ”forward” in-
dicating whether the step procedure starts from the model with all or none variables. Use
method ”two.ways.backward” and ”two.ways.forward” to allow variables to both get in and
out. At each regression step the p-value of each variable is computed and variables get in/out
the model when this p-value is lower or higher than the given cut-off value alfa. tstep is also
a list. Its element sol is a matrix of statistical results obtained by the stepwise regression.
For each selected gene the following values are given:

p-value of the regression ANOVA

R-squared of the model

p-value of the regression coefficients of the selected variables

3.4 Obtaining lists of significant genes

The following step is to generate lists of significant genes according to the way we want to see
results. This is done by the function get.siggenes(). This function has two major arguments,
rsq and vars.

rsq: is a cutt-off value for the R-squared of the regression model.

vars: is used to indicate how to group variables to show results. There are 3 possible values:

groups: This will generate a list of significant genes for each experimental group.
The list corresponding to the reference group will contain genes whose expression
profile is significantly different from a 0 profile. The lists corresponding to the
remaining experimental groups will contain genes whose profiles are different from
the reference group.

all: One unique list of significant genes a any model variable will be produced.

each: There will be as many lists as variables in the regression model. This can be
used to analyze specific differences, for example genes that have linear or saturation
kinetics.

> sigs <- get.siggenes(tstep, rsq = 0.6, vars = "groups")

> names(sigs)

[1] "sig.genes" "summary"

The element summary is a data frame containing the significant genes for the selected vars.
The element sig.genes is a list with all the information needed for the graphical display
explained in the following section.
You can further explore your results by:

> names(sigs$sig.genes)

[1] "Control" "ColdvsControl" "HeatvsControl" "SaltvsControl"

> names(sigs$sig.genes$ColdvsControl)

[1] "sig.profiles" "coefficients" "group.coeffs" "sig.pvalues"

[5] "g" "edesign" "groups.vector"
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Figure 2: (a) Venn Diagram for Cold, Heat and Salt stress significant genes. (b) Venn Diagram
adding also the Control group.

4 Graphical display

maSigPro has several functions for the visual exploration of the results: Venn diagrams,
profiles of specific genes and profiles of groups of genes from different perspectives. The main
principal function is see.genes that makes a clustering anlaysis and call PlotProfiles and
PlotGroups functions to visualize the clusters.

4.1 Venn Diagrams

suma2Venn() function displays the summary result, obtained with get.siggenes() function,
as a Venn diagram. This can be a first view of the obtained results.
Figure 2 shows 2 Venn diagrams made with the following commands. The first one is a Venn
diagram of the significant genes for the three stress experimental groups and the second one
includes also the control group.

> suma2Venn(sigs$summary[, c(2:4)])

> suma2Venn(sigs$summary[, c(1:4)])

4.2 see.genes()

Use see.genes() to visualize the result of a group of genes, for example, to visualize the
significant genes obtained as significant in the previous step in ControlvsSalt, that are genes
with significant differences between Salt and Control gene expression.
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> sigs$sig.genes$SaltvsControl$g

[1] 191

see.genes(sigs$sig.genes$ColdvsControl, show.fit = T, dis =design$dis,

cluster.method="hclust" ,cluster.data = 1, k = 9)

see.genes() performs a cluster analysis to group genes by similar profiles. Main arguments
for cluster analysis are:

k: number of clusters for data partioning. By default it is 9. Mclust cluster method can
compute an optimal k, chosing k.mclust=TRUE.

cluster.method: clustering method for data partioning. hclust, kmeans and Mclust are
supported.

distance: distance measurement function when cluster.method is hclust. By default it is
’cor’ to compute a distance based on the correlation because we are interested in similar
trends or changes.

agglo.method: aggregation method used when cluster.method is hclust. By default ward.D.

The resulting clusters are then plotted in two fashions: as experiment-wide expression profiles
and as by-groups profiles. The first plot (Figure 3) will help to evaluate the consistency of
the clusters while the second plot shows clearly the differences between groups (Figure 4).

4.3 PlotGroups()

As it is already explained, function Plot Groups is used for see.genes. Here we are going
to show the performance of this secondary function because they can also be useful out of the
clustering display.
PlotGroups() creates a plot of gene expression profiles where time-factor is in the x-axis,
gene expression in the y-axis, gene expression of the same experimental group is represented
with the same colour and it is drawn a line that join the averages of each time-group to see
the trend of each experimental group through time. This plot can be made for specific genes
or for groups of genes where the median will be computed. For example, STMDE66 is a gene
which shows significant profile differences between the control and the cold and salt strees
experimental groups, but not significant differences between control and heat experimental
groups (Figure 5).

> STMDE66 <- data.abiotic[rownames(data.abiotic)=="STMDE66", ]

> PlotGroups (STMDE66, edesign = edesign.abiotic)

We can also add to the plot the regression curve computed for this gene.

> PlotGroups (STMDE66, edesign = edesign.abiotic, show.fit = T,

+ dis = design$dis, groups.vector = design$groups.vector)
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Figure 3: Cluster Analysis ColdvsControl significant genes
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Figure 4: Expression Profiles ColdvsControl significant genes
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Figure 5: PlotGroups of gene STMDE66 without and with display or regression curves

4.4 PlotProfiles()

This secondary function creates a plot of gene expression profiles where x-axis represents the
order of the columns of the data matrix and the y-axis represents the gene expression. When
a group of genes if plotted they will be represented with different colours. The main goal of
this graph is to check the homogeneity of the clusters.

5 Other designs

5.1 Single Series Time Course

The use of maSigPro in Single Series Time Course experiment is straightforward. Make
a edesign object with just one group column containing all 1s and proceed as described
above. Note that when using the get.siggenes() funcion the options ”all” and ”groups” of
the argument vars will return the same result. You can use option ”each” to analyze the type
of responses present in the significant genes: significant genes at the ”intercept” term will have
a significant expression value at the starting time; genes associated to the variable ”Time”
will have a significant linear component, which can be induction or repression depending on
the sign of their coefficient; genes associated to the variable ”Time2” will show a change in
the linear response that might be indicating transitory or saturation reponses, etc...
Here follows an example of a Single Series analysis.

## make a single series edesign

> Time <- rep(c(1,5,10,24), each = 3)

> Replicates <- rep(c(1:4), each = 3)

> Group <- rep(1,12)
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> ss.edesign <- cbind(Time,Replicates,Group)

> rownames(ss.edesign) <- paste("Array", c(1:12), sep = "")

## Create data set

> ss.GENE <- function(n, r, var11 = 0.01, var12 = 0.02, var13 = 0.02,

var14 = 0.02, a1 = 0, a2 = 0, a3 = 0, a4 = 0) {

tc.dat <- NULL

for (i in 1:n) {

gene <- c(rnorm(r, a1, var11), rnorm(r, a1, var12),

rnorm(r, a3, var13), rnorm(r, a4, var14))

tc.dat <- rbind(tc.dat, gene)

}

tc.dat }

> flat <-ss.GENE(n = 85, r = 3) # flat

> induc <- ss.GENE(n = 5, r = 3, a1 = 0, a2 = 0.2, a3 = 0.6, a4 = 1) # induction

> sat <- ss.GENE(n = 5, r = 3, a1 = 0, a2 = 1, a3 = 1.1, a4 = 1.2) # saturation

> ord <- ss.GENE(n = 5, r = 3, a1 = -0.8, a2 = -1, a3 = -1.3, a4 =-0.9) # intercept

> ss.DATA <- rbind(flat, induc,sat,ord)

> rownames(ss.DATA) <- paste("feature", c(1:100), sep = "")

> colnames(ss.DATA) <- paste("Array", c(1:12), sep = "")

# run maSigPro

> ss.example <- maSigPro(ss.DATA, ss.edesign, vars="each")

5.2 Common Starting Time

The following example illustrates how to build the edesign matrix when a common 0 time is
applicable to the different experimental groups.

> data(edesignCT)

In this example Array1 and Array2 do not belong to any treatment. They are a common
reference for all groups, values without any treatment at time 0.
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6 Next Generation-Sequencing series

maSigPro uses lm() function to fit a linear model where statistics for inference use normal
distribution. This is the right treatment when dealing with normal distributed data or big
samples. However, for non-normal small samples, results can not be correct.
The statistical distribution for tag counts data as RNA-Seq data may be Poisson or Binomial.
However, the overdispersion of the data suggest the Negative Binomial (NB) can model these
distributions in a better way. This distribution depends on a θ parameter to model the
overdispersion that is related to the mean(µ) in the following way:

Y ∼ NB(θ), V ar(Y ) = µ+
µ2

θ

maSigPro has been adapted to take into account non-normal distribution of the data (Nueda
et al., 2014). New arguments have been added in p.vector function to deal with this type
of data in a proper way:

counts: a logical indicating whether your data are counts. By default is FALSE for mi-
croarray treatment.

theta: θ parameter for negative.binomial family. By default θ = 10.

family: the distribution function to be used in the GLM. It must be specified as a func-
tion: gaussian(), poisson(), negative.binomial(theta)... If NULL family will be nega-
tive.binomial(theta) when counts=TRUE or gaussian() when counts=FALSE.

The recommended analysis to deal with RNA-Seq data is the GLM with negative.binomial
family. θ must be specified and it can be computed by using available methods as edgeR
((Robinson et al., 2010)). The application of maSigPro with several values of θ to the same
datasets did not reveal significant differences in gene selection. Taking this into consideration
we have put by default θ = 10 for being an average value. Moreover we give to the user the
option of applying whatever exponential family to explore other possibilities.
Data must be normalized before the application of maSigPro as it is not integrated any
normalized method.
NBdata is a subset of a bigger normalized dataset with 2 experimental groups, 6 time-points
and 3 replicates. Simulation has been done by using a negative binomial distribution with
θ = 5 to illustrate this section. The first 20 genes are simulated with changes among time.
NBdesign is the design matrix.

> data(NBdata)

> data(NBdesign)

> d <- make.design.matrix(NBdesign)

If we can use maSigPro with theta = 10:

> library(MASS)

> NBp <- p.vector(NBdata, d, counts=TRUE)

> NBt <- T.fit(NBp)

> get<-get.siggenes(NBt, vars="all")

> get$summary
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Figure 6: Cluster Analysis significant genes

These genes can be grouped in 4 clusters 6:

see.genes(get$sig.genes, k = 4)

If we can use maSigPro with a specific theta, in this case, theta = 5:

> NBp <- p.vector(NBdata, d, counts=TRUE, theta=5)

Also, a specific family, for instance, poisson can be specified. In such case counts and theta
parameters are omitted.

> NBp <- p.vector(NBdata, d, family=poisson() )

Changing this arguments in p.vector is enough. Further functions will take these arguments
from a p.vector object.
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7 Iso-maSigPro: analysis of alternative isoform expression in
time course transcriptomics experiments

maSigPro package includes several tools for the analysis of alternative isoform expression in
time course transcriptomics experiments. Figure 7 shows the analysis pipeline with functions
involved in this analysis.

IsoModel() 
fits model for DS 

getDS() 
selects significant  
DSGs and DETs 

tableDS() 
identifies cluster location 

of major and minor isoforms 

seeDS() 
clusters DETs  

PodiumChange() 
finds DSGs with major isoform switch 

getDSPattern() 
extracts genes with specific 
isoform clustering pattern 

IsoPlot() 
shows expression  
of indicated DGS 

Figure 7: ISO-maSigPro pipeline.

For Iso-maSigPro analysis, data must be provided as a transcript-level expression data set,
similarly to regular maSigPro. This data.frame must include TranscriptIDs as rownames
and the GeneID of each transcript in the first column. The Iso-maSigPro package does not
include functions for quantification of isoform expression.
The package provides a test dataset for differential splicing analysis named ISOdata. It
consists of 2782 isoforms (rows) belonging to 1009 genes. The experimental desing is a 2
series experiment with 6 time points and three replicates per experimental condition. First
column of ISOdata contains the name of the gene each isoform belongs to, while the remaining
columns are the RNA-Seq data samples associated to the experimental conditions.

> data(ISOdata)

> data(ISOdesign)

> dis <- make.design.matrix(ISOdesign)

7.1 IsoModel() and getDS()

First of all IsoModel() function is applied to identify Differentially Spliced Genes (DSGs) and
also Differentially Expressed Transcripts (DETs), which are transcripts of significant DSGs
detected as statistically significant with regular NextmaSigPro. IsoModel() returns a list of
DSGs and all the information about the estimated models of associated isoforms to be used as
input in getDS() function to obtain a selection of DSGs at a preestablished level of goodness
of fit for each model.

> MyIso <- IsoModel(data=ISOdata[,-1], gen=ISOdata[,1], design=dis, counts=TRUE)

15



[1] "2782 transcripts"

[1] "1009 genes"

[1] "fitting gene 100 out of 568"

[1] "fitting gene 200 out of 568"

[1] "fitting gene 300 out of 568"

[1] "fitting gene 400 out of 568"

[1] "fitting gene 500 out of 568"

[1] "fitting isoform 100 out of 241"

[1] "fitting isoform 200 out of 241"

[1] "fitting isoform 100 out of 174"

[1] "Influence: 17 genes with influential data at slot influ.info."

> Myget <- getDS(MyIso)

[1] "51 DSG selected"

[1] "97 DETs selected"

DSG_distributed_by_number_of_DETs

1 2 3 4 9 10

17 21 1 4 1 1

When applying getDS() function the number of DSGs and DETs are showed by console and
also a table detailing the number of DETs that each selected DSG contains. Names of DSGs
and DETs can be showed with:

> Myget$DSG

[1] "Gene239" "Gene1009" "Gene1005" "Gene800" "Gene64" "Gene1003"

[7] "Gene1006" "Gene440" "Gene63" "Gene41" "Gene1008" "Gene1001"

[13] "Gene500" "Gene860" "Gene145" "Gene793" "Gene236" "Gene857"

[19] "Gene682" "Gene107" "Gene696" "Gene96" "Gene409" "Gene1002"

[25] "Gene901" "Gene427" "Gene684" "Gene116" "Gene129" "Gene852"

[31] "Gene1007" "Gene927" "Gene638" "Gene850" "Gene342" "Gene733"

[37] "Gene1004" "Gene836" "Gene491" "Gene571" "Gene183" "Gene611"

[43] "Gene368" "Gene463" "Gene390" "Gene782" "Gene737" "Gene995"

[49] "Gene285" "Gene652" "Gene595"

> Myget$DET

[1] "Transcript122" "Transcript125" "Transcript147" "Transcript150"

[5] "Transcript269" "Transcript270" "Transcript416" "Transcript422"

[9] "Transcript423" "Transcript445" "Transcript526" "Transcript528"

[13] "Transcript698" "Transcript701" "Transcript702" "Transcript950"

[17] "Transcript951" "Transcript985" "Transcript987" "Transcript988"

[21] "Transcript1016" "Transcript1034" "Transcript1035" "Transcript1036"

[25] "Transcript1037" "Transcript1038" "Transcript1039" "Transcript1040"

[29] "Transcript1041" "Transcript1042" "Transcript1043" "Transcript1073"

[33] "Transcript1074" "Transcript1077" "Transcript1087" "Transcript1088"

[37] "Transcript1151" "Transcript1152" "Transcript1193" "Transcript1194"
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[41] "Transcript1195" "Transcript1196" "Transcript1296" "Transcript1300"

[45] "Transcript1373" "Transcript1374" "Transcript1377" "Transcript1393"

[49] "Transcript1395" "Transcript1396" "Transcript1397" "Transcript1398"

[53] "Transcript1400" "Transcript1466" "Transcript1467" "Transcript1468"

[57] "Transcript1519" "Transcript1722" "Transcript1723" "Transcript1797"

[61] "Transcript1836" "Transcript1876" "Transcript1899" "Transcript1900"

[65] "Transcript2063" "Transcript2067" "Transcript2268" "Transcript2298"

[69] "Transcript2322" "Transcript2323" "Transcript2324" "Transcript2326"

[73] "Transcript2330" "Transcript2331" "Transcript2332" "Transcript2333"

[77] "Transcript2334" "Transcript2341" "Transcript2342" "Transcript2405"

[81] "Transcript2413" "Transcript2414" "Transcript2416" "Transcript2417"

[85] "Transcript2460" "Transcript2461" "Transcript2462" "Transcript2463"

[89] "Transcript2472" "Transcript2482" "Transcript2483" "Transcript2485"

[93] "Transcript2486" "Transcript2633" "Transcript2634" "Transcript2731"

[97] "Transcript2732"

Note that it is possible that a gene called DSG but no significant DET can be found under
the significance level, goodness of fit and multiple testing correction constraints of the regular
maSigPro analysis. Names of such cases can be shown with:

> Myget$List0

[1] "Gene857" "Gene491" "Gene611" "Gene995" "Gene285" "Gene652"

7.2 Clustering strategy: seeDS() and tableDS()

The Iso-maSigPro clustering approach identifies groups of DSGs with similar isoform ex-
pression patterns, as well as the expression profiles of DETs within DSGs. This strategy is
implemented in two steps corresponding to seeDS() and tableDS() functions.
Function seeDS looks for general transcript expression trends analysing DETs and clusters
them into k groups with any of the available maSigPro clustering approaches (cluster.method
input can be: hclust, kmeans or Mclust, the most used clustering methods). The clustering
can be applied to only DETs from DSGs (cluster.all=FALSE) or after computing DETs
from all available genes (cluster.all=TRUE), which is recommended when the interest is
to characterize the expression pattern of the whole transcriptomics experiment and not only
from DSGs. Figure 8 shows the clusters obtained for DETs in our example.

> see <- seeDS(Myget, cluster.all=FALSE, k=6)
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Figure 8: Cluster Analysis Differentially Expressed Transcripts (DETs)
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Next, the tableDS() function takes DSGs with 2 or more DETs to identify the time-course
Alternative Splicing events. To do this, each DET is labeled as major isoform (defined as the
most expressed isoform across conditions) or minor isoform and for each DSG the clusters
where their major and minor DET(s) belong are identified. This information is used to
compute a classification table that indicates the distribution of DETs of DSG across different
clusters.

> table <- tableDS(see)

> table$IsoTable

Cluster.minor

Cluster.Mayor 1 1&5 2 3 3&4 4 5

1 0 1 1 1 0 3 1

2 1 0 0 0 0 0 0

3 0 0 1 0 1 2 0

4 0 0 0 1 2 4 2

5 0 0 0 0 0 0 2

6 0 0 0 2 0 1 2

By comparing the classification table with the cluster profiles, the user can readily identify
genes with strong or subtle expression differences among their set of isoforms. For instance,
in Figure 8 it is observed that cluster 1 and 4 have diferent trends and IsoTable object shows
there are 3 genes with major isoform in cluster 1 and minor isoform(s) in cluster 4. The
names of these genes can be obtained with the getDSPatterns() function:

> getDSPatterns(table, 1, 4)

[1] "Gene1002" "Gene1003" "Gene1004"

The gene selection can be plotted with IsoPlot() function (see example in Figure 9).

7.3 PodiumChange()

Alternatively, PodiumChange() function extracts from the data those DSGs that undergo
a switch of their most expressed isoform during the time course. PodiumChange() can be
applied taking into consideration only the DETs (only.sig.iso=TRUE)or considering all the
isoforms of DSGs. This last option is interesting when the DSG has only one isoform called
as DET. The function takes as input the result of getDS() and returns a list of genes with
podium changes. The function can detect changes at any time point (eventual changes),
for an indicated experimental condition or at specific subranges of time and experimental
conditions.

> PC<-PodiumChange(Myget, only.sig.iso=TRUE, comparison="specific",

+ group.name="Group2", time.points=c(18,24))

> PC$L

[1] "Gene239" "Gene1008" "Gene1005"

Again, the gene selection can be plotted with IsoPlot() function (see example in Figure 9).
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Figure 9: IsoPlot() example. Gene1005 detected as podium-change gene.

7.4 IsoPlot()

This function provides gene-level plots of the expression profiles of all transcripts in the input
vector of gene names. Optionally, the user can choose visualizing all transcripts or only DETs
of the selected genes. Typically, IsoPlot() can be used to inspect specific genes identified by
the PodiumChange() or the tableDS() functions. Figure 9 shows the IsoPlot() of Gene1005
detected as podium-change gene.

> IsoPlot(Myget,"Gene1005",only.sig.iso=FALSE,cex.main=2,cex.legend=1)
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