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Abstract

This package has been developed to evaluate cellular engineering processes
for direct differentiation of stem cells or conversion (transdifferentiation) of
somatic cells to primary cells based on high throughput gene expression data
screened either by DNA microarray or RNA sequencing. The package takes
gene expression profiles as inputs from three types of samples: (i) somatic
or stem cells to be (trans)differentiated (input of the engineering process), (ii)
induced cells to be evaluated (output of the engineering process) and (iii) target
primary cells (reference for the output). The package performs differential gene
expression analysis for each pair-wise sample comparison to identify and evaluate
the transcriptional differences among the 3 types of samples (input, output,
reference). The ideal goal is to have induced and primary reference cell showing
overlapping profiles, both very different from the original cells.

Using the gene expression profile of original cells versus primary cells, a gene in
the induced cells can either be successfully induced to the expression level of
primary cells, remain inactive as in the somatic cells, or be insufficiently induced.
Based on such differences, we can categorizes differential genes into three in-
tuitive categories: Inactive, Insufficient, Successful and two additional extreme
states: Over and Reversed representing genes being over (way above/below the
expected level of in/activation) or reversely regulated. By further functional and
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1This document
used the vignette
from Bioconductor
package DESeq2 as
knitr template

gene regulatory network analyses for each of the five gene categories, the pack-
age evaluates the quality of engineered cells and highlights key molecules that
represent transcription factors (TFs) whose (in)activation needs to be taken
into account for improvement of the cellular engineering protocol, thus offering
not only a quantification of the efficacy of the engineering process, but also
workable information for its improvement.

eegc version: 1.24.0 1

2

http://bioconductor.org/packages/DESeq2
https://CRAN.R-project.org/package=knitr


Microarray and RNA-seq Data with eegc

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installing the eegc package. . . . . . . . . . . . . . . . . . 5

3 Preparing Input Data . . . . . . . . . . . . . . . . . . . . . . 5

4 Gene Differential Analysis . . . . . . . . . . . . . . . . . . . 6

5 Gene Categorization . . . . . . . . . . . . . . . . . . . . . . 7

6 Gene Expression Pattern Visualization . . . . . . . . . . 9

7 Quantifying Gene Categories . . . . . . . . . . . . . . . . 10

8 Functional Enrichment Analysis and Visualization . . 11

9 Cell/Tissue-specific Enrichment Analysis . . . . . . . . 13

10 Evaluation Based on Gene Regulatory Network (GRN)
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10.1 CellNet-based Cell/Tissue-specific analysis . . . . . . . . 15

10.2 Cell/Tissue-specific Transcription Factor Analysis . . . . 16

10.3 Network Topological Analysis and Visualization . . . . . 17

11 Session Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Introduction
Cellular engineering is among the most promising and yet questioned cellular
biology related approaches, and consists of the man-made differentiation of
pluripotent undifferentiated stem cells into tissue-specific (primary) cells, mim-
icking the processes naturally occurring during human embryonic development,
and of the direct conversion from somatic to primary cells, which is relatively
efficient and rapid than differentiation but is limited by incomplete conversion.
One of the earliest issues to be properly addressed in this area is the possibility
to quantify and assess the quality of the induced cells, i.e. to measure if/how
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the differentiation process has been successful and the obtained cells are suffi-
ciently similar to the target primary cells, for further applications in regenerative
therapy, disease modeling and drug discovery.

The natural approach consists of comparing the transcriptional similarity of
engineered cells to the target primary cells, with a focus on the marker genes
that are specifically expressed in somatic and primary cells [1]. Indeed, not all
marker genes are successfully induced to the expression level typical of primary
cells, implying imperfections of the reprogrammed cells to an extent that needs
to be quantified and evaluated.

Indeed, the focus on a selected number of transcription fators (TFs) may be
limiting, and unable to offer alternative solutions to improve an engineering
process. As cells represent a complex and tightly interconnected system, the
failure to activate one or more target genes impacts on a variable number of
interconnected and downstream genes, affecting in turn a number of biological
functions. For this reason the approach we propose is not target-specific but
systemic and beyond offering a list of TF whose (in)activation needs attention,
can also qualify and quantify the detrimental effects of an imperfect reprogram-
ming on the topology of the gene network and the biological functions affected,
thus offering information on the usability of the obtained cells and suggesting
a potentially broader number of targets to be affected to improve the process.

Based on these observations, we propose -as briefly introduced above- to classify
the genes into five different categories which describe the states of the genes
upon (trans)differentiation. The Successful category is represented by the genes
whose expression in the engineered cells is successfully induced to a level similar
to the target primary cells; conversely the Inactive category is represented by
the genes whose expression are unchanged from the level of initiating cells but
should be induced to the expression level of primary cells. Between Success-
ful and Inactive, genes can be defined Insufficient when their expression were
modified from the input cells but not enough to reach the level of the target
cells. Additionally, because of the induction of transcription factors, some genes
can be over expressed in the engineered cells in comparison to the target pri-
mary cells, here defined as Over ; finally, some genes appear to be differentially
expressed in a direction opposite to the expected one, these are defined as Re-
served. By these definitions, a successful engineering cell process is expected
to offer a significant number of Successful genes, including the marker genes,
and a minority of Inactive genes. All other three categories contribute to the
understanding of the deviations that gave rise to the unexpected outcome of
the engineering process. This is namely obtained with 3 outputs offered to
the package users, in addition to the identification of inefficient TFs induction:
(i) functional enrichment, (ii) tissue specific and (iii) gene regulatory network
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analyses. Each of those contribute to a better understanding of the role that
each gene category plays in the engineering process and clarify the deficiencies
of the engineered cells for potential improvements.

2 Installing the eegc package
eegc requires the following CRAN-R packages: R.utils, sna, wordcloud , igraph
and pheatmap, and the Bioconductor packages:limma, edgeR , DESeq2 , clus-
terProfiler , org.Hs.eg.db, org.Mm.eg.db.

When eegc is installed from Bioconductor , all dependencies are installed.

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("eegc")

Then package is loaded by:

library(eegc)

3 Preparing Input Data
eegc takes an input of gene expression data (with genes in rows and samples
in columns) screened by microarray or RNA-seq (in FPKM -Fragments Per
Kilobase of transcript per Million mapped reads- or counts). Samples belong to
three types of samples: original cells (input), induced cells (ouput), and primary
cells (output target). In this vignette, we used human RNA-seq expression
FPKMs data published by Sandler et Al. as example data. Here, human Dermal
Microvascular Endothelial Cells (DMEC) were transduced with transcription
factors and cultured in vascular niche to induce the growth of haematopoietic
stem and multipotent progenitor cells (rEChMPP) compared with the target
primary Cord Blood cells (CB).

# load Sandler's data set:

data(SandlerFPKM)

#the column names of the data, representing the samples CB, DMEC, and rEChMPP

colnames(SandlerFPKM)

## [1] "CB1" "CB2" "CB3" "DMEC1" "DMEC2" "rEChMPP1" "rEChMPP2"
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4 Gene Differential Analysis
The differential analysis is achieved by the diffGene function, and two packages
limma [2] and DESeq2 [3] are selectively applied to microarray/FPKM data and
counts data, respectively. Before the gene differential analysis, the removal of
low expressed genes is selectively performed (specifying TRUE or FALSE in the
filter parameter) by removal of the genes absent above a given percentage of
samples and a log transformation is done on the (filtered) data. The significantly
differential genes are identified for each pair-wise sample comparison (DMEC vs
rEChMPP, DEMC vs CB, rEChMPP vs CB) and with a given corrected p-value
cutoff.

# differential expression analysis:

diffgene = diffGene(expr = SandlerFPKM, array=FALSE, fpkm=TRUE, counts=FALSE,

from.sample="DMEC", to.sample="rEChMPP", target.sample="CB",

filter=TRUE, filter.perc =0.4, pvalue = 0.05 )

The function gives a list of outputs further used in the following analyses,
including the differential result detailed below in diffgene.result, the sole
differential gene names in diffgene.genes and the filtered gene expression
values as in expr.filter.

# differential analysis results

diffgene.result = diffgene[[1]]

# differential genes

diffgene.genes = diffgene[[2]]

#filtered expression data

expr.filter = diffgene[[3]]

dim(expr.filter)

## [1] 14391 7

dim(SandlerFPKM)

## [1] 16692 7
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5 Gene Categorization
Gene (g) categorization is achieved through the pair-wise comparisons (Expres-
sion Difference, ED) as defined in eq. 1, a difference of g average expression in
A and B samples among the three types of samples as shown in Table 1, and
the ratio of such differences (EDg ratio, eq. 2) .

EDg(A,B) = Eg in A− Eg in B 1

EDg ratio =
EDg(rEChMPP,DMEC)

EDg(CB,DMEC)
2

The five gene categories are first defined by the ED patterns observed among
three pair-wise comparisons as shown in the ED columns of Table 1. Based on
these definitions, categories Reserved and Over are undistinguishable, but be-
come clearly distinct by evaluation of the ED ratios (eq. 2) in the corresponding
column of Table 1.

At this stage, Inactive and Successful ED ratios are, conveniently, around 0 and
1, however, they cover a relatively wide range of values, with queues overlapping
with the Over and Insufficient categories for Successful genes, and with Reverse
and Insufficient for Inactive genes. To gain an accurate and practical catego-
rization (operational in term of indications as to which genes need attention
in the engineering process), Inactive and Successful genes boundaries were set
more stringently around the intuitive peaks of 0 and 1, by shrinking the ED ratio
boundaries to what we name operational ranges in Table 1, which correspond
to the 5th and 95th quantile of the ED-ranked Successful and Inactive genes.
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Table 1: Gene categorization base on differential analysis and ED ratio

Category ED Patterns ED Ratio Operational RangesCB,
DMEC

rEChMPP,
DMEC

rEChMPP,
CB

Reversed
3/7 7 3

<0
Over >1

Inactive 3 7 3 ∼0 (Q5th ED ratio, Q95th ED ratio)
Insufficient 3 3 3 0∼1
Successful 3 3 7 ∼1 (Q5th ED ratio, Q95th ED ratio)

3 differential, 7 nondifferential; Qxth ED ratio: xth quantile of the ranked
ED ratios

Function categorizeGene performs the categorization and gives a list of outputs
with five categories Reversed, Inactive, Insufficient, Successful and Over with:
1) the gene symbols in each category, 2) corresponding ED ratios.

# categorizate differential genes from differential analysis

category = categorizeGene(expr = expr.filter,diffGene = diffgene.genes,

from.sample="DMEC",

to.sample="rEChMPP",

target.sample="CB")

cate.gene = category[[1]]

cate.ratio = category[[2]]

# the information of cate.gene

class(cate.gene)

## [1] "list"

length(cate.gene)

## [1] 5

names(cate.gene)

## [1] "Reverse" "Inactive" "Insufficient" "Successful" "Over"

head(cate.gene[[1]])

## [1] "ABCC4" "ADAM12" "ADCY6" "AGPAT2" "ANKRD37" "ANO9"

head(cate.ratio[[1]])

## ED_ratio

## ABCC4 -282.44

## ADAM12 -11.57

## ADCY6 -4.79
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## AGPAT2 -23.32

## ANKRD37 -9.24

## ANO9 -0.18

6 Gene Expression Pattern Visualization
Expression profile of genes in each category can be visualized as different ex-
pression patterns with the markerScatter function that generates a scatter plot
of gene expression for the five categories in paired arms and highlight the marker
genes in the output (Figure 1). We also apply a linear model to fit the expres-
sion profiles of samples on the x- and y-axes, with the possibility to selectively
add the regression lines on the figure to show the sample correlation. To avoid
confusion and allow a distinct visualization of all expression profiles, Inactive,
Insufficient and Successful genes are plotted separately (Figure 1 above) from
the Reserved and Over genes (Figure 1 below), with each of the 5 categories
being plotted from left to right to highlight the expression trend change from
DMEC to rEChMPP.

#load the marker genes of somatic and primary cells

data(markers)

#scatterplot

col = c("#abd9e9", "#2c7bb6", "#fee090", "#d7191c", "#fdae61")

markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "DMEC"),

cate.gene = cate.gene[2:4], markers = markers, col = col[2:4],

xlab = expression('log'[2]*' expression in CB (target)'),

ylab = expression('log'[2]*' expression in DMEC (input)'),

main = "")

markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "rEChMPP"),

cate.gene = cate.gene[2:4], markers = markers, col = col[2:4],

xlab = expression('log'[2]*' expression in CB (target)'),

ylab = expression('log'[2]*' expression in rEC-hMPP (output)'),

main = "")

markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "DMEC"),

cate.gene = cate.gene[c(1,5)], markers = markers, col = col[c(1,5)],

xlab = expression('log'[2]*' expression in CB (target)'),

ylab = expression('log'[2]*' expression in DMEC (input)'),

main = "")
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markerScatter(expr = expr.filter, log = TRUE, samples = c("CB", "rEChMPP"),

cate.gene = cate.gene[c(1,5)], markers = markers, col = col[c(1,5)],

xlab = expression('log'[2]*' expression in CB (target)'),

ylab = expression('log'[2]*' expression in rEC-hMPP (output)'),

main = "")
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Figure 1: Expression profile (FPKM in log scale) of the five gene categories in CB pri-
mary cells against the endothelial cells (left) and rEChMPPs (right), respectively

7 Quantifying Gene Categories
One simple metric to quantify the success of the cellular engineering process is
the proportion of genes in each category among all the categorized genes. A
high proportion of Successful genes reflects a good (trans)differentiation. Thus
we produce a density plot to quantify the ED ratios of each gene category. As
proposed in Table 1, the ED ratios of Successful genes are around 1, Inactive
genes around 0 and Insufficient genes are between 0 and 1. Extreme higher or
lower ratios are given by the Reserved or Over genes, respectively, to make the
ratios on x axis readable, we suggest to narrow the ratios of Reserved and Over
genes to a maximum of their median values (Figure 2).

# make the extreme ED ratios in Reversed and Over categories to the median values

reverse = cate.ratio[[1]]
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over = cate.ratio[[5]]

reverse[reverse[,1] <= median(reverse[,1]), 1] = median(reverse[,1])

over[over[,1] >= median(over[,1]),1] = median(over[,1])

cate.ratio[[1]] = reverse

cate.ratio[[5]] = over

# density plot with quantified proportions

densityPlot(cate.ratio, xlab = "ED ratio", ylab = "Density", proportion = TRUE)
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Figure 2: The proportion of genes in each category

8 Functional Enrichment Analysis and Visu-
alization
The functional annotation for each gene category is performed by applying the
R package clusterProfiler [4]. Given an input genelist with five gene categories
and having set the organism parameter (optionally, human or mouse), functio
nEnrich performs the functional enrichment analysis for Gene Ontology (GO)
[5] and Kyoto Encyclopedia of genes and Genomes (KEGG) pathway [6] with
either hypergeometric test or Gene Set Enrichment Analysis (GSEA).

# result in "enrichResult" class by specifying TRUE to enrichResult parameter

goenrichraw = functionEnrich(cate.gene, organism = "human", pAdjustMethod = "fdr",

GO = TRUE, KEGG = FALSE, enrichResult = TRUE)

class(goenrichraw[[1]])

## [1] "enrichResult"

## attr(,"package")

## [1] "DOSE"
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# result of the summary of "enrichResult" by specifying FALSE to enrichResult parameter

# GO enrichment

goenrich = functionEnrich(cate.gene, organism = "human", pAdjustMethod = "fdr",

GO = TRUE, KEGG = FALSE, enrichResult = FALSE)

# KEGG enrichment

keggenrich = functionEnrich(cate.gene, organism = "human", pAdjustMethod = "fdr",

GO = FALSE, KEGG = TRUE, enrichResult = FALSE)

To describe the significantly enriched functional terms in each category (Fig-
ure 3) and for further comparison within the five gene categories (Figure 4),
a bar plot function barplotEnrich (modified from the barplot.enrichResult

function in DOSE [7] package) and heatmap plot function heatmapPlot are
added in the package, outputting the most enriched terms selected by parame-
ter top.

# plot only the "enrichResult" of Inactive category

inactive = goenrichraw[[2]]

barplotEnrich(inactive, top =5, color ="#2c7bb6", title = "Inactive")

regulation of innate immune response

regulation of natural killer cell mediated immunity

positive regulation of response to external stimulus

leukocyte mediated cytotoxicity

mononuclear cell differentiation

0 204060

2.0e−07

2.5e−07

3.0e−07

3.5e−07

p.adjust

Inactive

Figure 3: Example of top 5 significantly enriched Gene Ontology terms in the Inactive
category
The shade of colors represents enrichment p-values and bar length represents the count of genes in-
volved in each GO term.

# plot the enrichment results by the five gene categories

data(goenrich)

heatmaptable = heatmapPlot(goenrich, GO = TRUE, top = 5, filter = FALSE,

main = "Gene ontology enrichment",

display_numbers = FALSE)

This analysis helps to evaluate the engineered cells at the functional level by
identifying the non-activated functions that play important roles in primary cells
but, being enriched in the Inactive genes categories, lack in the engineered cells.
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Gene ontology enrichment
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Figure 4: Top 5 significantly enriched Gene Ontology terms in each gene category based
on the log transformed corrected p-values
The counts of genes involved in each functional term are displayed on the heatmap by specifying
TRUE to the display_numbers parameter in heatmapPlot function.

9 Cell/Tissue-specific Enrichment Analysis
The five gene categories represent different reprogramming progresses or di-
rections of the original cells towards primary cells. These progresses or di-
rections can also be explored, in addition to the functional role investigated
above, by cell/tissue (C/T)-specific analysis. Downstream of a successful cel-
lular engineering process, the expression of somatic cell-specific genes will be
down-regulated while the expression of primary cell-specific genes will be up-
regulated. So ideally each of the five gene categories is mainly composed by two
gene types: somatic or primary genes. By the C/T-specific analysis, assuming
the most extreme values of expression represent effective up or down regulation
and compute based on this, we can explore which C/T-specific genes results
the success or failure of the engineering process.

The database Gene Enrichment Profiler, containing the expression profiles of
12,000 genes with NCBI GeneID entries across 126 primary human cells/tissues
in 30 C/T groups, is used for this C/T-specific analysis [8].

In Gene Enrichment Profiler, genes specificity to a given cell/tissue is ranked
using a custom defined enrichment score. For our usage in this package ranking
is not sufficient as cell/tissue-genes sets are needed and therefore we applied
SpeCond [9], a method to detect condition-specific gene, to identify the C/T-
specific gene sets . Then we apply the hypergeometric test to assess the speci-
ficity significance of gene categories in each tissue with the enrichment function
and visualize the enrichment results by the heatmapPlot function (Figure 5).

#load the cell/tissue-specific genes

data(tissueGenes)
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length(tissueGenes)

## [1] 126

head(names(tissueGenes))

## [1] "ESCells" "HSCFetalBloodCD34CD38"

## [3] "HSCCordBloodCD34CD38" "HSCCordBloodCD34CD38CD33"

## [5] "HSCBoneMarrowCD34CD38CD33" "HSCFetalBloodCD34CD381"

#load the mapping file of cells/tissues to grouped cells/tissues

data(tissueGroup)

head(tissueGroup)

## Tissue Tissue_abbr Group

## 1 ES cells ESCells ES cells

## 2 HSC fetal blood CD34+ CD38- HSCFetalBloodCD34CD38 stem cells

## 3 HSC cord blood CD34+ CD38- HSCCordBloodCD34CD38 stem cells

## 4 HSC cord blood CD34+ CD38- CD33- HSCCordBloodCD34CD38CD33 stem cells

## 5 HSC bone marrow CD34+ CD38- CD33- HSCBoneMarrowCD34CD38CD33 stem cells

## 6 HSC fetal blood CD34+ CD38+ HSCFetalBloodCD34CD381 stem cells

#get the background genes

genes = rownames(expr.filter)

#enrichment analysis for the five gene categories

tissueenrich = enrichment(cate.gene = cate.gene, annotated.gene = tissueGenes,

background.gene = genes, padjust.method = "fdr")

#select a group of cells/tissues

tissueGroup.selec = c("stem cells","B cells","T cells","Myeloid","Endothelial CD105+")

tissues.selec = tissueGroup[tissueGroup[,"Group"] %in% tissueGroup.selec,c(2,3)]

tissuetable = heatmapPlot(tissueenrich, terms = tissues.selec, GO=FALSE,

annotated_row = TRUE,annotation_legend = TRUE,

main = "Tissue-specific enrichment")

It is expected that the Successful genes are enriched in both somatic and primary
cells/tissues but not the Inactive or Insufficient genes.
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Figure 5: Cells/tissues-specific enrichment among five gene categories in selected
cells/tissues

10 Evaluation Based on Gene Regulatory Net-
work (GRN) Analysis
The package also build the gene-gene regulation network for each category
based on cell/tissue-specific gene regulatory networks (GRNs) constructed by
the CellNet [10] team through the analysis of 3419 published gene expression
profiles in 16 human and mouse cells/tissues. The complete table of regulatory
relationships for all genes (not limited to C/T-specific ones) and for C/T-specific
ones are downloaded from the CellNet website.

10.1 CellNet-based Cell/Tissue-specific analysis
Construction is done by checking the percentage of overlapping genes in each
category with the genes involved in each C/T-specific GRN by the dotPercent-
age function (Figure 6) and then performing a C/T-specific enrichment analysis,
as in the Cell/Tissue-specific Enrichment Analysis section, based on these gene
sets.

15

http://cellnet.hms.harvard.edu/downloads/


Microarray and RNA-seq Data with eegc

#load the C/T-specific genes in 16 cells/tissues

data(human.gene)

# the 16 cells/tissues

head(names(human.gene))

## [1] "Esc" "Ovary" "Neuron" "Skin" "Hspc"

## [6] "Macrophage"

perc = dotPercentage(cate.gene = cate.gene, annotated.gene = human.gene,

order.by = "Successful")
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Figure 6: Percentage of genes in each category overlapping in each cell- and tissue-
specific gene set

# CellNet C/T-specific enrichment analysis

cellnetenrich = enrichment(cate.gene = cate.gene, annotated.gene = human.gene,

background.gene = genes, padjust.method ="fdr")

cellnetheatmap = heatmapPlot(cellnetenrich,

main = "CellNet tissue specific enrichment")

10.2 Cell/Tissue-specific Transcription Factor Analysis
In our specific example, the observation that some Inactive genes are enriched
in the primary cells, represents an important information regarding the tran-
scription factors regulating these genes, TFs that are potentially necessary for a
successful cellular engineering. Therefore in a second step, we extract the cell-
and tissue-specific transcription factors and their down-stream regulated genes
into gene sets, and apply the gene set enrichment analysis on the five gene cat-
egories. A heatmap can be plotted to compare the C/T-specific transcription
factors enriched by different categories just as shown in Figure 7.
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# load transcription factor regulated gene sets from on CellNet data

data(human.tf)

tfenrich = enrichment(cate.gene = cate.gene, annotated.gene = human.tf,

background.gene = genes, padjust.method ="fdr")

tfheatmap = heatmapPlot(tfenrich, top = 5,

main = "CellNet transcription factor enrichment")
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Figure 7: Top 5 significantly enriched cell/tissue-specific transcription factors by each
gene category based on the log transformed corrected p-values

10.3 Network Topological Analysis and Visualization
Finally, we introduce the topological analysis for the C/T-specific gene regu-
latory networks including genes in each of five categories, by calculating the
degree, closeness, betweenness and stress centrality with the igraph package
[11] and sna [12]. Given an input of genes and their centrality, grnPlot func-
tion plots the regulatory network with these genes as nodes and centrality as
node size to represent their importance in the network (Figure 8).

# load the CellNet GRN

data(human.grn)

# specify a tissue-specifc network

tissue = "Hspc"

degree = networkAnalyze(human.grn[[tissue]], cate.gene = cate.gene,

centrality = "degree", mode ="all")

head(degree)
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## Gene centrality.score Type Category

## 977 ORC1 0.215 TF;TG <NA>

## 1042 POLA1 0.214 TF;TG <NA>

## 103 BRCA1 0.210 TF;TG <NA>

## 235 CDT1 0.203 TF;TG <NA>

## 1456 UHRF1 0.201 TF;TG <NA>

## 595 HELLS 0.199 TF;TG <NA>

# select genes to shown their regulation with others

node.genes = c("ZNF641", "BCL6")

# enlarge the centrality

centrality.score = degree$centrality*100

names(centrality.score) = degree$Gene

par(mar = c(2,2,3,2))

grnPlot(grn.data = human.grn[[tissue]], cate.gene = cate.gene, filter = TRUE,

nodes = node.genes, centrality.score = centrality.score,

main = "Gene regulatory network")
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Figure 8: The hematopoietic stem/progenitor cell (Hspc)-specifc gene regulatory network
regulated by "ZNF641" and "BCL6" genes
Node size is represented by the degree centrality of node in a general Hspc-specific network.

The analysis clarifies the importance of genes, especially the transcription fac-
tors, in terms of their ability to connect other genes in a network. Hence, this
provides a way to predict the relevance of molecules in terms of their topological
centrality, and offer information regarding potential transcription factors to be
used for an improvement of cellular engineering.
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sessionInfo()

## R version 4.2.1 (2022-06-23)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 20.04.5 LTS

##

## Matrix products: default

## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so

## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_GB LC_COLLATE=C

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats4 stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] org.Hs.eg.db_3.16.0 AnnotationDbi_1.60.0 IRanges_2.32.0

## [4] S4Vectors_0.36.0 Biobase_2.58.0 BiocGenerics_0.44.0

## [7] eegc_1.24.0 knitr_1.40

##

## loaded via a namespace (and not attached):

## [1] shadowtext_0.1.2 fastmatch_1.1-3

## [3] plyr_1.8.7 igraph_1.3.5

## [5] lazyeval_0.2.2 splines_4.2.1

## [7] BiocParallel_1.32.0 GenomeInfoDb_1.34.0

## [9] ggplot2_3.3.6 digest_0.6.30

## [11] yulab.utils_0.0.5 htmltools_0.5.3

## [13] GOSemSim_2.24.0 viridis_0.6.2

## [15] GO.db_3.16.0 fansi_1.0.3

## [17] magrittr_2.0.3 memoise_2.0.1

## [19] limma_3.54.0 sna_2.7

## [21] Biostrings_2.66.0 annotate_1.76.0

## [23] graphlayouts_0.8.3 wordcloud_2.6

## [25] matrixStats_0.62.0 R.utils_2.12.1

## [27] enrichplot_1.18.0 colorspace_2.0-3
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## [29] blob_1.2.3 ggrepel_0.9.1

## [31] xfun_0.34 dplyr_1.0.10

## [33] crayon_1.5.2 RCurl_1.98-1.9

## [35] jsonlite_1.8.3 org.Mm.eg.db_3.16.0

## [37] scatterpie_0.1.8 genefilter_1.80.0

## [39] survival_3.4-0 ape_5.6-2

## [41] glue_1.6.2 polyclip_1.10-4

## [43] gtable_0.3.1 zlibbioc_1.44.0

## [45] XVector_0.38.0 DelayedArray_0.24.0

## [47] scales_1.2.1 DOSE_3.24.0

## [49] pheatmap_1.0.12 DBI_1.1.3

## [51] edgeR_3.40.0 Rcpp_1.0.9

## [53] viridisLite_0.4.1 xtable_1.8-4

## [55] gridGraphics_0.5-1 tidytree_0.4.1

## [57] bit_4.0.4 httr_1.4.4

## [59] fgsea_1.24.0 gplots_3.1.3

## [61] RColorBrewer_1.1-3 pkgconfig_2.0.3

## [63] XML_3.99-0.12 R.methodsS3_1.8.2

## [65] farver_2.1.1 locfit_1.5-9.6

## [67] utf8_1.2.2 labeling_0.4.2

## [69] ggplotify_0.1.0 tidyselect_1.2.0

## [71] rlang_1.0.6 reshape2_1.4.4

## [73] munsell_0.5.0 tools_4.2.1

## [75] cachem_1.0.6 downloader_0.4

## [77] cli_3.4.1 generics_0.1.3

## [79] RSQLite_2.2.18 statnet.common_4.7.0

## [81] gson_0.0.9 evaluate_0.17

## [83] stringr_1.4.1 fastmap_1.1.0

## [85] yaml_2.3.6 ggtree_3.6.0

## [87] bit64_4.0.5 tidygraph_1.2.2

## [89] caTools_1.18.2 purrr_0.3.5

## [91] KEGGREST_1.38.0 ggraph_2.1.0

## [93] nlme_3.1-160 R.oo_1.25.0

## [95] aplot_0.1.8 BiocStyle_2.26.0

## [97] compiler_4.2.1 png_0.1-7

## [99] treeio_1.22.0 tibble_3.1.8

## [101] tweenr_2.0.2 geneplotter_1.76.0

## [103] stringi_1.7.8 highr_0.9

## [105] lattice_0.20-45 Matrix_1.5-1

## [107] vctrs_0.5.0 pillar_1.8.1

## [109] lifecycle_1.0.3 BiocManager_1.30.19

## [111] data.table_1.14.4 cowplot_1.1.1

21



Microarray and RNA-seq Data with eegc

## [113] bitops_1.0-7 patchwork_1.1.2

## [115] GenomicRanges_1.50.0 qvalue_2.30.0

## [117] R6_2.5.1 network_1.18.0

## [119] KernSmooth_2.23-20 gridExtra_2.3

## [121] codetools_0.2-18 MASS_7.3-58.1

## [123] gtools_3.9.3 assertthat_0.2.1

## [125] SummarizedExperiment_1.28.0 DESeq2_1.38.0

## [127] withr_2.5.0 GenomeInfoDbData_1.2.9

## [129] parallel_4.2.1 clusterProfiler_4.6.0

## [131] grid_4.2.1 ggfun_0.0.7

## [133] coda_0.19-4 tidyr_1.2.1

## [135] HDO.db_0.99.1 rmarkdown_2.17

## [137] MatrixGenerics_1.10.0 ggforce_0.4.1
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