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1 Introduction

The a�y package is part of the BioConductor1 project. It is meant to be an extensible,
interactive environment for data analysis and exploration of A�ymetrix oligonucleotide
array probe level data.

The software utilities provided with the A�ymetrix software suite summarizes the
probe set intensities to form one expression measure for each gene. The expression
measure is the data available for analysis. However, as pointed out by Li and Wong
(2001), much can be learned from studying the individual probe intensities, or as we call
them, the probe level data. This is why we developed this package. The package includes
plotting functions for the probe level data useful for quality control, RNA degradation
assessments, di�erent probe level normalization and background correction procedures,
and �exible functions that permit the user to convert probe level data to expression
measures. The package includes utilities for computing expression measures similar to
MAS 4.0's AvDi� (A�ymetrix, 1999), MAS 5.0's signal (A�ymetrix, 2001), DChip's
MBEI (Li and Wong, 2001), and RMA (Irizarry et al., 2003b).

We assume that the reader is already familiar with oligonucleotide arrays and with the
design of the A�ymetrix GeneChip arrays. If you are not, we recommend the Appendix
of the A�ymetrix MAS manual A�ymetrix (1999, 2001).

The following terms are used throughout this document:

probe oligonucleotides of 25 base pair length used to probe RNA targets.

perfect match probes intended to match perfectly the target sequence.

PM intensity value read from the perfect matches.

mismatch the probes having one base mismatch with the target sequence intended to
account for non-speci�c binding.

MM intensity value read from the mis-matches.

probe pair a unit composed of a perfect match and its mismatch.

a�yID an identi�cation for a probe set (which can be a gene or a fraction of a gene)
represented on the array.

probe pair set PMs and MMs related to a common a�yID.

1http://bioconductor.org/
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CEL �les contain measured intensities and locations for an array that has been hy-
bridized.

CDF �le contain the information relating probe pair sets to locations on the array.

Section 2 describes the main di�erences between version 1.5 and this version (1.6).
Section 3 describes a quick way of getting started and getting expression measures. Sec-
tion 4 describes some quality control tools. Section 5 describes normalization routines.
Section 6 describes the di�erent classes in the package. 7 describes our strategy to
map probe locations to probe set membership. Section 8 describes how to change the
package's default options. Section ?? describes earlier changes.

Note: If you use this package please cite Gautier et al. (2003) and/or Irizarry et al.
(2003a).

2 Changes for a�y in BioC 1.8 release

There were relatively few changes.

� MAplot now accepts the argument plot.method which can be used to call smooth-
Scatter.

� normalize.quantiles.robust has had minor changes.

� ReadAffy can optionally return the SD values stored in the cel �le.

� The C parsing code has been moved to the a�yio package, which is now a depen-
dency of the a�y package. This change should be transparent to users as a�yio
will be automatically loaded when a�y is loaded.

� Added a cdfname argument to justRMA and ReadAffy to allow for the use of
alternative cdf packages.

3 Getting Started: From probe level data to expres-

sion values

The �rst thing you need to do is load the package.

R> library(affy) ##load the affy package

This release of the a�y package will automatically download the appropriate cdf environ-
ment when you require it. However, if you wish you may download and install the cdf
environment you need from http://bioconductor.org/help/bioc-views/release/

data/annotation/ manually. If there is no cdf environment currently built for your
particular chip and you have access to the CDF �le then you may use the makecdfenv
package to create one yourself. To make the cdf packaes, Microsoft Windows users will
need to use the tools described in http://www.murdoch-sutherland.com/Rtools/.
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3.1 Quick start

If all you want is to go from probe level data (Cel �les) to expression measures here are
some quick ways.

If you want is RMA, the quickest way of reading in data and getting expression
measures is the following:

1. Create a directory, move all the relevant CEL �les to that directory

2. If using linux/unix, start R in that directory.

3. If using the Rgui for Microsoft Windows make sure your working directory contains
the Cel �les (use �File -> Change Dir� menu item).

4. Load the library.

R> library(affy) ##load the affy package

5. Read in the data and create an expression, using RMA for example.

R> Data <- ReadAffy() ##read data in working directory

R> eset <- rma(Data)

Depending on the size of your dataset and on the memory available to your system,
you might experience errors like `Cannot allocate vector . . . '. An obvious option is to
increase the memory available to your R process (by adding memory and/or closing
external applications2. An another option is to use the function justRMA.

R> eset <- justRMA()

This reads the data and performs the `RMA' way to preprocess them at the C level.
One does not need to call ReadAffy, probe level data is never stored in an A�yBatch.
rma continues to be the recommended function for computing RMA.

The rma function was written in C for speed and e�ciency. It uses the expression
measure described in Irizarry et al. (2003b).

For other popular methods use expresso instead of rma (see Section 3.3.1). For
example for our version of MAS 5.0 signal uses expresso (see code). To get mas 5.0 you
can use

R> eset <- mas5(Data)

which will also normalize the expression values. The normalization can be turned o�
through the normalize argument.

2UNIX-like systems users might also want to check ulimit and/or compile R and the package for 64
bits when possible.
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In all the above examples, the variable eset is an object of class ExpressionSet

described in the Biobase vignette. Many of the packages in BioConductor work on
objects of this class. See the gene�lter and geneplotter packages for some examples.

If you want to use some other analysis package, you can write out the expression
values to �le using the following command:

R> write.exprs(eset, file="mydata.txt")

3.2 Reading CEL �le information

The function ReadAffy is quite �exible. It lets you specify the �lenames, phenotype,
and MIAME information. You can enter them by reading �les (see the help �le) or
widgets (you need to have the tkWidgets package installed and working).

R> Data <- ReadAffy(widget=TRUE) ##read data in working directory

This function call will pop-up a �le browser widget, see Figure 1, that provides an easy
way of choosing cel �les.
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Figure 1: Graphical display for selecting CEL �les. This widget is part of the tkWidgets

package. (function written by Jianhua (John) Zhang).

Next, a widget (not shown) permits the user to enter the phenoData. Finally the a
widget is presented for the user to enter MIAME information.

Notice that it is not necessary to use widgets to enter this information. Please
read the help �le for more information on how to read it from �at �les or to enter it
programmatically.

The function ReadAffy is a wrapper for the functions read.affybatch, tkSampleNames,
read.AnnotatedDataFrame, and read.MIAME. The function read.affybatch has some
nice feature that make it quite �exible. For example, the compression argument permit
the user to read compressed CEL �les. The argument compress set to TRUE will inform
the readers that your �les are compressed and let you read them while they remain
compressed. The compression formats zip and gzip are known to be recognized.

A comprehensive description of all these options is found in the help �le:

R> ?read.affybatch

R> ?read.AnnotatedDataFrame

R> ?read.MIAME
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3.3 Expression measures

The most common operation is certainly to convert probe level data to expression values.
Typically this is achieved through the following sequence:

1. reading in probe level data.

2. background correction.

3. normalization.

4. probe speci�c background correction, e.g. subtracting MM .

5. summarizing the probe set values into one expression measure and, in some cases,
a standard error for this summary.

We detail what we believe is a good way to proceed below. As mentioned the function
expresso provides many options. For example,

R> eset <- expresso(Dilution, normalize.method="qspline",

bgcorrect.method="rma",pmcorrect.method="pmonly",

summary.method="liwong")

This will store expression values, in the object eset, as an object of class ExpressionSet
(see the Biobase package). You can either use R and the BioConductor packages to an-
alyze your expression data or if you rather use another package you can write it out to
a tab delimited �le like this

R> write.exprs(eset, file="mydata.txt")

In the mydata.txt �le, row will represent genes and columns will represent sam-
ples/arrays. The �rst row will be a header describing the columns. The �rst column
will have the a�yIDs. The write.exprs function is quite �exible on what it writes (see
the help �le).

3.3.1 expresso

The function expresso performs the steps background correction, normalization, probe
speci�c correction, and summary value computation. We now show this using an
AffyBatch included in the package for examples. The command data(Dilution) is
used to load these data.

Important parameters for the expresso function are:

bgcorrect.method . The background correction method to use. The available meth-
ods are

> bgcorrect.methods()
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[1] "bg.correct" "mas" "none" "rma"

normalize.method . The normalization method to use. The available methods can
be queried by using normalize.methods.

> library(affydata)

Package LibPath Item

[1,] "affydata" "/home/biocbuild/bbs-3.16-bioc/R/library" "Dilution"

Title

[1,] "AffyBatch instance Dilution"

> data(Dilution) ##data included in the package for examples

> normalize.methods(Dilution)

[1] "constant" "contrasts" "invariantset" "loess"

[5] "methods" "qspline" "quantiles" "quantiles.robust"

pmcorrect.method The method for probe speci�c correction. The available methods
are

> pmcorrect.methods()

[1] "mas" "methods" "pmonly" "subtractmm"

summary.method . The summary method to use. The available methods are

> express.summary.stat.methods()

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

Here we use mas to refer to the methods described in the A�ymetrix manual version
5.0.

widget Making the widget argument TRUE, will let you select missing parameters (like
the normalization method, the background correction method or the summary
method). Figure 2 shows the widget for the selection of preprocessing methods for
each of the steps.

R> expresso(Dilution, widget=TRUE)

There is a separate vignette a�y: Built-in Processing Methods which explains
in more detail what each of the preprocessing options does.
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Figure 2: Graphical display for selecting expresso methods.

3.3.2 MAS 5.0

To obtain expression values that correspond to those from MAS 5.0, use mas5, which
wraps expresso and affy.scalevalue.exprSet.

> eset <- mas5(Dilution)

background correction: mas

PM/MM correction : mas

expression values: mas

background correcting...done.

12625 ids to be processed

| |

|####################|

To obtain MAS 5.0 presence calls you can use the mas5calls method.

> Calls <- mas5calls(Dilution)

Getting probe level data...

Computing p-values

Making P/M/A Calls

This returns an ExpressionSet object containing P/M/A calls and their associated
Wilcoxon p-values.

3.3.3 Li and Wong's MBEI (dchip)

To obtain our version of Li and Wong's MBEI one can use

R> eset <- expresso(Dilution, normalize.method="invariantset",

bg.correct=FALSE,

pmcorrect.method="pmonly",summary.method="liwong")
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This gives the current PM -only default. The reduced model (previous default) can
be obtained using pmcorrect.method="subtractmm".

3.3.4 C implementation of RMA

One of the quickest ways to compute expression using the a�y package is to use the rma
function. We have found that this method allows a user to compute the RMA expression
measure in a matter of minutes for datasets that may have taken hours in previous
versions of a�y . The function serves as an interface to a hard coded C implementation
of the RMA method (Irizarry et al., 2003b). Generally, the following would be su�cient
to compute RMA expression measures:

> eset <- rma(Dilution)

Background correcting

Normalizing

Calculating Expression

Currently the rma function implements RMA in the following manner

1. Probe speci�c correction of the PM probes using a model based on observed in-
tensity being the sum of signal and noise

2. Normalization of corrected PM probes using quantile normalization (Bolstad et al.,
2003)

3. Calculation of Expression measure using median polish.

The rma function is likely to be improved and extended in the future as the RMA
method is �ne-tuned.
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4 Quality Control through Data Exploration

For the users convenience we have included the Dilution sample data set:

> Dilution

AffyBatch object

size of arrays=640x640 features (38422 kb)

cdf=HG_U95Av2 (12625 affyids)

number of samples=4

number of genes=12625

annotation=hgu95av2

notes=

This will create the Dilution object of class AffyBatch. print (or show) will dis-
play summary information. These objects represent data from one experiment. The
AffyBatch class combines the information of various CEL �les with a common CDF

�le. This class is designed to keep information of one experiment. The probe level data
is contained in this object.

The data in Dilution is a small sample of probe sets from 2 sets of duplicate arrays
hybridized with di�erent concentrations of the same RNA. This information is part of
the AffyBatch and can be accessed with the phenoData and pData methods:

> phenoData(Dilution)

An object of class 'AnnotatedDataFrame'

sampleNames: 20A 20B 10A 10B

varLabels: liver sn19 scanner

varMetadata: labelDescription

> pData(Dilution)

liver sn19 scanner

20A 20 0 1

20B 20 0 2

10A 10 0 1

10B 10 0 2

Several of the functions for plotting summarized probe level data are useful for diag-
nosing problems with the data. The plotting functions boxplot and hist have methods
for AffyBatch objects. Each of these functions presents side-by-side graphical summaries
of intensity information from each array. Important di�erences in the distribution of in-
tensities are often evident in these plots. The function MAplot (applied, for example,
to pm(Dilution)), o�ers pairwise graphical comparison of intensity data. The option
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pairs permits you to chose between all pairwise comparisons (when TRUE) or compared
to a reference array (the default). These plots can be particularly useful in diagnosing
problems in replicate sets of arrays. The function argument plot.method can be used
to create a MAplot using a smoothScatter, rather than the default method which is to
draw every point.

> data(Dilution)

> MAplot(Dilution,pairs=TRUE,plot.method="smoothScatter")
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Figure 3: Pairwise MA plots

4.1 Accessing PM and MM Data

The PM and MM intensities and corresponding a�yID can be accessed with the pm, mm,
and probeNames methods. These will be matrices with rows representing probe pairs
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and columns representing arrays. The gene name associated with the probe pair in row
i can be found in the ith entry of the vector returned by probeNames.

> Index <- c(1,2,3,100,1000,2000) ##6 arbitrary probe positions

> pm(Dilution)[Index,]

20A 20B 10A 10B

358160 468.8 282.3 433.0 198.0

118945 430.0 265.0 308.5 192.8

323731 182.3 115.0 138.0 86.3

281340 264.0 151.0 167.0 103.3

361988 152.3 113.0 135.0 88.8

310732 275.0 155.5 194.3 124.5

> mm(Dilution)[Index,]

20A 20B 10A 10B

358800 1123.5 673.0 693.5 434.5

119585 259.0 175.3 194.0 110.3

324371 160.0 95.0 119.3 72.5

281980 180.3 102.5 109.0 74.0

362628 178.8 126.8 156.3 83.5

311372 478.0 284.0 305.0 212.3

> probeNames(Dilution)[Index]

[1] "1000_at" "1000_at" "1000_at" "1006_at" "1057_at" "1114_at"

Index contains six arbitrary probe positions.
Notice that the column names of PM and MM matrices are the sample names

and the row names are the a�yID, e.g. 1001_at and 1000_at together with the probe
number (related to position in the target sequence).

> sampleNames(Dilution)

[1] "20A" "20B" "10A" "10B"

Quick example: To see what percentage of theMM are larger than the PM simply
type

> mean(mm(Dilution)>pm(Dilution))

[1] 0.2746048

The pm and mm functions can be used to extract speci�c probe set intensities.
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> gn <- geneNames(Dilution)

> pm(Dilution, gn[100])

20A 20B 10A 10B

1090_f_at1 115.0 74.0 94.0 61.0

1090_f_at2 129.3 80.3 108.0 70.3

1090_f_at3 152.3 81.0 97.5 67.5

1090_f_at4 105.3 76.3 100.3 62.3

1090_f_at5 153.0 111.5 118.0 76.3

1090_f_at6 1984.3 1207.0 1331.3 728.0

1090_f_at7 290.5 181.0 220.0 134.3

1090_f_at8 882.3 532.0 525.0 347.0

1090_f_at9 157.3 105.3 125.0 69.3

1090_f_at10 103.5 83.0 90.0 67.0

1090_f_at11 100.0 75.5 89.0 71.0

1090_f_at12 143.5 92.8 104.3 78.0

1090_f_at13 111.0 70.8 97.0 60.5

1090_f_at14 381.5 255.0 289.0 198.0

1090_f_at15 650.0 389.3 415.0 275.0

1090_f_at16 262.0 157.0 194.8 131.5

The method geneNames extracts the unique a�yIDs. Also notice that the 100th probe
set is di�erent from the 100th probe! The 100th probe is not part of the the 100th probe
set.

The methods boxplot, hist, and image are useful for quality control. Figure 4
shows kernel density estimates (rather than histograms) of PM intensities for the 1st
and 2nd array of the Dilution also included in the package.

4.2 Histograms, Images, and Boxplots

As seen in the previous example, the sub-setting method [ can be used to extract
speci�c arrays. NOTE: Sub-setting is di�erent in this version. One can no
longer subset by gene. We can only de�ne subsets by one dimension: the
columns, i.e. the arrays. Because the Cel class is no longer available [[ is no
longer available.

The method image() can be used to detect spatial artifacts. By default we look at
log transformed intensities. This can be changed through the transfo argument.

> par(mfrow=c(2,2))

> image(Dilution)

These images are quite useful for quality control. We recommend examining these
images as a �rst step in data exploration.

The method boxplot can be used to show PM ,MM or both intensities. As discussed
in the next section this plot shows that we need to normalize these arrays.
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> hist(Dilution[,1:2]) ##PM histogram of arrays 1 and 2
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Figure 4: Histogram of PM intensities for 1st and 2nd array
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Figure 5: Image of the log intensities.
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> par(mfrow=c(1,1))

> boxplot(Dilution, col=c(2,3,4))

X20A X20B X10A X10B
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Figure 6: Boxplot of arrays in Dilution data.
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4.3 RNA degradation plots

The functions AffyRNAdeg, summaryAffyRNAdeg, and plotAffyRNAdeg aid in assessment
of RNA quality. Individual probes in a probeset are ordered by location relative to
the 5′ end of the targeted RNA molecule.A�ymetrix (1999) Since RNA degradation
typically starts from the 5′ end of the molecule, we would expect probe intensities to be
systematically lowered at that end of a probeset when compared to the 3′ end. On each
chip, probe intensities are averaged by location in probeset, with the average taken over
probesets. The function plotAffyRNAdeg produces a side-by-side plots of these means,
making it easy to notice any 5′ to 3′ trend. The function summaryAffyRNAdeg produces
a single summary statistic for each array in the batch, o�ering a convenient measure of
the severity of degradation and signi�cance level. For an example

> deg <- AffyRNAdeg(Dilution)

> names(deg)

[1] "N" "sample.names" "means.by.number" "ses"

[5] "slope" "pvalue"

does the degradation analysis and returns a list with various components. A summary
can be obtained using

> summaryAffyRNAdeg(deg)

20A 20B 10A 10B

slope -0.0239 0.0363 0.0273 0.0849

pvalue 0.8920 0.8400 0.8750 0.6160

Finally a plot can be created using plotAffyRNAdeg, see Figure 7.
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> plotAffyRNAdeg(deg)

RNA degradation plot
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Figure 7: Side-by-side plot produced by plotA�yRNAdeg.
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5 Normalization

Various researchers have pointed out the need for normalization of A�ymetrix arrays.
See for example Bolstad et al. (2003). The method normalize lets one normalize at the
probe level

> Dilution.normalized <- normalize(Dilution)

For an extended example on normalization please refer to the vignette in the a�ydata
package.

6 Classes

AffyBatch is the main class in this package. There are three other auxiliary classes that
we also describe in this Section.

6.1 A�yBatch

The A�yBatch class has slots to keep all the probe level information for a batch of
Cel �les, which usually represent an experiment. It also stores phenotypic and MIAME
information as does the ExpressionSet class in the Biobase package (the base package
for BioConductor). In fact, AffyBatch extends ExpressionSet.

The expression matrix in AffyBatch has columns representing the intensities read
from the di�erent arrays. The rows represent the cel intensities for all position on the
array. The cel intensity with physical coordinates3 (x, y) will be in row

i = x+ nrow× (y − 1)

. The ncol and nrow slots contain the physical rows of the array. Notice that this
is di�erent from the dimensions of the expression matrix. The number of row of the
expression matrix is equal to ncol×nrow. We advice the use of the functions xy2indices
and indices2xy to shuttle from X/Y coordinates to indices.

For compatibility with previous versions the accessor method intensity exists for
obtaining the expression matrix.

The cdfName slot contains the necessary information for the package to �nd the
locations of the probes for each probe set. See Section 7 for more on this.

3Note that in the .CEL �les the indexing starts at zero while it starts at 1 in the package (as indexing
starts at 1 in R).
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6.2 ProbeSet

The ProbeSet class holds the information of all the probes related to an a�yID. The
components are pm and mm.

The method probeset extracts probe sets from AffyBatch objects. It takes as
arguments an AffyBatch object and a vector of a�yIDs and returns a list of objects of
class ProbeSet

> gn <- featureNames(Dilution)

> ps <- probeset(Dilution, gn[1:2])

> #this is what i should be using: ps

> show(ps[[1]])

ProbeSet object:

id=1000_at

pm= 16 probes x 4 chips

The pm and mm methods can be used to extract these matrices (see below).
This function is general in the way it de�nes a probe set. The default is to use

the de�nition of a probe set given by A�ymetrix in the CDF �le. However, the user
can de�ne arbitrary probe sets. The argument locations lets the user decide the row
numbers in the intensity that de�ne a probe set. For example, if we are interested in
rede�ning the AB000114_at and AB000115_at probe sets, we could do the following:

First, de�ne the locations of the PM and MM on the array of the 1000_at and
1001_at probe sets

> mylocation <- list("1000_at"=cbind(pm=c(1,2,3),mm=c(4,5,6)),

+ "1001_at"=cbind(pm=c(4,5,6),mm=c(1,2,3)))

The �rst column of the matrix de�nes the location of the PMs and the second column
the MMs.

Now we are ready to extract the ProbSets using the probeset function:

> ps <- probeset(Dilution, genenames=c("1000_at","1001_at"),

+ locations=mylocation)

Now, ps is list of ProbeSets. We can see the PMs and MMs of each component using
the pm and mm accessor methods.

> pm(ps[[1]])

20A 20B 10A 10B

1 149.0 112.0 129.0 60.0

2 1153.5 575.3 1262.3 564.8

3 142.0 98.0 128.0 56.0
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> mm(ps[[1]])

20A 20B 10A 10B

4 1051 597 1269 570

5 91 77 90 46

6 136 133 117 62

> pm(ps[[2]])

20A 20B 10A 10B

4 1051 597 1269 570

5 91 77 90 46

6 136 133 117 62

> mm(ps[[2]])

20A 20B 10A 10B

1 149.0 112.0 129.0 60.0

2 1153.5 575.3 1262.3 564.8

3 142.0 98.0 128.0 56.0

This can be useful in situations where the user wants to determine if leaving out
certain probes improves performance at the expression level. It can also be useful to
combine probes from di�erent human chips, for example by considering only probes
common to both arrays.

Users can also de�ne their own environment for probe set location mapping. More
on this in Section 7.

An example of a ProbeSet is included in the package. A spike-in data set is included
in the package in the form of a list of ProbeSets. The help �le describes the data set.
Figure 8 uses this data set to demonstrate that the MM also detect transcript signal.

7 Location to ProbeSet Mapping

On A�ymetrix GeneChip arrays, several probes are used to represent genes in the form
of probe sets. From a CEL �le we get for each physical location, or cel, (de�ned by x
and y coordinates) an intensity. The CEL �le also contains the name of the CDF �le
needed for the location-probe-set mapping. The CDF �les store the probe set related
to each location on the array. The computation of a summary expression values from
the probe intensities requires a fast way to map an a�yid to corresponding probes. We
store this mapping information in R environments4. They only contain a part of the
information that can be found in the CDF �les. The cdfenvs are su�cient to perform

4Please refer to the R documentation to know more about environments.
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> data(SpikeIn) ##SpikeIn is a ProbeSets

> pms <- pm(SpikeIn)

> mms <- mm(SpikeIn)

> ##pms follow concentration

> par(mfrow=c(1,2))

> concentrations <- matrix(as.numeric(sampleNames(SpikeIn)),20,12,byrow=TRUE)

> matplot(concentrations,pms,log="xy",main="PM",ylim=c(30,20000))

> lines(concentrations[1,],apply(pms,2,mean),lwd=3)

> ##so do mms

> matplot(concentrations,mms,log="xy",main="MM",ylim=c(30,20000))

> lines(concentrations[1,],apply(mms,2,mean),lwd=3)
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Figure 8: PM and MM intensities plotted against SpikeIn concentration
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the numerical processing methods included in the package. For each CDF �le there is
package, available from http://bioconductor.org/help/bioc-views/release/data/

annotation/, that contains exactly one of these environments. The cdfenvs we store
the x and y coordinates as one number (see above).

In instances of A�yBatch, the cdfName slot gives the name of the appropriate
CDF �le for arrays represented in the intensity slot. The functions read.celfile,
read.affybatch, and ReadAffy extract the CDF �lename from the CEL �les being read.
Each CDF �le corresponds to exactly one environment. The function cleancdfname con-
verts the A�ymetrix given CDF name to a BioConductor environment and annotation
name. Here are two examples:

These give environment names:

> cat("HG_U95Av2 is",cleancdfname("HG_U95Av2"),"\n")

HG_U95Av2 is hgu95av2cdf

> cat("HG-133A is",cleancdfname("HG-133A"),"\n")

HG-133A is hg133acdf

This gives annotation name:

> cat("HG_U95Av2 is",cleancdfname("HG_U95Av2",addcdf=FALSE),"\n")

HG_U95Av2 is hgu95av2

An environment representing the corner of an Hu6800 array is available with the
package. In the following, we load the environment, look at the names for the �rst 5
objects de�ned in the environment, and �nally look at the �rst object in the environment:

> data(cdfenv.example)

> ls(cdfenv.example)[1:5]

[1] "A28102_at" "AB000114_at" "AB000115_at" "AB000220_at" "AB002314_at"

> get(ls(cdfenv.example)[1],cdfenv.example)

pm mm

[1,] 102 203

[2,] 104 205

[3,] 106 207

[4,] 108 209

[5,] 110 211

[6,] 112 213

[7,] 114 215
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[8,] 116 217

[9,] 118 219

[10,] 120 221

[11,] 122 223

[12,] 124 225

[13,] 126 227

[14,] 128 229

[15,] 130 231

[16,] 132 233

The package needs to know what locations correspond to which probe sets. The
cdfName slot contains the necessary information to �nd the environment with this lo-
cation information. The method getCdfInfo takes as an argument an AffyBatch and
returns the necessary environment. If x is an AffyBatch, this function will look for an
environment with name cleancdfname(x@cdfName).

> print(Dilution@cdfName)

[1] "HG_U95Av2"

> myenv <- getCdfInfo(Dilution)

> ls(myenv)[1:5]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

By default we search for the environment �rst in the global environment, then in a
package named cleancdfname(x@cdfName).

Various methods exist to obtain locations of probes as demonstrated in the following
examples:

> Index <- pmindex(Dilution)

> names(Index)[1:2]

[1] "1000_at" "1001_at"

> Index[1:2]

$`1000_at`

[1] 358160 118945 323731 223978 313420 349209 199525 213669 236739 298099

[11] 282744 281443 349198 297953 317054 404069

$`1001_at`

[1] 340142 236569 327449 203508 300798 276193 354374 400320 250783 379851

[11] 365637 144611 120239 189384 182903 299352
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pmindex returns a list with probe set names as names and locations in the components.
We can also get speci�c probe sets:

> pmindex(Dilution, genenames=c("1000_at","1001_at"))

$`1000_at`

[1] 358160 118945 323731 223978 313420 349209 199525 213669 236739 298099

[11] 282744 281443 349198 297953 317054 404069

$`1001_at`

[1] 340142 236569 327449 203508 300798 276193 354374 400320 250783 379851

[11] 365637 144611 120239 189384 182903 299352

The locations are ordered from 5' to 3' on the target transcript. The function mmindex

performs in a similar way:

> mmindex(Dilution, genenames=c("1000_at","1001_at"))

$`1000_at`

[1] 358800 119585 324371 224618 314060 349849 200165 214309 237379 298739

[11] 283384 282083 349838 298593 317694 404709

$`1001_at`

[1] 340782 237209 328089 204148 301438 276833 355014 400960 251423 380491

[11] 366277 145251 120879 190024 183543 299992

They both use the method indexProbes

> indexProbes(Dilution, which="pm")[1]

$`1000_at`

[1] 358160 118945 323731 223978 313420 349209 199525 213669 236739 298099

[11] 282744 281443 349198 297953 317054 404069

> indexProbes(Dilution, which="mm")[1]

$`1000_at`

[1] 358800 119585 324371 224618 314060 349849 200165 214309 237379 298739

[11] 283384 282083 349838 298593 317694 404709

> indexProbes(Dilution, which="both")[1]

$`1000_at`

[1] 358160 118945 323731 223978 313420 349209 199525 213669 236739 298099

[11] 282744 281443 349198 297953 317054 404069 358800 119585 324371 224618

[21] 314060 349849 200165 214309 237379 298739 283384 282083 349838 298593

[31] 317694 404709

The which="both" options returns the location of the PMs followed by the MMs.
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8 Con�guring the package options

Package-wide options can be con�gured, as shown below through examples.

� Getting the names for the options:

> opt <- getOption("BioC")

> affy.opt <- opt$affy

> print(names(affy.opt))

[1] "compress.cdf" "compress.cel" "use.widgets" "probesloc"

[5] "bgcorrect.method" "normalize.method" "pmcorrect.method" "summary.method"

[9] "xy.offset"

� Default processing methods:

> opt <- getOption("BioC")

> affy.opt <- opt$affy

> affy.opt$normalize.method <- "constant"

> opt$affy <- affy.opt

> options(BioC=opt)

� Compression of �les: if you are always compressing your CEL �les, you might �nd
annoying to specify it each time you call a reading function. It can be speci�ed
once for all in the options.

> opt <- getOption("BioC")

> affy.opt <- opt$affy

> affy.opt$compress.cel <- TRUE

> opt$affy <- affy.opt

> options(BioC=opt)

� Priority rule for the use of a cdf environment: The option probesloc is a list. Each
element of the list is itself a list with two elements what and where. When looking
for the information related to the locations of the probes on the array, the elements
in the list will be looked at sequentially. The �rst one leading to the information
is used (an error message is returned if none permits to �nd the information). The
element what can be one of package, environment.

9 Where can I get more information?

There are several other vignettes addressing more specialised topics related to the affy
package.

27



� a�y: Custom Processing Methods (HowTo): A description of how to use
custom preprocessing methods with the package. This document gives examples of
how you might write your own preprocessing method and use it with the package.

� a�y: Built-in Processing Methods: A document giving fuller descriptions of
each of the preprocessing methods that are available within the affy package.

� a�y: Import Methods (HowTo): A discussion of the data structures used and
how you might import non standard data into the package.

� a�y: Loading A�ymetrix Data (HowTo): A quick guide to loading A�ymetrix
data into R.

� a�y: Automatic downloading of cdfenvs (HowTo): How you can con�gure
the automatic downloading of the appropriate cdfenv for your analysis.

A Previous Release Notes

A.1 Changes in versions 1.6.x

There were very few changes.

� The function MAplot has been added. It works on instances of A�yBatch. You
can decide if you want to make all pairwise MA plots or compare to a reference
array using the pairs argument.

� Minor bugs �xed in the parsers.

� The path of cel�les is now removed by ReadA�y.

A.2 Changes in versions 1.5.x

There are some minor di�erences in what you can do but little functionality has disap-
peared. Memory e�ciency and speed have improved.

� The widgets used by ReadA�y have changed.

� The path of cel�les is now removed by ReadA�y.

A.3 Changes in versions 1.4.x

There are some minor di�erences in what you can do but little functionality has disap-
peared. Memory e�ciency and speed have improved.
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� For instances of AffyBatch the subsetting has changed. For consistency with
exprSets one can only subset by the second dimension. So to obtain the �rst
array, abatch[1] and abatch[1,] will give warnings (errors in the next release).
The correct code is abatch[,1].

� mas5calls is now faster and reproduces A�ymetrix's o�cial version much better.

� If you use pm and mm to get the entire set of probes, e.g. by typing pm(abatch)

then the method will be, on average, about 2-3 times faster than in version 1.3.
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