
Using the Streamer classes to count genomic
overlaps with summarizeOverlaps

Nishant Gopalakrishnan, Martin Morgan

November 1, 2022

1 Introduction
This vignette illustrates how users can make use of the functionality provided by the
Producer, Consumer and Stream classes in the Streamer package to process data in a
streaming fashion. The users have the option of quickly being able to create their own
class to stream process data by inheriting from the classes provided by the Streamer
package.

This example illustrates a simple BamInput class that inherits from the Producer
class and a CountGOverlap class that inherits from the Consumer class. These classes
allows us to count the number of hits in a BAM file corresponding to the ranges spec-
ified by the user and return the hits in a streaming manner on a per sequence basis.
Finally, the results for each sequence is collated and reordered using a helper function
so they appear in the same order as the ranges provided by the user. The classes that we
are going to develop in this example make use of the reference class system available
in R.

We first load the GenomicAlignments and Streamer packages.

> library(GenomicAlignments)
> library(Streamer)

2 BAMInput class
The BAMInput class will be used to read gapped alignments from a file specified by
the user in a streaming manner. i.e reads will be read one sequence at a time.

The two inputs specified by the user are

• file: a character string specifying the file from which alignments are to be read.

• ranges: the ranges from which alingments are to be

Like the design of the other classes in the Streamer package, the BamInput class
will have an initialize and a yield method. The initialize method will
be used to initialize the fields of the BamInput class and is called automatically when
objects are instantiated from this class.

1

The yield method does not take any inputs. Each call to the yield method
returns a GAlignments object for a single sequence within the ranges specified by the
user until all the sequences have been read from the BAM file at which point, an empty
GAlignments object will be returned.

> .BamInput <-
+ setRefClass("BamInput",
+ contains="Producer",
+ fields=list(
+ file="character",
+ ranges="GRanges",
+ .seqNames="character"))
> .BamInput$methods(
+ yield=function()
+ {
+ "yield data from .bam file"
+ if (verbose) msg("BamInput$.yield()")
+ if(length(.self$.seqNames))
+ {
+ seq <- .self$.seqNames[1]
+ .self$.seqNames <- .self$.seqNames[-1]
+ idx <- as.character(seqnames(.self$ranges)) == seq
+ param <- ScanBamParam(which=.self$ranges[idx],
+ what=character())
+ aln <- readGAlignments(.self$file, param=param)
+ seqlevels(aln) <- seq
+ } else {
+ aln <- GAlignments()
+ }
+ list(aln)
+ })
>

The constructor for the BamInput class takes the file and ranges as input and returns
and instance of the BamInput class.

> BamInput <- function(file, ranges,...)
+ {
+ .seqNames <- names(scanBamHeader(file)[[1]]$target)
+ .BamInput$new(file=file, ranges=ranges, .seqNames=.seqNames, ...)
+ }
>

3 CountGOverlap class
The second class we are going to develop is a Consumer class that processes the
data obtained from the BamInput class. The class calls the summarizeOverlaps

2

method with the GAlignments object, user supplied ranges and additional arguments to
control the behaviour of the summarizeOverlaps method.

The CountGOverlap class has an initialize method and a yield method.
The initialize method initializes the class with the options to be passed in to the
countGenomicOverlaps method as well as some variables for keeping track of
the order of the hits to be returned by the CountGOverlap class.

The yield method returns a DataFrame with the number of hits. The rownames
of the result returned correspond to the order of the results in the original ranges sup-
plied by the user. (These are subsequently used to reorder the results for the hits after
collating results for all the sequences)

> .CountGOverlap <-
+ setRefClass("CountGOverlap",
+ contains="Consumer",
+ fields=list(ranges="GRanges",
+ mode="character",
+ ignore.strand="logical"))
> .CountGOverlap$methods(
+ yield=function()
+ {
+ "return number of hits"
+ if (verbose) msg(".CountGOt$yield()")
+ aln <- callSuper()[[1]]
+ df <- DataFrame(hits=numeric(0))
+ if(length(aln))
+ {
+ idx <- as.character(seqnames(.self$ranges)) == levels(rname(aln))
+ which <- .self$ranges[idx]
+ olap <- summarizeOverlaps(which, aln, mode=.self$mode,
+ ignore.strand=.self$ignore.strand)
+ df <- as(assays(olap)[[1]], "DataFrame")
+ dimnames(df) <- list(rownames(olap), seqlevels(aln))
+ }
+ df
+ })
> CountGOverlap <-
+ function(ranges,
+ mode = c("Union", "IntersectionStrict",
+ "IntersectionNotEmpty"),
+ ignore.strand = FALSE, ...)
+ {
+ values(ranges)$pos <- seq_len(length(ranges))
+ .CountGOverlap$new(ranges=ranges, mode=mode,
+ ignore.strand=ignore.strand, ...)
+ }
>

3

4 Stream with BamInput and CountGOverlap
Instances of the BamInput and CountGOverlap classes can be created using their re-
spective constructors and can subsequently be hooked up to form a stream using the
Stream function provided by the Streamer package. For our example we shall make
use of a BAM file available in the Rsamtools package and create a GenomicRanges
object for the ranges that we are interested. A Stream can then be created by passing
these objects as the arguments to the Stream function.

A call to the yield function of the Stream class will yield the results obtained by
calling yield first on the BamInput class and subsequently on the CountGOverlap class
for the first sequence in the ranges provided.

> galn_file <- system.file("extdata", "ex1.bam", package="Rsamtools")
> gr <-
+ GRanges(seqnames =
+ Rle(c("seq2", "seq2", "seq2", "seq1"), c(1, 3, 2, 4)),
+ ranges = IRanges(rep(10,1), width = 1:10,
+ names = head(letters,10)),
+ strand = Rle(strand(rep("+", 5)), c(1, 2, 2, 3, 2)),
+ score = 1:10,
+ GC = seq(1, 0, length=10))
> bam <- BamInput(file = galn_file, ranges = gr)
> olap <- CountGOverlap(ranges=gr, mode="IntersectionNotEmpty")
> s <- Stream(bam, olap)
> yield(s)

DataFrame with 4 rows and 1 column
seq1

<integer>
g 0
h 0
i 0
j 32

>

5 Collate results
Each call to the yield function of the stream process data for one sequence. It would
be convenient to have a function that processed data for all the sequences in the ranges
provided and collated the results so that they are ordered correctly. (same order as the
ranges provided). We proceed to create this helper overlapCounter function that
takes a BAMInput and CountGOverlap class objects as inputs.

> overlapCounter <- function(pr, cs) {
+ s <- Stream(pr, cs)

4

+ len <- length(levels(seqnames(pr$ranges)))
+ lst <- vector("list", len)
+ for(i in 1:len) {
+ lst[[i]] <- yield(s)
+ names(lst[[i]]) <- "Count"
+ }
+ do.call(rbind, lst)[names(cs$ranges), ,drop=FALSE]
+ }
> bam <- BamInput(file = galn_file, ranges = gr)
> olap <- CountGOverlap(ranges=gr, mode="IntersectionNotEmpty")
> overlapCounter(bam, olap)

DataFrame with 10 rows and 1 column
Count

<integer>
a 0
b 0
c 0
d 0
e 0
f 87
g 0
h 0
i 0
j 32

5

	Introduction
	BAMInput class
	CountGOverlap class
	Stream with BamInput and CountGOverlap
	Collate results

