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1 Introduction

Consider the problem of comparing the degree and signi�cance of overlap
between two lists of same length. In the following, we will assume that one
list consists of di�erential expression statistics between two conditions for
each gene. A second list consists of di�erential expression statistics between
two di�erent conditions for the same genes. A possible way of comparison
would be to test the hypothesis that the ordering of lists by their di�erential
expression statistics is arbitrary. The test can be performed against a one
sided hypothesis (an over-enrichment hypothesis), or a two sided hypothesis
(looking for under- or over-enrichment). This is the purpose of this package,
based on the work of Plaisier et al. [2010].

The proposed approach is to count the number of common genes in the
�rst i×stepsize and j×stepsize elements of the �rst and second list respec-
tively, where stepsize is an arbitrary user inputted number. As the count of
common elements could be driven by chance, the signi�cance of the observed
count is computed assuming the hypothesis of completely random list order-
ings. As this is performed for all i × stepsize and j × stepsize, correction
for multiple comparisons is necessary.

The package o�ers both FWER control1 using permutation testing and
FDR control using the B-Y procedure [Benjamini and Yekutieli, 2001] as
proposed in the original work by Plaisier et al. [2010].

Remark 1.1. FDR or FWER?
For brevity, i and j will denote i×stepsize and j×stepsize respectively.

1For a general introduction to multiple testing error rates, see [Rosenblatt, 2013].
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Plaisier et al. [2010] recommend the control of the FDR over the di�erent
is and js. Each i, j combination tests the null hypothesis of �arbitrary rank-
ings of the two lists�, versus an alternative of �non-arbitrary ranking in the
�rst i and j elements of the �rst and second list respectively�. FDR control is
thus appropriate if concerned with the number of false i, j statements made.

If only concerned with the existence of any non-arbitrariness, without
claiming at which part of the lists it resides, than FWER control is more
appropriate.

2 Comparing Two Lists

We start with a sketch of the work�ow. The details follow.

� Compute the marginal signi�cance of the gene overlap for all i and j
�rst elements of the two lists.

� Correct the marginal signi�cance levels for the multiple is and js.

� Report �ndings using the exported signi�cance matrices and accompa-
nying Venn diagrams.

> library(RRHO)

> # Create "gene" lists:

> list.length <- 100

> list.names <- paste('Gene',1:list.length, sep='')

> gene.list1<- data.frame(list.names, sample(100))

> gene.list2<- data.frame(list.names, sample(100))

> # Compute overlap and significance

> RRHO.example <- RRHO(gene.list1, gene.list2,

+ BY=TRUE, alternative='enrichment')

> # Examine Nominal (-log) pvalues

> lattice::levelplot(RRHO.example$hypermat)

> # Note: If lattice is available try:

> # levelplot(RRHO.example$hypermat)
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> # FWER corrected pvalues using 50 random permutations:

> pval.testing <- pvalRRHO(RRHO.example, 50)

> pval.testing$pval

[1] 0.84

> # The sampling distribution of the minimum

> # of the (-log) nominal p-values:

> xs<- seq(0, 10, length=100)

> plot(Vectorize(pval.testing$FUN.ecdf)(xs)~xs,

+ xlab='-log(pvalue)', ylab='ECDF', type='S')

> # Examine B-Y corrected pvalues

> # Note: probably nothing will be rejected in this

> # example as the data is generated from the null.

> lattice::levelplot(RRHO.example$hypermat.by)
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Remark 2.1. As of version 1.4.0 a two-sided hypothesis test is now possible.
The computation of the p-values di�er from that described in Plaisier et al.
[2010]. The algorithm propsed in [Plaisier et al., 2010, Section Hypergeomet-
ric probability distributions] does not control the type I error as demonstrated
in the following simulation:

> m<- 100 ; n<- 100; k<- 50

> data<- rhyper(1000, m, n, k)

> pvals<- pmin(phyper(data,m,n,k, lower.tail=TRUE),

+ phyper(data,m,n,k, lower.tail=FALSE))

> alpha<- 0.05

> prop.table(table(pvals<alpha))

FALSE TRUE

0.883 0.117

We thus replace the proposed algorithm by the simple summation of the two
tails of the distribution:
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> getPval<- function(count,m,n,k){

+ the.mean<- k*m/(m+n)

+ if(count<the.mean){

+ lower<- count

+ upper<- 2*the.mean-count

+ } else{

+ lower<- 2*the.mean-count

+ upper<- count

+ }

+ phyper(q=lower, m=m, n=n, k=k, lower.tail=TRUE) +

+ phyper(q= upper, m=m, n=n, k=k, lower.tail=FALSE)

+ }

> pvals<- sapply(data, getPval, m,n,k)

> prop.table(table(pvals<alpha))

FALSE TRUE

0.969 0.031

3 Comparing Three Lists

As of version 1.4.0, a comparison of three lists is possible as described by JL
Stein et al. [2014]. This comprison tests whether the di�erence between
lists 1 and 3 is di�erent than the di�erences between 2 and 3. Rejecting this
hypothesis implies that that the di�erence between 1 and 2 are non arbitrary.

> size<- 500

> list1<- data.frame(

+ GeneIdentifier=paste('gen',1:size, sep=''),

+ RankingVal=-log(runif(size)))

> list2<- data.frame(

+ GeneIdentifier=paste('gen',1:size, sep=''),

+ RankingVal=-log(runif(size)))

> list3<- data.frame(

+ GeneIdentifier=paste('gen',1:size, sep=''),

+ RankingVal=-log(runif(size)))

> rrho.comparison<- RRHOComparison(list1,list2,list3,

+ stepsize=10,

+ labels=c("list1",

+ "list2",

+ "list3"),
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+ plots=FALSE,

+ outputdir=temp.dir);

> ## The standard RRHO map between list1 and list 3.

> lattice::levelplot(rrho.comparison$hypermat1)
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> ## The p-value of the difference between

> # (list1-list3)-(list2-list3).

> lattice::levelplot(rrho.comparison$Pdiff)
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