
R453Plus1Toolbox
A package for importing and analyzing data from

Roche’s Genome Sequencer System

Hans-Ulrich Klein, Christoph Bartenhagen, Christian Ruckert

December 05, 2013

Contents
1 Introduction 3

2 Analysis of PCR amplicon projects 3
2.1 Importing a Roche Amplicon Variant Analyzer project 3

2.1.1 Import from AVA without AVA-CLI (version 2.5 and lower) . 3
2.1.2 Import from AVA with AVA-CLI 3
2.1.3 Import from AVA with projects exported via AVA-CLI 4

2.2 The AVASet class . 4
2.3 Subsetting an AVASet . 8
2.4 Setting filters on an AVASet . 9
2.5 Variant coverage . 10
2.6 Annotations and Variant Reports . 10
2.7 Plotting . 11

2.7.1 Plot amplicon coverage . 11
2.7.2 Plot variation frequency . 12
2.7.3 Plot variant locations . 12

2.8 VCF export . 16

3 Analysis of GS Mapper projects 16
3.1 Importing a GS Reference Mapper project 16
3.2 The MapperSet class . 16
3.3 Setting filters and subsetting a MapperSet 18
3.4 Annotations and Variant Reports . 18

4 Detection of structural variants 19
4.1 Data preparation . 19
4.2 Computing and assessing putative structural variants 20
4.3 Visualization of breakpoints . 23

1

5 Analysis and manipulation of SFF files 23
5.1 Importing SFF files . 23
5.2 The SFF container . 25
5.3 Writing SFF files . 26
5.4 Quality control of SFF files . 26

2

1 Introduction
The R453Plus1 Toolbox comprises useful functions for the analysis of data generated
by Roche’s 454 sequencing platform. It adds functions for quality assurance as well as
for annotation and visualization of detected variants, complementing the software tools
shipped by Roche with their product. Further, a pipeline for the detection of structural
variants is provided.

> library(R453Plus1Toolbox)

2 Analysis of PCR amplicon projects
This section deals with the analysis of projects investigating massively parallel data
generated from specifically designed PCR products.

2.1 Importing a Roche Amplicon Variant Analyzer project
The function AVASet imports data from Roche’s Amplicon Variant Analyzer (AVA).
This can be done in three ways, depending on the version of your AVA software:

2.1.1 Import from AVA without AVA-CLI (version 2.5 and lower)

For projects created with the AVA software version ≤ 2.5, AVASet expects only a
dirname pointing to the project data, i.e. a directory that contains the following files
and subdirectories:

• "Amplicons/ProjectDef/ampliconsProject.txt"

• "Amplicons/Results/Variants/currentVariantDefs.txt"

• "Amplicons/Results/Variants"

• "Amplicons/Results/Align"

There is an example project "AVASet" included in the R453Plus1Toolbox installation
directory:

> projectDir = system.file("extdata", "AVASet", package = "R453Plus1Toolbox")
> avaSet = AVASet(dirname=projectDir)

2.1.2 Import from AVA with AVA-CLI

The function AVASet can directly access the AVA Command Line Interface (AVA-
CLI) from within R. If the AVA software is installed on the same machine that runs R,
the easiest way to import a project is to specify the project directory with dirname
and the path to the binaries in the AVA software’s installation directory with avaBin.

3

It is usually the directory "bin" containing the AVA-CLI command interpreter "doAm-
plicon".
Let’s say the AVA software was installed to the directory "/home/User/AVA". Then,
the function call looks like:

> projectDir = "My/AVA/Project"
> avaSet = AVASet(dirname=projectDir, avaBin="/home/User/AVA/bin")

2.1.3 Import from AVA with projects exported via AVA-CLI

If the AVA software is not installed on the same machine that runs R, all data must be
exported manually using AVA-CLI. It can be accessed via the command line interpreter
"doAmplicon" from the AVA software’s installation directory. Within the AVA-CLI,
load your project with the command "open". AVASet expects five files (variant infor-
mation is optional):

AVASet argument AVA-CLI command Description
file_sample list sample -outputFile sample.csv Table with sample names and

annotations
file_amp list amplicon -outputFile amp.csv Table with primer sequences,

positions and annotations
file_reference list reference -outputFile reference.csv Reference sequences
file_variant list variant -outputFile variant.csv Detected variants (if available)
file_variantHits report variantHits -outputFile variantHits.csv Variant hits for all samples (if

available)

Table 1: AVASet function arguments for loading projects exported via AVA-CLI.

Note, that all exported tables are expected to be in csv-format.
There is an example project "AVASet_doAmplicon" included in the R453Plus1Toolbox
installation directory:

> projectDir = system.file("extdata", "AVASet_doAmplicon", package="R453Plus1Toolbox")
> avaSetExample = AVASet(dirname=projectDir, file_sample="sample.csv",

file_amp="amp.csv", file_reference="reference.csv", file_variant="variant.csv",
file_variantHits="variantHits.csv")

AVASet searches the specified dirname for the exported csv-files. file_variant
file_variantHits can be omitted if no variant information is available for the
project.

2.2 The AVASet class
The AVASet class defines a container to store data imported from projects conducted
with Roche’s AVA software. It extends the Biobase eSet to store all relevant informa-
tion.

> avaSet

4

AVASet (storageMode: list)
assayData: 259 features, 6 samples

element names: variantForwCount, totalForwCount, variantRevCount, totalRevCount
protocolData: none
phenoData

sampleNames: Sample_1 Sample_2 ... Sample_6 (6
total)

varLabels: SampleID MID1 ... Annotation (7 total)
varMetadata: labelDescription

featureData
featureNames: C1438 C369 ... C763 (259 total)
fvarLabels: name canonicalPattern ...

referenceBases (7 total)
fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:
An object of class 'AnnotatedDataFrame'

rowNames: TET2_E11.04 TET2_E06 TET2_E11.03 TET2_E04
varLabels: ampID primer1 ... targetEnd (6 total)
varMetadata: labelDescription

class: AlignedRead
length: 4 reads; width: 339..346 cycles
chromosome: NA NA NA NA
position: 1 1 1 1
strand: NA NA NA NA
alignQuality: NumericQuality
alignData varLabels: name refSeqID gene

An object of class AVASet consists of three main components:

1. Variants:
The variants part stores data about the found variants and is accessible by the
functions assayData, featureData and phenoData known from Biobase
eSet.
The assayData slot contains four matrices with variants as rows and samples
as columns:

• variantForwCount: Matrix containing the number of reads with the respec-
tive variant in forward direction.

• variantRevCount: Matrix containing the number of reads with the respec-
tive variant in reverse direction.

• totalForwCount: Matrix containig the total coverage for every variant lo-
cation in forward direction.

• totalRevCount: Matrix containing the total coverage for every variant loca-
tion in reverse direction.

5

> assayData(avaSet)$totalForwCount[1:3,]

Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 Sample_6
C1438 119 1516 137 1729 1288 140
C369 267 1152 195 1518 1016 190
C595 258 1805 230 1885 1775 221

The featureData slot provides additional information on the variants. fData
returns a data frame with variants as rows and the following columns:

• name/canonicalPattern: Short identifiers of a variant including the position
and the bases changed.

• referenceSeq: Gives the identifier of the reference sequence (see below).
• start/end: The position of the variant relative to the reference sequence.
• variantBase/referenceBases: The bases changed in the variant.

> fData(avaSet)[1:3,]

name canonicalPattern referenceSeqID start end
C1438 303:T/C s(303,C) I37 303 303
C369 309:T/C s(309,C) I36 309 309
C595 108:T/C s(108,C) I40 108 108

variantBase referenceBases
C1438 C T
C369 C T
C595 C T

The phenoData slot provides sample-IDs, multiplexer IDs (MID1, MID2), the
pico titer plate (PTP) accession number, the lane, the read group and additional
textual annotation for each sample. Most of these informations are imported
directly from Roche’s software.

> pData(avaSet)

SampleID MID1 MID2 PTP_AccNum Lane ReadGroup
Sample_1 I9646 Mid3 Mid3 GGSFDBH 07
Sample_2 I116 Mid1 Mid1 GA0582C 01
Sample_3 I9644 Mid1 Mid1 GGSFDBH 07
Sample_4 I118 Mid3 Mid3 GA0582C 01
Sample_5 I117 Mid2 Mid2 GA0582C 01
Sample_6 I9645 Mid2 Mid2 GGSFDBH 07

Annotation
Sample_1
Sample_2
Sample_3
Sample_4
Sample_5
Sample_6

6

2. Amplicons:
This part stores information about the used amplicons and is accessible by the
functions assayDataAmp and fDataAmp.
The slot assayDataAmp contains two matrices with amplicons as rows and
samples as columns:

• forwCount: Matrix containing the number of reads for each amplicon and
each sample in forward direction.

• revCount: Matrix containing the number of reads for each amplicon and
each sample in reverse direction.

> assayDataAmp(avaSet)$forwCount

Sample_1 Sample_2 Sample_3 Sample_4 Sample_5
TET2_E11.04 119 1516 137 1729 1288
TET2_E06 248 400 224 478 339
TET2_E11.03 267 1152 195 1518 1016
TET2_E04 258 1805 230 1885 1775

Sample_6
TET2_E11.04 140
TET2_E06 204
TET2_E11.03 190
TET2_E04 221

The slot featureDataAmp contains an AnnotatedDataFrame with additional
information on each amplicon:

• ampID: The identifier of the current amplicon.

• primer1, primer2: The primer sequences for each amplicon.

• referenceSeqID: The identifier of the reference sequence (see below).

• targetStart/targetEnd: The coordinates of the target region.

> fDataAmp(avaSet)

ampID primer1
TET2_E11.04 I90 CATTCACCTTCTCACATAATCCA
TET2_E06 I81 TGCAAGTGACCCTTGTTTTG
TET2_E11.03 I89 GCTCAGTCTACCACCCATCC
TET2_E04 I79 GGGGTTAAGCTTTGTGGATG

primer2 referenceSeqID
TET2_E11.04 GAATTGACCCATGAGTTGGAG I37
TET2_E06 AACCAAAGATTGGGCTTTCC I42
TET2_E11.03 AGATGCAGGGCATGAAGAGA I36
TET2_E04 TTGTGACTCTCTGGTGAATAGCA I40

targetStart targetEnd
TET2_E11.04 24 325

7

TET2_E06 21 321
TET2_E11.03 21 319
TET2_E04 21 322

As both refer to the same samples, the variants phenoData slot is used for ampli-
cons as well.

3. Reference sequences:
This part stores data about the reference sequences the amplicons were selected
from. All information is stored into an object of class AlignedRead. The reads
are accessible via sread. To retrieve additional information from Ensembl
about the chromosome, the position and the strand of each reference sequence
run function alignShortReads (see section 2.6 for details).

> library(ShortRead)
> referenceSequences(avaSet)

class: AlignedRead
length: 4 reads; width: 339..346 cycles
chromosome: NA NA NA NA
position: 1 1 1 1
strand: NA NA NA NA
alignQuality: NumericQuality
alignData varLabels: name refSeqID gene

> sread(referenceSequences(avaSet))

DNAStringSet object of length 4:
width seq names

[1] 345 GGGGTTAAGCTTT...CAGAGAGTCACAA I40
[2] 346 CATTCACCTTCTC...CATGGGTCAATTC I37
[3] 339 GCTCAGTCTACCA...ATGCCCTGCATCT I36
[4] 341 TGCAAGTGACCCT...CCAATCTTTGGTT I42

The following table sums up the available slots and accessor functions:

2.3 Subsetting an AVASet
A subset of an AVASet object can be generated using the common "[]"-notation:

> avaSubSet = avaSet[1:10, "Sample_1"]

The first dimension refers to the variants and the second dimension to the samples, so
an AVASet with ten variants and one sample is returned.
This is a short and to some extend equivalent version of the function subset, which
expects a subset argument and the respective dimension (either "variants", "sam-
ples" or "amplicons"):

8

Function/Slot Description
assayData Contains the number of reads and the total cover-

age for every variant and each sample in forward
and reverse direction.

fData/featureData Contains information about the type, position and
reference of each variant.

pData/phenoData Contains sample-IDs, multiplexer IDs (MID1,
MID2), the pico titer plate (PTP) accession num-
ber, the lane, the read group and additional textual
annotation for each sample.

assayDataAmp Contains the number of reads for every amplicon
and each sample in forward/reverse direction.

fDataAmp/featureDataAmp Contains the primer sequences, reference se-
quence and the coordinates of the target region for
each amplicon.

referenceSequences Contains the reference sequences for the ampli-
cons together with additional annotations.

Table 2: AVASet contents and accessor functions.

> avaSubSet = subset(avaSet, subset=1:10, dimension="variants")

The following is equivalent to the "[]"-example above:

> avaSubSet = subset(subset(avaSet, subset=1:10, dimension="variants"), subset="Sample_1",
dimension="samples")

In contrast to the "[]"-Notation, the function subset allows further subsetting by
amplicons:

> avaSubSet = subset(avaSet, subset=c("TET2_E11.04", "TET2_E06"), dimension="amplicons")

When subsetting by amplicons all variants referring to amplicons that are not in the
subset will be excluded.

2.4 Setting filters on an AVASet
Another way of generating a subset of an AVASet object is filtering only those variants,
whose coverage (in percent) in forward and reverse direction respectively is higher
than a given filter value in at least one sample. Here, the coverage is defined as
the percentual amount of the reads with the given variant on the number of all reads
covering the variant’s position.
The function setVariantFilter returns an updated AVASet object that meets the
given requirements:

> avaSetFiltered1 = setVariantFilter(avaSet, filter=0.05)

9

The above example returns an AVASet, which only contains variants whose coverage is
greater than 5% in at least one sample.
Passing a vector of two filter values applies filtering according to forward and
reverse read direction separately:

> avaSetFiltered2 = setVariantFilter(avaSet, filter=c(0.1, 0.05))

In fact, when filtering an AVASet, the whole object is still availabe. The filter only af-
fects the output given by accessor functions like fData, featureData and assayData.
The process can be reversed and the filter value(s) can be reset to zero by calling

> avaSet = setVariantFilter(avaSetFiltered1, filter=0)

or simply

> avaSet = setVariantFilter(avaSetFiltered2)

2.5 Variant coverage
The function getVariantPercentages displays the coverage of the variants for
a given direction (either "forward", "reverse", or "both"):

> getVariantPercentages(avaSet, direction="both")[20:25, 1:4]

Sample_1 Sample_2 Sample_3 Sample_4
C386 0.00000000 0.000000000 0.00000000 0.00000000
C1808 0.00000000 0.000000000 0.00000000 0.00000000
C1338 0.00000000 0.002405774 0.45720251 0.00000000
C1052 0.03202847 0.044400452 0.03076923 0.06076519
C818 0.00000000 0.003019628 0.00000000 0.00000000
C681 0.00000000 0.000000000 0.00000000 0.00000000

In the example above, getVariantPercentages is simply a short form of calcu-
lating

> (assayData(avaSet)[[1]] + assayData(avaSet)[[3]]) / (assayData(avaSet)[[2]]
+ assayData(avaSet)[[4]])

2.6 Annotations and Variant Reports
Before creating the variant and quality report, the reference sequences must be aligned
against a reference genome and afterwards the variants have to be annotatetd.
The method alignShortReads aligns the reference sequences from an AVASet
against a given reference genome. Only exact (no errors) and unique matches are re-
turned. In the example below the hg19 assembly as provided by UCSC from package
BSgenome.Hsapiens.UCSC.hg19 is used as reference:

> library(BSgenome.Hsapiens.UCSC.hg19)
> seqNames = names(Hsapiens)[1:24]
> avaSet = alignShortReads(avaSet, bsGenome=Hsapiens,

seqNames=seqNames, ensemblNotation=TRUE)

10

The function annotateVariants annotates genomic variants (mutations) given in
a data frame or more likely an AVASet. Annotation includes affected genes, exons and
codons. Resulting amino acid changes are returned as well as dbSNP identifiers if the
mutation is already known. All information is fetched from Ensembl via biomaRt and
returned in an object of class AnnotatedVariants. It is advisible to filter the AVASet (see
section 2.4) prior to that since the annotation process is very time consuming for a large
number (>500) of variants.

> avaSet = setVariantFilter(avaSet, filter=0.05)
> avaAnnot = annotateVariants(avaSet)

For an AVASet with corresponding annotated variants, the function htmlReport cre-
ates a html report containing variant and quality information.
The report is structured into three pages:

1. Variant report by reference: This page sums up additional information for each
variant including name, type, reference gene, position, changed nucleotides and
affected samples. In addition, every variant is linked to a page with further details
about the affected genes and transcripts (e.g. Ensembl gene-IDs, transcript-IDs,
codon sequences, changes of amino acids (if coding)).

2. Variant report by sample: The upper fraction of this page presents an overview
of all samples together with links to individual amplicon coverage plots for each
sample. In the lower fraction the found variants are listed for each sample seper-
ately in the same way as described in the variant report by reference above.

3. Quality report: The report shows the coverage of every amplicon in forward
and/or reverse direction. Further plots display the coverage by MID and PTP (if
this information is given in the pheno data of the object).

The following command creates a report containing only variants covered by at least
5% of the reads using the argument minMut (minMut=3 is the default value). The
argument blocks can be used to structure the page by assigning each variant to a
block. In this example the corresponding genes for each variant are used to create
blocks, resulting in only one block in the example data set:

> blocks = as.character(sapply(annotatedVariants(avaAnnot),
function(x) x$genes$external_gene_id))

> htmlReport(avaSet, annot=avaAnnot, blocks=blocks, dir="htmlReportExampleAVA",
title="htmlReport Example", minMut=3)

2.7 Plotting
2.7.1 Plot amplicon coverage

The function plotAmpliconCoverage creates a plot showing the coverage (num-
ber of reads) per amplicon, MID or PTP. This results in a barplot if the AVASet contains
only one sample or in a boxplot for all other cases.

11

> plotAmpliconCoverage(avaSet[, 2], type="amplicon")

> plotAmpliconCoverage(avaSet, bothDirections=TRUE, type="amplicon")

2.7.2 Plot variation frequency

Given a Roche Amplicon Variant Analyzer Global Alignment export file, the function
plotVariationFrequency creates a plot similar to the variation frequency plot
in Roche’s GS Amplicon Variant Analyzer. The plot shows the reference sequence
along the x-axis and indicates variants as bars at the appropriate positions. The height
of the bars corresponds to the percentage of reads carrying the variant. A second y-axis
indicates the absolute number of reads covering the variant. plotRange defines the
start and end base of the reference sequence that should be plotted.

> file = system.file("extdata", "AVAVarFreqExport", "AVAVarFreqExport.xls",
package="R453Plus1Toolbox")

> plotVariationFrequency(file, plotRange=c(50, 150))

2.7.3 Plot variant locations

The function plotVariants illustrates the positions and types of mutations within
a given gene and transcript (specified by an Ensembl gene/transcript id). The
plot shows only coding regions (thus, units are amino acids / codons). The coding re-
gion is further divided into exons labeled with their rank in the transcript. An attribute
regions allows to highlight special, predefined areas on the transcript like for exam-
ple protein domains.

The function can be used in two ways:
It offers the most functionality when used as a "standalone" function by passing all mu-
tations as a data frame. This mode allows an individual and detailed annotation of the
mutations like labels, colors and user defined mutation types. It requires the columns
"label", "pos" "mutation" and "color". It is recommended to add more detailed info
for each mutation type by preparing a data frame for the parameter mutationInfo
which requires the three columns "mutation", "legend" and "color".
The following example calls plotVariants for the gene TET2 having th Ensembl
id "ENSG00000168769" and transcript "ENST00000513237" (see Figure 4 below):

> data(plotVariantsExample)

> geneInfo = plotVariants(data=variants, gene="ENSG00000168769",
transcript="ENST00000513237", regions=regions,
mutationInfo=mutationInfo, horiz=TRUE, cex=0.8)

Especially for integration into the R453Plus1Toolbox and for compatibility to older
versions plotVariants also accepts annotated variants of class annotatedVariants
(see section 2.6). The function then only distinguishes missense, nonsense and silent
point mutations and deletions and does not include mutation labels.

12

TE
T2

_E
04

TE
T2

_E
06

TE
T2

_E
11

.0
3

TE
T2

_E
11

.0
4

Sample_2

N
um

be
r o

f r
ea

ds
 (c

ov
er

ag
e)

0
10

00
20

00
30

00
40

00

forward reads
reverse reads

Figure 1: Barplot of the amplicon coverage for sample 2.

TE
T2

_E
04

TE
T2

_E
04

TE
T2

_E
06

TE
T2

_E
06

TE
T2

_E
11

.0
3

TE
T2

_E
11

.0
3

TE
T2

_E
11

.0
4

TE
T2

_E
11

.0
4

0
50

0
10

00
15

00
20

00
25

00

Amplicon coverage

N
um

be
r o

f r
ea

ds
 (c

ov
er

ag
e)

forward reads
reverse reads

Figure 2: Boxplot of the coverage for four amplicons seperated by read direction.

13

Reference sequence (position 50−150)

V
ar

ia
tio

n
(%

)

0
5

10
15

20

TTTTTATTATAAGGCCTGCTGAAAATGACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGC−CTTGACGATACAGCTAATTCAGAA

0
75

0
15

00

N
um

be
r

of
 r

ea
ds

 (
co

ve
ra

ge
)

Figure 3: Plot of the variation frequency for a given reference sequence.

14

1 200 500 800 1100 1400 1700 2000

TET2 2024aa

3 10 11

C
>

T

A
>

G
A

>
G

(2
)

de
lG

Missense
Nonsense
Silent
Deletion

region1 region2

Figure 4: Plot of the variants for gene TET2 by passing mutations as a data frame. This
version includes mutation labels and allows user defined mutation types.

15

2.8 VCF export
The variant call format (VCF) is a generic file format for storing DNA polymor-
phism data such as SNPs, insertions, deletions and structural variants, together with
rich annotations ([Danecek et al., 2011]). The following command exports all vari-
ants stored in an AVASet object into a vcf file with the given name. Make sure to run
alignShortReads first and optional add dbSNP identifiers with annotateVariants
(see section 2.6 for details)

> ava2vcf(avaSet, filename="variants.vcf", annot=avaAnnot)

3 Analysis of GS Mapper projects
Mapping projects allow the alignment of arbitrary reads from one or more sequencing
runs to a given reference sequence.

3.1 Importing a GS Reference Mapper project
The function MapperSet imports data from Roche’s GS Reference Mapper. The
GS Mapper software stores information for each sample in a seperate directory, so
MapperSet expects a character vector dirs containing the directories of all sam-
ples to read in, i.e. directories containing the files:

• "mapping/454HCDiffs.txt"

• "mapping/454NewblerMetrics.txt"

Furthermore the parameter samplenames allows the seperate specification of sample
names. if missing, the directory names are taken. The following example imports a
project containing 3 samples (N01, N03, N04) with a total of 111 variants:

> dir_sample01 = system.file("extdata", "MapperSet", "N01", package = "R453Plus1Toolbox")

> dir_sample03 = system.file("extdata", "MapperSet", "N03", package = "R453Plus1Toolbox")

> dir_sample04 = system.file("extdata", "MapperSet", "N04", package = "R453Plus1Toolbox")

> dirs = c(dir_sample01, dir_sample03, dir_sample04)

> mapperSet = MapperSet(dirs=dirs, samplenames=c("N01", "N03", "N04"))

3.2 The MapperSet class
An object of class MapperSet ia a container to store data imported from a project of
Roche’s GS Reference Mapper Software. It directly extends the Biobase eSet class and
as such provides the following slots:

16

1. The assayData slot contains four matrices with variants as rows and samples
as columns:

• variantForwCount/variantRevCount: Matrices containing the number of
reads with the respective variant in forward/reverse direction.

• totalForwCount/totalRevCount: Matrices containing the total read cover-
age for every variant location in forward/reverse direction.

2. The featureData slot holds the variants as rows together with additional in-
formation on each variant within the following columns:

• chromosome/start/end/strand: Give the location of each variant.
• referenceBases/variantBase: Show the base(s) changed in each variant.
• regName: The name of the region (gene) where the variant is located.
• knownSNP: Contains dbSNP reference cluster ids for known SNPs as given

by the GS Mapper software (if any).

3. The phenoData slot contains additional information about the samples repre-
sented as rows:

• By default, the phenoData slot only contains an accession number indicat-
ing the PTP of every sample.

> mapperSet

MapperSet (storageMode: list)
assayData: 111 features, 3 samples

element names: variantForwCount, totalForwCount, variantRevCount, totalRevCount
protocolData: none
phenoData

sampleNames: N01 N03 N04
varLabels: accessionNumber
varMetadata: labelDescription

featureData
featureNames: 1 2 ... 111 (111 total)
fvarLabels: chr strand ... knownSNP (8 total)
fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

As the MapperSet is derived from the Biobase eSet the methods used to access or
to manipulate the elements of a MapperSet object remain the same:

> assayData(mapperSet)$variantForwCount[1:4,]

N01 N03 N04
1 9 7 7
2 9 6 6
3 11 3 5
4 7 5 11

17

> assayData(mapperSet)$totalForwCount[1:4,]

N01 N03 N04
1 9 7 7
2 9 6 6
3 11 5 5
4 7 7 11

> fData(mapperSet)[1:4,]

chr strand start end referenceBases variantBase
1 1 + 11846252 11846252 G A
2 1 + 11846447 11846447 G A
3 1 + 11847340 11847340 --- AGA
4 1 + 11847759 11847759 C T

regName knownSNP
1 MTHFR rs4846048
2 MTHFR rs4845884
3 MTHFR rs70983598
4 MTHFR rs3737966

> pData(mapperSet)

accessionNumber
N01 FZY3Q2K01
N03 FZY3Q2K01
N04 FZY3Q2K02

3.3 Setting filters and subsetting a MapperSet
The MapperSet uses the same methods for filtering and subsetting as the AVASet (see
section 2.3 and 2.4 for details).

3.4 Annotations and Variant Reports
Before creating the variant and quality report, the variants have to be annotatetd us-
ing function annotateVariants. Annotation includes affected genes, exons and
codons. Resulting amino acid changes are returned as well as dbSNP identifiers, if the
mutation is already known. All information is fetched from Ensembl via biomaRt and
returned in an object of class AnnotatedVariants. It is advisible to filter the Mapper-
Set (see section 3.3) since the annotation process is very time consuming for a large
number (>500) of variants.

> mapperAnnot = annotateVariants(mapperSet)

For a MapperSet with corresponding annotated variants, the function htmlReport
creates a html report containing detailed variant information.
The report is structured into two pages:

18

1. Variant report by reference: This page sums up additional information for each
variant including name, type, reference gene, position, changed nucleotides and
affected samples. Furthermore every variant is linked to a page with further de-
tails about the affected genes and transcripts (e.g. Ensembl gene-IDs, transcript-
IDs, codon sequences, changes of amino acids (if coding)).

2. Variant report by sample: The upper fraction of this page presents an overview
of all samples. In the lower fraction the found variants are listed for each sample
seperately in the same way as described in the variant report by reference above.

The following command creates a report containing only variants covered by at
least 3% of the reads using the argument minMut (minMut=3 is also the default
value):

> htmlReport(mapperSet, annot=mapperAnnot, dir="htmlReportExampleMapper",
title="htmlReport Example", minMut=3)

4 Detection of structural variants
Structural variants like translocations or inversions can be detected using non-paired
reads if at least one read spans the breakpoint of the variant. These reads originate
from two different locations on the reference genome and are called ’chimeric reads’.

4.1 Data preparation
Before breakpoints can be detected, the generated raw sequences must be preprocessed
and aligned. Of course, data preprocessing depends on the applied laboratory proto-
cols. The exemplary data set used in this vignette is a subset of the data set presented
by Kohlmann et al. ([Kohlmann et al., 2009]) and is described in detail therein.

In our example data set, each region of the pico titer plate contains reads from
three different samples which were loaded into that region. To reallocate reads to
samples, each sample has a unique multiplex sequence prefixing all reads from that
sample. This allocation process is called demultiplexing. In the code section below, the
multiplexed sequences are read in and demultiplexed according to the given multiplex
sequences (MIDs) using the demultiplexReads method. The standard multiplex
sequences used by the Genome Sequence MID library kits can be retrieved by calling
genomeSequencerMIDs. The last two commands show that all reads could be suc-
cessfully demultiplexed.

> fnaFile = system.file("extdata", "SVDetection",
"R_2009_07_30",
"D_2009_07_31",
"1.TCA.454Reads.fna", package="R453Plus1Toolbox")

> seqs = readDNAStringSet(fnaFile, format="fasta")

19

> MIDSeqs = genomeSequencerMIDs(c("MID1", "MID2", "MID3"))
> dmReads = demultiplexReads(seqs, MIDSeqs, numMismatches=2, trim=TRUE)
> length(seqs)

[1] 523

> sum(sapply(dmReads, length))

[1] 523

A sequence capture array was used to ensure that the example data set predomi-
nantly contains reads from certain genomic regions of interest. The applied NimbleGen
array captured short segments corresponding to all exon regions of 92 distinct target
genes. In addition, contiguous genomic regions for three additional genes, i.e. CBFB,
MLL, and RUNX1, were present on the array. During sample preparation, linkers were
ligated to the polished fragments in the library to provide a priming site as recom-
mended by the NimbleGen protocol. These linker sequences were sequenced and are
located at the 5 prime end of the reads. In case of long reads, the reverse comple-
ment of the linker may be located at the 3 prime end. The function removeLinker
can be used to remove these linkers. Aditionally, very short reads are discarded in the
following code snippet.

> minReadLength = 15
> gSel3 = sequenceCaptureLinkers("gSel3")[[1]]
> trimReads = lapply(dmReads, function (reads) {
reads = reads[width(reads) >= minReadLength]
reads = removeLinker(reads, gSel3)
reads = reads[width(reads) >= minReadLength]
readsRev = reverseComplement(reads)
readsRev = removeLinker(readsRev, gSel3)
reads = reverseComplement(readsRev)
reads = reads[width(reads) >= minReadLength]
return(reads)
})

Finally, the preprocessed reads must be aligned against a reference genome. For
this purpose, we write the reads to a .fasta file and use the BWA-SW ([Li and Durbin, 2010])
algorithm for generating local alignments. The BWA-SW algorithm can be substituted
by other local alignment algorithms. However, BWA-SW has the useful feature to only
report the best local alignments. Hence, two local alignments do not overlap on the
query sequence (they may overlap on the reference). This is an assumption made by
the pipeline implemented in this package.

> write.XStringSet(trimReads[["MID1"]], file="/tmp/N01.fasta", format="fasta")

4.2 Computing and assessing putative structural variants
As chimeric reads may also be caused by technical issues during sample preparation,
the function filterChimericReads implements several filter steps to remove ar-

20

tificial chimeric reads.

The remaining reads are passed to the detectBreakpoints method to create
clusters representing putative breakpoints. Each cluster contains all chimeric reads that
span this breakpoint. Promising candidates are clusters with more than one read and
ideally with reads from different strands. Some structural variations like transloca-
tions or inversion lead to two related breakpoints. In the context of fusion genes, these
breakpoints are refered to as pathogenic and reciprocal breakpoint. By the use of read
orientation and strand information during clustering, it is ensured that reads from the
pathogenic breakpoint will not cluster together with reads from the reciprocal break-
point, although their genomic coordinates may be close to each other or even equal.
After clsutering, consensus breakpoint coordinates are computed for each cluster.

In the last step, the function mergeBreakpoints searches breakpoints that orig-
inate from the same structural variation (i.e. the pathogenic and the related reciprocal
breakpoint) and merges them. We observed, that the distance between two related
breakpoints may be up to a few hundred basepairs, whereas the breakpoint coordinates
of single reads spanning the same breakpoint vary only by a very few bases due to
sequencing errors or ambiguities during alignment.

In the following example, we use the reads from sample N01 presented in the pre-
vious section. The reads have been aligned using BWA-SW:

> library("Rsamtools")
> bamFile = system.file("extdata", "SVDetection", "bam", "N01.bam",

package="R453Plus1Toolbox")
> parameters = ScanBamParam(what=scanBamWhat())
> bam = scanBam(bamFile, param=parameters)

For the filtering step, we specify a target region, i.e. the used capture array in form
of a IntegerRangesList. All chimeric reads not overlapping this region with at least one
local alignment are discarded. The following example creates a target region out of a
given .bed file containing region information using functions from package rtracklayer.

> library("rtracklayer")
> bedFile = system.file("extdata", "SVDetection", "chip",

"CaptureArray_hg19.bed", package="R453Plus1Toolbox")
> chip = import.ucsc(bedFile, subformat="bed")
> chip = split(ranges(chip[[1]]), seqnames(chip[[1]]))
> names(chip) = gsub("chr", "", names(chip))
> linker = sequenceCaptureLinkers("gSel3")[[1]]
> filterReads = filterChimericReads(bam, targetRegion=chip, linkerSeq=linker)
> filterReads$log

AlignedReads ChimericReads TwoLocalAlignments
1 213 24 24

TargetRegion NoLinker MinimumDistance Unique5PrimeStart
1 23 23 23 23

21

The linkerSeq argument allows to specify the linker sequence used during sample
preparation. All chimeric reads that have this linker sequence between their local align-
ments are removed.

Finally, we call the detectBreakpoints and mergeBreakpoints func-
tions:

> bp = detectBreakpoints(filterReads, minClusterSize=1)
> bp

Size ChrA ChrB
BP1 8 16 16
BP2 4 16 16
BP3 1 21 1
BP4 1 2 1
BP5 1 1 7
BP6 1 1 16

> table(bp)

size
1 4 8

11 1 1

> mbp = mergeBreakpoints(bp)
> summary(mbp)

ChrA ChrB BpACase1 BpBCase1 BpACase2 BpBCase2
BP1_BP2 16 16 15815191 67121088 15815189 67121086
BP3 21 1 36496155 177984464 NA NA
BP4 2 1 16382474 186276897 NA NA
BP5 1 7 186275614 102017970 NA NA
BP6 1 16 186271118 67130495 NA NA
BP7 1 11 174926056 118389220 NA NA
BP8 1 16 120222145 15853548 NA NA
BP9 6 1 168290170 178598476 NA NA
BP10 21 1 37093848 150600467 NA NA
BP11 15 1 63213753 164769097 NA NA
BP12 21 1 36450706 186733804 NA NA
BP13 1 21 192053733 37167301 NA NA

NoReadsCase1 NoReadsCase2 NoReadsTotal
BP1_BP2 4/4 3/1 12
BP3 1/0 0/0 1
BP4 1/0 0/0 1
BP5 1/0 0/0 1
BP6 1/0 0/0 1
BP7 1/0 0/0 1

22

BP8 1/0 0/0 1
BP9 1/0 0/0 1
BP10 1/0 0/0 1
BP11 1/0 0/0 1
BP12 1/0 0/0 1
BP13 1/0 0/0 1

One cluster of size 8 and another cluster of size 4 were detected. Both putative break-
points span two regions on chromosome 16. Further, 11 clusters of size one were found.
The mergeBreakpoints function merges the first two clusters. The summary re-
veals that the coordinates of the breakpoints only differ by two bases at each region
on chromosome 16. Moreover, both strands from both breakpoints were sequenced.
Obviously, we detected two related breakpoints caused by an inversion on chromsome
16.

4.3 Visualization of breakpoints
The function plotChimericReads takes the output of the function mergeBreakpoints
and produces a plot of the breakpoint regions together with the aligned reads and marks
deletions, insertions and mismatches. If a pathogenic and a reciprocal breakpoint exist,
plotChimericReads creates two plots as shown in the example below.

The following example shows the breakpoints (pathogenic and reciprocal) of an
inversion on chromosome 16 where 12 reads aligned:

> plotChimericReads(mbp[1], legend=TRUE)

Optionally (if the argument plotBasePairs is TRUE), plotChimericReads
displays all base pairs within a given region of size maxBasePairs around the break-
point:

> plotChimericReads(mbp[1], plotBasePairs=TRUE, maxBasePairs=30)

5 Analysis and manipulation of SFF files
The Standard Flowgram Format(SFF) is a binary file format designed by Roche to store
the homopolymer stretches typical for 454 sequencing. It consists of a common header
section, containing general information (e.g. number of reads, nucleotides used for
each flow) and for each read a read header (e.g. read length, read name) and read data
section (e.g. called bases, flow values, quality scores).

5.1 Importing SFF files
SFF files be imported using the readSFF function.

23

| | | |deletion insertion mismatch breakpoint

chr.16 chr.16

− 5' 3' +

+ 3' 5' −
15,815,687 15,815,191

67,121,088 67,121,533

|||| |FZY3Q2K01A321U

|| ||| | ||FZY3Q2K01BH5T5

|| ||| |FZY3Q2K01CCF3J

||FZY3Q2K01D6AHY

|||FZY3Q2K01D7V12

||||| ||| | |FZY3Q2K01DM7AL

||||FZY3Q2K01E0TAO

||FZY3Q2K01EWQ5E

chr.16 chr.16

+ 5' 3' −

− 3' 5' +
67,120,631 67,121,086

15,815,189 15,814,717

||| |||FZY3Q2K01A064J

|| | ||||| |FZY3Q2K01AQO3E

||| |||| |FZY3Q2K01BTAQU

||| |||| ||FZY3Q2K01DT2V8

Figure 5: Plot of the breakpoint region.

TTCACCAGTCCATGCGAGGCTAGCTCCTGGCTATTTGACAATTAATGGAACAACTGTTGA

AAGTGGTCAGGTACGCTCCGATCGAGGACCGATAAACTGTTAATTACCTTGTTGACAACT
chr.16 chr.16

− 5' 3' +

+ 3' 5' −

AAGTGGTCAGGTACGCTCCGATCGAGGACCGATAAACTGTTAATTACCTTGTTGACAACTFZY3Q2K01A321U

TTCACCAGTCCATGCGAGGCTAGCTCCTGGCTATTTGACAATTAATGGAACAACTGTTGAFZY3Q2K01BH5T5

TTCACCAGTCCATGCGAGGCTAGCTCCTGGCTATTTGACAATTAATGGAACAACTGTTGAFZY3Q2K01CCF3J

AAGTGGTCAGGTACGCTCCGATCGAGGACCGATAAACTGTTAATTACCTTGTTGACAACTFZY3Q2K01D6AHY

TTCACCAGTCCATGCGAGGCTAGCTCCTGGCTATTTGACAATTAATGGAACAACTGTTGAFZY3Q2K01D7V12

AAGTGGTCAGGTACGCTCCGATCGAGGACCGATAAACTGTTAATTACCTTGTTGACAACTFZY3Q2K01DM7AL

AAGTGGTCAGGTACGCTCCGATCGAGGACCGATAAACTGTTAATTACCTTGTTGACAACTFZY3Q2K01E0TAO

TTCACCAGTCCATGCGAGGCTAGCTCCTGGCTATTTGACAATTAATGGAACAACTGTTGAFZY3Q2K01EWQ5E

GCTCTTCAGCTACATTATATTTGGAGATTACTTTTTCATAGCGAACTATCATCGGAAATG

CGAGAAGTCGATGTAATATAAACCTCTAATGAAAAAGTATCGCTTGATAGTAGCCTTTAC

chr.16 chr.16

+ 5' 3' −

− 3' 5' +

CGAGAAGTCGATGTAATATAAACCTCTAATGAAAAAGTATCGCTTGATAGTAGCCTTTACFZY3Q2K01A064J

GCTCTTCAGCTACATTATATTTGGAGATTACTTTTTCATAGCGAACTATCATCGGAAATGFZY3Q2K01AQO3E

CGAGAAGTCGATGTAATATAAACCTCTAATGAAAAAGTATCGCTTGATAGTAGCCTTTACFZY3Q2K01BTAQU

CGAGAAGTCGATGTAATATAAACCTCTAATGAAAAAGTATCGCTTGATAGTAGCCTTTACFZY3Q2K01DT2V8

Figure 6: Plot of the breakpoint region including base pairs.

24

> file <- system.file("extdata", "SFF", "example.sff", package="R453Plus1Toolbox")
> sffContainer <- readSFF(file)

Reading file example.sff ... done!

5.2 The SFF container
The contents of the SFF file are stored in an object of class SFFContainer with different
slots:

> showClass("SFFContainer")

Class "SFFContainer" [package "R453Plus1Toolbox"]

Slots:

Name: name flowgramFormat
Class: character numeric

Name: flowChars keySequence
Class: character character

Name: clipQualityLeft clipQualityRight
Class: numeric numeric

Name: clipAdapterLeft clipAdapterRight
Class: numeric numeric

Name: flowgrams flowIndexes
Class: list list

Name: reads
Class: QualityScaledDNAStringSet

The most import slot is the reads slot containing the called bases and the corre-
sponding quality measures:

> reads(sffContainer)

A QualityScaledDNAStringSet instance containing:

DNAStringSet object of length 10:
width seq names

[1] 93 TCAGACTACTATG...AGGCGATACGNN GWDFKFT02CLU66
[2] 99 TCAGTCTAGTGAC...ACGNNNNNNNNN GWDFKFT02BRW5H
[3] 98 TCAGCGACGTGAC...AGGAGCGATACG GWDFKFT02BRRE3
[4] 99 TCAGACTACTATG...CAAGGCGCATAG GWDFKFT02BRONO

25

[5] 99 TCAGAGACGCACT...CAAGGCGCATAG GWDFKFT02BUAPG
[6] 89 TCAGTCTAGCGAC...GCAAGCGCATAG GWDFKFT02CLVYX
[7] 100 TCAGCGACGTGAC...AGGCGCATAGNN GWDFKFT02BRR9U
[8] 98 TCAGACTACTATG...AAGCGCATAGNN GWDFKFT02BR4IB
[9] 99 TCAGCGACGTGAC...GAGCGCATAGNN GWDFKFT02BSHNB

[10] 102 TCAGACTACTATG...AAGGCGCATAGN GWDFKFT02BSAFV

PhredQuality object of length 10:
width seq names

[1] 93 IIIIIIIIIIIF>...2119:EEA?;!! GWDFKFT02CLU66
[2] 99 IIIIIIIIIIIII...EEE!!!!!!!!! GWDFKFT02BRW5H
[3] 98 IIIIIIIIIIIII...9;;;7?=EEEII GWDFKFT02BRRE3
[4] 99 IIIIIIIIIIIII...:000056:<<== GWDFKFT02BRONO
[5] 99 IIIIIIIIIIIII...E??>?CIIIIII GWDFKFT02BUAPG
[6] 89 IIIIIIIIIIIII...>>77998@AA@E GWDFKFT02CLVYX
[7] 100 IIIIIIIIIIIII...22/<<CEECE!! GWDFKFT02BRR9U
[8] 98 IIIIIIIIIIIII...1127<EHHEG!! GWDFKFT02BR4IB
[9] 99 HHHHHHHHHHHHH...-.-.-5:<57!! GWDFKFT02BSHNB

[10] 102 IIIIIIIIIIIII...111179CHHCE! GWDFKFT02BSAFV

An SFFContainer object can be subsetted using the [operator and some read
names or numbers:

> subSffContainer <- sffContainer[1:5]

5.3 Writing SFF files
An SFFContainer can be written back into a file using the writeSFF method:

> writeSFF(subSffContainer, subSffFile.sff)

5.4 Quality control of SFF files
The qualityReportSFF function creates a PDF document from one or more SFF
files containing information relevant for quality control (e.g. read length distributions,
quality histograms, GC content). Two example plots are shown below:

> positionQualityBoxplot(sffContainer)

> dinucleotideOddsRatio(sffContainer)

References
[Kohlmann et al., 2009] Kohlmann,A. et al. (2009) Targeted next-generation sequenc-

ing (NGS) enables for the first time the detection of point mutations, molecular in-
sertions and deletions, as well as leukemia-specific fusion genes in AML in a single
procedure. Blood (ASH Annual Meeting Abstracts), 114(22), 294–295.

26

[Li and Durbin, 2010] Li,H. and Durbin,R. (2010) Fast and accurate long-read align-
ment with Burrows-Wheeler transform. Bioinformatics, 26(5), 589–95.

[Danecek et al., 2011] Danecek,P. et al. (2011) The variant call format and VCFtools.
Bioinformatics, 27(15), 2156–2158.

27

Boxplot of quality per position
example.sff

Read position in bp (Bin size: 10bp)

Q
ua

lit
y

sc
or

e

20 40 60 80 100

0
10

20
30

40

Figure 7: Position quality boxplot - One of the plots contained in the PDF quality
report.

28

Dinucleotide odds ratio
example.sff

Under−/over−representation of dinucleotides

0 0.5 1 1.5 2

AA

AC

AG

AT

CA

CC

CG

CT

GA

GC

GG

GT

TA

TC

TG

TT

Figure 8: Dinucleotide odds ratio showing the over-/under-representation of dinu-
cleotides - One of the plots contained in the PDF quality report.

29

	Introduction
	Analysis of PCR amplicon projects
	Importing a Roche Amplicon Variant Analyzer project
	Import from AVA without AVA-CLI (version 2.5 and lower)
	Import from AVA with AVA-CLI
	Import from AVA with projects exported via AVA-CLI

	The AVASet class
	Subsetting an AVASet
	Setting filters on an AVASet
	Variant coverage
	Annotations and Variant Reports
	Plotting
	Plot amplicon coverage
	Plot variation frequency
	Plot variant locations

	VCF export

	Analysis of GS Mapper projects
	Importing a GS Reference Mapper project
	The MapperSet class
	Setting filters and subsetting a MapperSet
	Annotations and Variant Reports

	Detection of structural variants
	Data preparation
	Computing and assessing putative structural variants
	Visualization of breakpoints

	Analysis and manipulation of SFF files
	Importing SFF files
	The SFF container
	Writing SFF files
	Quality control of SFF files

