
Evaluation and statistics of expression data
using NormalyzerDE

Jakob Willforss, Aakash Chawade and Fredrik Levander

11/01/2022

Abstract

Technical biases reduces the ability to see the desired biological changes when performing
omics experiments. There are numerous normalization techniques available to counter the
biases, but to find the optimal normalization is often a non-trivial task. Furthermore there
are limited tools available to counter biases such as retention-time based biases caused
by fluctuating electrospray intensities. NormalyzerDE helps this process by performing a
wide range of normalization techniques including a general and openly available approach to
countering retention-time based biases. More importantly it calculates and visualizes a number
of performance measures to guide the users selection of normalization technique. Furthermore,
NormalyzerDE provides means to easily perform differential expression statistics using either
the empirical Bayes Limma approach or ANOVA. Evaluation visualizations are available for
both normalization performance measures and as P-value histograms for the subsequent
differential expression analysis comparisons. NormalyzerDE package version: 1.16.0

Contents

1 Installation . 3

2 Default use . 3

2.1 Citing . 3

2.2 Input format . 3

2.3 Running NormalyzerDE evaluation 3

2.4 Running NormalyzerDE statistical comparisons 4

2.5 Running NormalyzerDE using a SummarizedExperiment object as
input . 5

3 Retention time normalization . 5

3.1 Basic usage . 5

3.2 Performing layered normalization 7

4 Stepwise processing (normalization part) 8

4.1 Step 1: Loading data . 8

4.2 Step 2: Generate normalizations 8

4.3 Step 3: Generate performance measures 8

Evaluation and statistics of expression data using NormalyzerDE

4.4 Step 4: Output matrices to file. 8

4.5 Step 5: Generate evaluation plots 9

5 Stepwise processing (differential expression analysis part) . . . 9

5.1 Step 1: Setup folders and data matrices 9

5.2 Step 2: Calculate statistics . 9

5.3 Step 3: Generate final matrix and output 9

6 Code organization . 10

7 Used packages . 11

2

Evaluation and statistics of expression data using NormalyzerDE

1 Installation
Installation is preferably performed using BiocManager (requires R version >= 3.5):
install.packages("BiocManager")

BiocManager::install("NormalyzerDE")

2 Default use

2.1 Citing
Willforss, J., Chawade, A., Levander, F. Submitted article.

2.2 Input format
NormalyzerDE expects a raw data file. Columns can contain annotation information or sample
data. Each column should start with a header.
pepseq s1 s2 s3 s4

ATAAGG 20.0 21.2 19.4 18.5

AWAG 23.3 24.1 23.5 17.3

ACATGM 22.1 22.3 22.5 23.2

This data should be provided with a design matrix where all data samples should be represented.
One column (default header “sample”) should match the columns containing samples in the
raw data. Another column (default header “group”) should contain condition levels which
could be used for group-based evaluations.
sample group

s1 condA

s2 condA

s3 condB

s4 condB

Alternatively the data can be provided as an instance of a SummarizedExperiment S4 class.

2.3 Running NormalyzerDE evaluation
The evaluation step can be performed with one command, normalyzer. This command
expects a path to the data file, a name for the run-job, a path to a design matrix and finally
a path to an output directory.
Alternatively the designPath and dataPath arguments can be replaced with the experimen

tObj argument where the first assay should contain the data matrix of interest, the colData

attribute the design matrix and the rowData attribute the annotation columns.
library(NormalyzerDE)

outDir <- tempdir()

designFp <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv")

dataFp <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv")

normalyzer(jobName="vignette_run", designPath=designFp, dataPath=dataFp,

3

Evaluation and statistics of expression data using NormalyzerDE

outputDir=outDir)

You are running version 1.16.0 of NormalyzerDE

[Step 1/5] Load data and verify input

Input data checked. All fields are valid.

Sample check: More than one sample group found

Sample replication check: All samples have replicates

RT annotation column found (5)

[Step 1/5] Input verified, job directory prepared at:/tmp/RtmpDXU520/vignette_run

[Step 2/5] Performing normalizations

[Step 2/5] Done!

[Step 3/5] Generating evaluation measures...

[Step 3/5] Done!

[Step 4/5] Writing matrices to file

[Step 4/5] Matrices successfully written

[Step 5/5] Generating plots...

[Step 5/5] Plots successfully generated

All done! Results are stored in: /tmp/RtmpDXU520/vignette_run, processing time was 0.4 minutes

2.4 Running NormalyzerDE statistical comparisons
When you after performing the evaluation and having evaluated the report have decided for
which normalization approach seems to work best you can continue to the statistical step.
Here, expected parameters are the path to the target normalization matrix, the sample design
matrix as in the previous step, a job name, the path to an output directory and a list of
the pairwise comparisons for which you want to calculate contrasts. They are provided as a
character vector with conditions to compare separated by a dash (“-”).
Similarly as for the normalization step the designPath and dataPath arguments can be
replaced with an instance of SummarizedExperiment sent to the experimentObj argument.
normMatrixPath <- paste(outDir, "vignette_run/CycLoess-normalized.txt", sep="/")

normalyzerDE("vignette_run",

comparisons=c("4-5"),

designPath=designFp,

dataPath=normMatrixPath,

outputDir=outDir,

condCol="group")

You are running version 1.16.0 of NormalyzerDE

[1] "Setting up statistics object"

[1] "Calculating statistical contrasts..."

[1] "Contrast calculations done!"

[1] "Writing 100 annotated rows to /tmp/RtmpDXU520/vignette_run/vignette_run_stats.tsv"

[1] "Writing statistics report"

[1] "All done! Results are stored in: /tmp/RtmpDXU520/vignette_run, processing time was 0 minutes"

4

Evaluation and statistics of expression data using NormalyzerDE

2.5 Running NormalyzerDE using a SummarizedExperiment ob-
ject as input
A benefit of using a SummarizedExperiment object as input is that it allows executing
NormalyzerDE using variables as input instead of loading from file.
The conversion of designMatrix$sample is required if using read.table as it otherwise is
interpreted as a factor. For more intuitive behaviour you can use read_tsv from the readr

package instead of read.table.
dataMatrix <- read.table(dataFp, sep="\t", header = TRUE)

designMatrix <- read.table(designFp, sep="\t", header = TRUE)

designMatrix$sample <- as.character(designMatrix$sample)

dataOnly <- dataMatrix[, designMatrix$sample]

annotOnly <- dataMatrix[, !(colnames(dataMatrix) %in% designMatrix$sample)]

sumExpObj <- SummarizedExperiment::SummarizedExperiment(

as.matrix(dataOnly),

colData=designMatrix,

rowData=annotOnly

)

normalyzer(jobName="sumExpRun", experimentObj = sumExpObj, outputDir=outDir)

You are running version 1.16.0 of NormalyzerDE

[Step 1/5] Load data and verify input

Input data checked. All fields are valid.

Sample check: More than one sample group found

Sample replication check: All samples have replicates

RT annotation column found (5)

[Step 1/5] Input verified, job directory prepared at:/tmp/RtmpDXU520/sumExpRun

[Step 2/5] Performing normalizations

[Step 2/5] Done!

[Step 3/5] Generating evaluation measures...

[Step 3/5] Done!

[Step 4/5] Writing matrices to file

[Step 4/5] Matrices successfully written

[Step 5/5] Generating plots...

[Step 5/5] Plots successfully generated

All done! Results are stored in: /tmp/RtmpDXU520/sumExpRun, processing time was 0.2 minutes

3 Retention time normalization
Retention time based normalization can be performed with an arbitrary normalization matrix.

3.1 Basic usage
There are two points of access for the higher order normalization. Either by calling getRT

NormalizedMatrix which applies the target normalization approach stepwise over the matrix
based on retention times, or by calling getSmoothedRTNormalizedMatrix which generates

5

Evaluation and statistics of expression data using NormalyzerDE

multiple layered matrices and combines them. To use them you need your raw data loaded
into a matrix, a list containing retention times and a normalization matrix able to take a raw
matrix and return a normalized in similar format.
fullDf <- read.csv(dataFp, sep="\t")

designDf <- read.csv(designFp, sep="\t")

head(fullDf, 1)

Cluster.ID Peptide.Sequence External.IDs Charge Average.RT Average.m.z

1 1493882053114 AAAAEINVKD P38156 2 20.25051 501.268

s_12500amol_1 s_12500amol_2 s_12500amol_3 s_125amol_1 s_125amol_2 s_125amol_3

1 115597000 109302000 100314000 98182352 87241776 98702800

head(designDf, 1)

sample group batch

1 s_125amol_1 4 2

At this point we have loaded the full data into dataframes. Next, we use the sample names
present in the design matrix to extract sample columns from the raw data. Be careful that
the sample names is a character vector. If it is a factor it will extract wrong columns.
Make sure that sample names extracted from design matrix are in right format. We expect it
to be in ‘character’ format.
sampleNames <- as.character(designDf$sample)

typeof(sampleNames)

[1] "character"

Now we are ready to extract the data matrix from the full matrix. We also need to get the
retention time column from the full matrix.
dataMat <- as.matrix(fullDf[, sampleNames])

retentionTimes <- fullDf$Average.RT

head(dataMat, 1)

s_125amol_1 s_125amol_2 s_125amol_3 s_12500amol_1 s_12500amol_2

[1,] 98182352 87241776 98702800 115597000 109302000

s_12500amol_3

[1,] 100314000

If everything is fine the data matrix should be double, and have the same number of rows as
the number of retention time values we have.
typeof(dataMat)

[1] "double"

print("Rows and columns of data")

[1] "Rows and columns of data"

dim(dataMat)

[1] 100 6

print("Number of retention times")

[1] "Number of retention times"

length(retentionTimes)

[1] 100

6

Evaluation and statistics of expression data using NormalyzerDE

The normalization function is expected to take a raw intensity matrix and return log transformed
values. We borrow the wrapper function for Loess normalization from NormalyzerDE. It can
be replaced with any custom function as long as the wrapper has the same input/output
format.
performCyclicLoessNormalization <- function(rawMatrix) {

log2Matrix <- log2(rawMatrix)

normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast")

colnames(normMatrix) <- colnames(rawMatrix)

normMatrix

}

We are ready to perform the normalization.
rtNormMat <- getRTNormalizedMatrix(dataMat,

retentionTimes,

performCyclicLoessNormalization,

stepSizeMinutes=1,

windowMinCount=100)

Let’s double check the results. We expect a matrix in the same format and shape as
before. Furthermore, we expect similar but not the exact same values as if we’d applied the
normalization globally.
globalNormMat <- performCyclicLoessNormalization(dataMat)

dim(rtNormMat)

[1] 100 6

dim(globalNormMat)

[1] 100 6

head(rtNormMat, 1)

s_125amol_1 s_125amol_2 s_125amol_3 s_12500amol_1 s_12500amol_2 s_12500amol_3

26.54027 26.36017 26.57715 26.7771 26.70227 26.59205

head(globalNormMat, 1)

s_125amol_1 s_125amol_2 s_125amol_3 s_12500amol_1 s_12500amol_2

[1,] 26.54027 26.36017 26.57715 26.7771 26.70227

s_12500amol_3

[1,] 26.59205

3.2 Performing layered normalization
We have everything set up to perform the layered normalization. The result here is expected
to be overall similar to the normal retention time approach.
layeredRtNormMat <- getSmoothedRTNormalizedMatrix(

dataMat,

retentionTimes,

performCyclicLoessNormalization,

stepSizeMinutes=1,

windowMinCount=100,

windowShifts=3,

mergeMethod="mean")

7

Evaluation and statistics of expression data using NormalyzerDE

dim(layeredRtNormMat)

[1] 100 6

head(layeredRtNormMat, 1)

s_125amol_1 s_125amol_2 s_125amol_3 s_12500amol_1 s_12500amol_2

[1,] 26.54027 26.36017 26.57715 26.7771 26.70227

s_12500amol_3

[1,] 26.59205

4 Stepwise processing (normalization part)
NormalyzerDE consists of a set of steps. The workflow can be run as a whole, or step by step.

4.1 Step 1: Loading data
This step performs input validation of the data, and generates an object of the class Norma-
lyzerDataset.
jobName <- "vignette_run"

experimentObj <- setupRawDataObject(dataFp, designFp, "default", TRUE, "sample", "group")

normObj <- getVerifiedNormalyzerObject(jobName, experimentObj)

Input data checked. All fields are valid.

Sample check: More than one sample group found

Sample replication check: All samples have replicates

RT annotation column found (5)

The function setupRawDataObject returns a SummarizedExperiment object. This object can
be prepared directly and should in that case contain the raw data as the default assay, the
design matrix as colData and annotation rows as rowData.

4.2 Step 2: Generate normalizations
Here, normalizations are performed. This generates a NormalyzerResults object containing
both a reference to its original dataset object, but also generated normalization matrices.
normResults <- normMethods(normObj)

4.3 Step 3: Generate performance measures
Performance measures are calculated for normalizations. These are stored in an object
NormalizationEvaluationResults. A NormalyzerResults object similar to the one sent in is
returned, but with this field added.
normResultsWithEval <- analyzeNormalizations(normResults)

4.4 Step 4: Output matrices to file
Generated normalization matrices are written to the provided folder.

8

Evaluation and statistics of expression data using NormalyzerDE

jobDir <- setupJobDir("vignette_run", tempdir())

writeNormalizedDatasets(normResultsWithEval, jobDir)

4.5 Step 5: Generate evaluation plots
Performance measures are used to generate evaluation figures which is written in an evaluation
report.
generatePlots(normResultsWithEval, jobDir)

pdf

2

After this evaluation of normalizations and progression to statistics follows as described
previously in this report.

5 Stepwise processing (differential expression anal-
ysis part)

5.1 Step 1: Setup folders and data matrices
For continued processing you select the matrix containing the normalized data from the best
performing normalization. The design matrix is the same as for the normalization step.
bestNormMatPath <- paste(jobDir, "RT-Loess-normalized.txt", sep="/")

experimentObj <- setupRawContrastObject(bestNormMatPath, designFp, "sample")

nst <- NormalyzerStatistics(experimentObj, logTrans=FALSE)

Similarly as to for the normalization evaluation step the experimentObj above can be prepared
directly as a SummarizedExperiment object.

5.2 Step 2: Calculate statistics
Now we are ready to perform the contrasts. Contrasts are provided as a vector in the format
c("condA-condB", "condB-condC"), where condX is the group levels.
comparisons <- c("4-5")

nst <- calculateContrasts(nst, comparisons, condCol="group", leastRepCount=2)

5.3 Step 3: Generate final matrix and output
Finally we generate a table containing the statistics results for each feature and write it to file
together with an evaluation report containing P-value histograms for each comparison.
annotDf <- generateAnnotatedMatrix(nst)

utils::write.table(annotDf, file=paste(jobDir, "stat_table.tsv", sep="/"))

generateStatsReport(nst, "Vignette stats", jobDir)

pdf

2

9

Evaluation and statistics of expression data using NormalyzerDE

6 Code organization
NormalyzerDE consists of a number of scripts and classes. They are focused around two
separate workflows. One is for normalizing and evaluating the normalizations. The second is
for performing differential expression analysis. Classes are contained in scripts with the same
name.
Code organization:

Figure 1: NormalyzerDE schematics

The standard workflow for the normalization is the following:
• The normalyzer function in the NormalyzerDE.R script is called, starting the process.
• If applicable (that is, input is in Proteois or MaxQuant format), the dataset is prepro-

cessed into the standard format using code in preparsers.R.
• The input is verified to capture standard errors early on using code in inputVerifica

tion.R. This results in an instance of the NormalyzerDataset class.
• The data is normalized using several normalization methods present in normMethods.R.

This yields an instance of NormalyzerResults which links to the original Normalyzer
Dataset instance and also contains all the resulting normalized datasets.

• If specified (and if a column with retention time values is present) retention-time
segmented approaches are performed by applying normalizations from normMethods.R

over retention time using functions present in higherOrderNormMethods.R.
• The results are analyzed using functions present in analyzeResults.R. This yields

an instance of NormalyzerEvaluationResults containing the evaluation results. This
instance is attached to the NormalyzerResults object.

10

Evaluation and statistics of expression data using NormalyzerDE

• The final results are sent to outputUtils.R where the normalizations are written to
an output directory, and to generatePlots.R which contains visualizations for the
performance measures. It also uses code in printMeta.R and printPlots.R to output
the results in a desired format.

When a normalized matrix is selected the analysis proceeds to the statistical analysis.
• The normalyzerde function in the NormalyzerDE.R script is called starting the differential

expression analysis pipeline.
• An instance of NormalyzerStatistics is prepared containing the input data.
• Code in the calculateStatistics.R script is used to calculate the statistical contrasts.

The results are attached to the NormalyzerStatistics object.
• The resulting statistics are used to generate a report and an annotated output matrix

where key statistical measures are attached to the original matrix.

7 Used packages

sessionInfo()

R version 4.2.1 (2022-06-23)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.5 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] NormalyzerDE_1.16.0 BiocStyle_2.26.0

##

loaded via a namespace (and not attached):

[1] nlme_3.1-160 bitops_1.0-7

[3] matrixStats_0.62.0 RColorBrewer_1.1-3

[5] GenomeInfoDb_1.34.0 tools_4.2.1

[7] backports_1.4.1 affyio_1.68.0

[9] utf8_1.2.2 R6_2.5.1

[11] rpart_4.1.19 mgcv_1.8-41

[13] Hmisc_4.7-1 nortest_1.0-4

[15] DBI_1.1.3 BiocGenerics_0.44.0

[17] colorspace_2.0-3 nnet_7.3-18

[19] raster_3.6-3 sp_1.5-0

11

Evaluation and statistics of expression data using NormalyzerDE

[21] tidyselect_1.2.0 gridExtra_2.3

[23] compiler_4.2.1 preprocessCore_1.60.0

[25] Biobase_2.58.0 cli_3.4.1

[27] htmlTable_2.4.1 DelayedArray_0.24.0

[29] sandwich_3.0-2 labeling_0.4.2

[31] bookdown_0.29 scales_1.2.1

[33] checkmate_2.1.0 hexbin_1.28.2

[35] affy_1.76.0 proxy_0.4-27

[37] RcmdrMisc_2.7-2 stringr_1.4.1

[39] digest_0.6.30 foreign_0.8-83

[41] rmarkdown_2.17 XVector_0.38.0

[43] base64enc_0.1-3 jpeg_0.1-9

[45] pkgconfig_2.0.3 htmltools_0.5.3

[47] MatrixGenerics_1.10.0 fastmap_1.1.0

[49] limma_3.54.0 htmlwidgets_1.5.4

[51] rlang_1.0.6 readxl_1.4.1

[53] rstudioapi_0.14 farver_2.1.1

[55] generics_0.1.3 zoo_1.8-11

[57] dplyr_1.0.10 car_3.1-1

[59] RCurl_1.98-1.9 magrittr_2.0.3

[61] GenomeInfoDbData_1.2.9 Formula_1.2-4

[63] interp_1.1-3 Matrix_1.5-1

[65] Rcpp_1.0.9 munsell_0.5.0

[67] S4Vectors_0.36.0 fansi_1.0.3

[69] ape_5.6-2 abind_1.4-5

[71] vsn_3.66.0 lifecycle_1.0.3

[73] terra_1.6-17 stringi_1.7.8

[75] yaml_2.3.6 carData_3.0-5

[77] zlibbioc_1.44.0 MASS_7.3-58.1

[79] SummarizedExperiment_1.28.0 grid_4.2.1

[81] parallel_4.2.1 forcats_0.5.2

[83] deldir_1.0-6 lattice_0.20-45

[85] haven_2.5.1 splines_4.2.1

[87] hms_1.1.2 knitr_1.40

[89] pillar_1.8.1 GenomicRanges_1.50.0

[91] codetools_0.2-18 stats4_4.2.1

[93] glue_1.6.2 evaluate_0.17

[95] latticeExtra_0.6-30 data.table_1.14.4

[97] BiocManager_1.30.19 png_0.1-7

[99] vctrs_0.5.0 cellranger_1.1.0

[101] gtable_0.3.1 assertthat_0.2.1

[103] ggplot2_3.3.6 xfun_0.34

[105] e1071_1.7-12 class_7.3-20

[107] survival_3.4-0 tibble_3.1.8

[109] IRanges_2.32.0 cluster_2.1.4

[111] ellipsis_0.3.2

12

	1 Installation
	2 Default use
	2.1 Citing
	2.2 Input format
	2.3 Running NormalyzerDE evaluation
	2.4 Running NormalyzerDE statistical comparisons
	2.5 Running NormalyzerDE using a SummarizedExperiment object as input

	3 Retention time normalization
	3.1 Basic usage
	3.2 Performing layered normalization

	4 Stepwise processing (normalization part)
	4.1 Step 1: Loading data
	4.2 Step 2: Generate normalizations
	4.3 Step 3: Generate performance measures
	4.4 Step 4: Output matrices to file
	4.5 Step 5: Generate evaluation plots

	5 Stepwise processing (differential expression analysis part)
	5.1 Step 1: Setup folders and data matrices
	5.2 Step 2: Calculate statistics
	5.3 Step 3: Generate final matrix and output

	6 Code organization
	7 Used packages

