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1 Abstract

In studies about differential gene expression between different clinical diagnoses
the main interest may often not be in single genes but rather in groups of genes
that are associated with a pathway or have a common location in the genome.
In such cases it may be better to perform a global test because the problems of
multiple testing can be avoided. The approach presented here is an ANCOVA
global test on phenotype effects and gene—phenotype interaction.

The test is generalized to groups of categorical variables (e.g. SNPs) and
even mixed data by a likelihood ratio approach.

Testing many groups simultaneously is also possible. This, of course, causes
again need for correction for multiple testing. Besides the standard approaches
for correction we introduce closed and hierarchical testing procedures in which
the experiment—wise error rate equals the required level of confidence of the
overall test.

This document was created using R version 4.2.1 and versions 4.16.0 and
5.52.0 of the packages GlobalAncova and globaltest, respectively.

2 Major Changes to Previous Versions
Version 4.x.x

e There is a new function gGlobalAncova for generalized linear models:
groups of tested variables can be quantitative, categorical, ordinal and
even of mixed types. The new function Plot.features allows visualiza-
tion of variable-wise contributions to the global test statistic in this general
setting.

o There is a new function gGlobalAncova.hierarchical for hierarchical
testing. Results are stored in objects of the new class GAhier and are
accessible via corresponding methods.

Version 3.14.x

The testing of collections of functional gene sets (Gene Ontology, Broad
Institute’s gene sets) was adapted to new functions in package globaltest (version
> 5.0.0) and can now be performed using the functions GAGO and GABroad.

Version 3.3.3

e The permutation approach is now implemented in C' and therefore faster.

e If the number of possible phenotype permutations is smaller than the
number specified in perm (i.e. in very small sample sizes), all possible
permutations are considered for the permutation test.

Version 3.x.x

e Besides the permutation-based p-values also asymptotic p-values based
on an approximation of the distribution of the test statistic are provided.
Theoretical F-test p-values are no longer displayed since they are not valid
in case of correlations or non-normality.



e The focus level procedure for finding interesting Gene Ontology subgraphs
from Goeman and Mansmann (2007) [4] was adapted for the use with
GlobalAncova.

e Sequential and type III decompositions of the residual sum of squares,
adjustment for global covariates and pair-wise comparisons of different
levels of a categorical factor are implemented. These functionalities are
described in the additional vignette GlobalAncovaDecomp.pdf.

Version 2.x.X

e The major modification in the new version is the transfer from simple two
group comparisons to a general linear model framework where arbitrary
clinical variables (in especially with more groups or also continuous ones),
time trends, gene—gene interactions, co—expression and so forth can be
analysed.

e According to the new framework also the diagnostic plots are more flexible.
The variable defining the coloring of bars can now be specified by the user,
see section 7 for details.

3 Introduction

The ANCOVA global test is a test for the association between expression values
and clinical entities. The test is carried out by comparison of linear models
via the extra sum of squares principle. If the mean expression level for at least
one gene differs between corresponding models the global null hypothesis, which
is the intersection of all single gene null hypotheses, is violated. As our test is
based on the sum of gene-wise reduction in sum of squares due to phenotype, all
systematic differences in gene expression between phenotypes equally contribute
to the power of the test.

Single genes are not, in general, the primary focus of gene expression experi-
ments. The researcher might be more interested in relevant pathways, functional
sets or genomic regions consisting of several genes. Most of the current methods
for studying pathways analyse differential expression of single genes. In these
methods pathways where many genes show minor changes in their expression
values may not be identified. Goeman’s global test and the ANCOVA global
test were designed to address this issue.

Applying global tests for differential expression in pathways substantially
reduces the number of tests compared to gene-wise multiple testing. The amount
of correction for multiple testing decreases. Function (KEGG, GO) or location
(chromosome, cytoband) could be used as grouping criteria, for example.

We want to compare our method with the global test of Goeman et al. (2004)
[3]. Our function GlobalAncova tests whether the expectation of expression
levels differs between biological entities for a given group of genes.

The GlobalAncova framework is generalized to groups of categorical variables
(e.g. SNPs) and even mixed data. The test is still based on the principle of
model comparison. Instead of considering differences in sums of squares we use
differences in model deviances, which leads to a likelihood ratio approach.



This vignette has its focus on the practical use of the test. For more details
about the mathematical background and the interpretation of results, we refer
to the papers by Mansmann and Meister (2005) [8] and Hummel, Meister and
Mansmann (2008) [7].

First we load the packages and data we will use.

library(GlobalAncova)
library(globaltest)
library(golubEsets)

library (hu6800.db)
library(vsn)

data(Golub_Merge)

golubX <- justvsn(Golub_Merge)

vV V.V Vv Vv Vv Vv

This creates a dataset golubX, which is of the format EzpressionSet, the
standard format for gene expression data in BioConductor. It consists of 7129
genes and 72 samples (the data are from [5]). We used vsn to normalize the data.
Other appropriate normalization methods may be used as well. From several
phenotype variables we use “ALL.AML” as the clinical diagnoses of interest.
ALL and AML are two types of acute leukemia. There are 47 patients with
ALL and 25 with AML.

4 Global Testing of a Single Pathway

4.1 Golub Data and Cell Cycle Pathway

Suppose we are interested in testing whether AML and ALL have different
gene expression patterns for certain pathways, for example from the KEGG
database. With globaltest we answer the question whether the expression profile
has prognostic power with respect to diagnosis of AML or ALL. GlobalAncova
asks for differences in mean expression between the two clinical groups.

4.1.1 Testing all Genes

We start by applying our test to all genes in the Golub dataset so that differences
in the overall gene-expression pattern can be demonstrated.

> gr <- as.numeric(golubX$ALL.AML=="ALL")
> ga.all <- GlobalAncova(xx=exprs(golubX), group=gr, covars=NULL, perm=100)

The first input zz is a 7129 x 72 matrix that contains the expression values
of all genes and samples. Missing values in the expression matrix zz are not
allowed because otherwise gene-wise linear models could not be summarized
adequately to a global group statement. If missing values occur we propose
either leaving out the genes with missing values (i.e. the corresponding rows in
the gene expression matrix), or imputing the data before applying GlobalAncova.
An easy way to do the latter would be for example to calculate linear models
for each gene using the available model variables (e.g. phenotype group labels).
Missing values can then be estimated based on the resulting model parameters
and the actual values of phenotype variables of the corresponding samples. The
use of more sophisticated imputation methods [12] would be computationally



expensive and is not implemented in GlobalAncova. Note that we did not yet
evaluate how data imputation affects GlobalAncova results and whether the
easier imputation methods described above yield similar results as the more
complex approaches. The second input group in the GlobalAncova function is
a vector that defines the clinical diagnosis for the 72 patients.

Note that GlobalAncova is not restricted to the analysis of dichotomous
phenotype groups. More complex tasks like variables with more groups or also
continuous ones, time trends, gene—gene interactions and co—expression can be
performed as well. Some examples will be given in section 4.2. The realization
of such tasks is done by definition of two linear models that shall be compared
via the extra sum of squares principle. Hence model formulas for the full model
containing all parameters and the reduced model, where the terms of interest
are omitted, have to be given. An alternative is to provide the formula for the
full model and a character vector naming the terms of interest. Those names
can be chosen by previous output of the GlobalAncova function. Consequently
we could run the same analysis as above with two possible further function calls
shown below (output is omitted). In both cases a data frame with information
about all variables for each sample is required. In the case of microarray data
this can be the corresponding pData object.

> GlobalAncova(xx=exprs(golubX), formula.full="ALL.AML, formula.red="1,

+ model.dat=pData(golubX), perm=100)
> GlobalAncova(xx=exprs(golubX), formula.full="ALL.AML, test.terms="ALL.AMLAML",
+ model.dat=pData(golubX), perm=100)

To avoid alpha—inflation due to correlated data and effects of non—normality
of the data tests for significance of the resulting F—ratios are performed using a
permutation test approach. We apply permutation of samples which is equiv-
alent to permuting rows of the full design matrix. Note that permutation is
only conducted for such columns of the design matrix that correspond to the
variables of interest. Values of additional covariates remain in the original or-
der. This prevents us for destroying covariate effects. Still the permutation
approach is not optimal since residuals may be correlated. However, this does
not seem to be a severe problem. The argument perm defines the number of
permutations, which is 10,000 for default. Here we set perm to just 100 or 1000
so that creating this vignette will not last too long. For getting more reliable
results one should recompute the examples with more permutations.
As an alternative to the permutation approach an approximation of the F—
statistic nominator according to [11] yields asymptotic p—values. Note that the
approximation is not feasible for very large gene groups since the huge gene
expression covariance matrix has to be estimated, which is not possible for too
many genes. The default value for group size (maz.group.size) is 2500, groups
above this size are treated by the permutation approach. When using work sta-
tions with good working memory this number may be increased. The estimation
of the covariance matrix is carried out with the R package corpcor from [13].
Whether the permutation-based or the asymptotic p—values or both should be
calculated is controlled by the argument method.

The result of the GlobalAncova function is a typical ANOVA table with
information about sums of squares, degrees of freedom and mean sums of squares
for the effect and error term, respectively. Besides F—statistics there are given



either p—values from the permutation test or the asymptotic p—values or both.
The names of all involved parameters are displayed as well as the name(s) of
the tested effect(s).

> ga.all

$effect
[1] "group"

$ANOVA

S8Q DF MS
Effect 29173.83 7129 4.0922748
Error 340387.99 499030 0.6820992

$test.result
[,1]

F.value 5.99953

p.perm 0.00000

$terms
[1] "(Intercept)" "group"

From this result we conclude that the overall gene expression profile for all
7129 genes is associated with the clinical outcome. This means that samples
with different AML/ALL status tend to have different expression profiles. We
expect most pathways (especially the ones containing many genes) also to be
associated with the phenotype groups.

If we apply Goeman’s global test we get

> gt.all <- gt(ALL.AML, golubX)

p-value Statistic Expected Std.dev #Cov
1 7.02e-20 7.89 1.41  0.275 7129

Both tests show that the data contain overwhelming evidence for differential
gene expression between AML and ALL.
4.1.2 Testing the Cell Cycle Pathway

Now we ask the more specific question of whether there is evidence for differential
gene expression between both diagnoses restricted to genes belonging to the cell
cycle pathway. First we load all KEGG pathways.

> kegg <- as.list(hu6800PATH2PROBE)

The list kegg consists of 229 pathways. Each pathway is represented by a
vector of gene names. We are mainly interested in the cell cycle pathway which
has the identifier “04110” in the KEGG database. It corresponds to 111 probe
sets on the hu6800 chip.

> cellcycle <- keggl[["04110"]1]

We apply the global test to this pathway using the option test.genes.



> ga.cc <- GlobalAncova(xx=exprs(golubX), group=gr, test.genes=cellcycle,

+ method="both", perm=1000)
> ga.cc
$effect
[1] ugroupn
$ANOVA
SSQ DF MS

Effect 549.3037 111 4.9486817
Error 5304.0006 7770 0.6826256

$test.result

[,1]
F.value 7.249482e+00
p.perm  0.000000e+00
p.approx 5.591746e-12

$terms
[1] "(Intercept)" "group"

Also with globaltest we get a very small p—value

> gt.cc <- gt(ALL.AML, golubX, subsets=cellcycle)
> gt.cc

p-value Statistic Expected Std.dev #Cov
1 1.24e-11 9.38 1.41  0.436 111

p-value Statistic Expected Std.dev #Cov
1 1.24e-11 9.38 1.41  0.436 111

The test results clearly indicate that the expression pattern of the cell cycle
pathway is different between the two clinical groups.
4.1.3 Adjusting for Covariates

Covariate information can be incorporated by specifying the covars option.
For example if we want to adjust for whether samples were taken from bone
marrow or from peripheral blood (BM.PB), we can do this by

> ga.cc.BMPB <- GlobalAncova(xx=exprs(golubX), group=gr, covars=golubX$BM.PB,

+ test.genes=cellcycle, method="both", perm=1000)
> ga.cc.BMPB
$effect
[1] ngroupn
$ANOVA
SsQ DF MS

Effect 540.5233 111 4.8695790
Error 5146.4091 7659 0.6719427



$test.result

[,1]
F.value 7.247015e+00
p.perm  0.000000e+00
p.approx 8.795910e-12

$terms
[1] "(Intercept)" "group" "covarsPB"

With the more general function call we would simply adjust the definitions of
model formulas, namely formula.full = ~ ALL.AML + BM.PB and formula.red
= ~ BM.PB.

The source of the samples does not seem to have an explanatory effect on the
outcome since F—statistics and p—values are very similar to the model without
adjustment.

With the globaltest we get a similar p—value.

> gt.cc.BMPB <- gt(ALL.AML ~ BM.PB, golubX, subsets=cellcycle)
> gt.cc.BMPB

p-value Statistic Expected Std.dev #Cov
1 1.18e-12 9.66 1.47  0.441 111

p-value Statistic Expected Std.dev #Cov
1 1.18e-12 9.66 1.47  0.441 111

Permutation based p—values can also be obtained with Goeman’s test, how-
ever only when covariates are absent.

4.2 wvan’t Veer Data and p53—Signalling Pathway

We present another example from a study on breast cancer from van’t Veer et al.
(2002) [14]. This example illustrates how more complex tasks than comparing
just two clinical groups can be performed with GlobalAncova. A subset of
the data consisting of the expression values for 96 patients without BRCA1
or BRCAZ2 mutations is available with the package. The dataset (vantVeer)
is restricted to 1113 genes associated with 9 cancer related pathways that are
provided as a list named (pathways), too. We take one gene from the original
data additionally to the expression set, namely ’AL137718’. This gene is part of
the original van’t Veer prognosis signature. We will later use it to demonstrate
how signature genes can be related to pathways. Information about some of the
originally surveyed covariates is stored in phenodata. The tumour suppressor
protein p53 contributes as a transcription factor to cell cycle arrest and apoptosis
induction. Therefore, first the p53-signalling pathway is selected as a candidate,
where differential expression between relevant prognostic groups, defined by the
development of distant metastases within five years, was expected.

data(vantVeer)

data(phenodata)

data(pathways)

metastases <- phenodata$metastases
p53 <- pathways$p53_signalling

vV V. Vv Vv Vv



We get a significant result with the global ANCOVA.

> vV.1 <- GlobalAncova(xx=vantVeer, group=metastases, test.genes=p53,

+ method="both", perm=1000)
> vl.1
$effect
[1] "group"
$ANQVA
SSQ DF MS

Effect 2.893417 33 0.08767929
Error 97.424573 3102 0.03140702

$test.result

[,1]
F.value 2.791710175
p.perm  0.012000000
p.approx 0.009093267

$terms
[1] "(Intercept)" "group"

4.2.1 Analysis of Various Clinical Groups

In the new version of the package also clinical variables with more than two
groups can be considered. For demonstration we investigate differential expres-
sion for the three ordered levels of tumour grade.

> vV.3 <- GlobalAncova(xx=vantVeer, formula.full="grade, formula.red="1,
+ model.dat=phenodata, test.genes=p53, method="both", perm=1000)
> vV.3

$effect
[1] "grade.L" "grade.Q"

$ANOVA

SSQ DF MS
Effect 3.638565 66 0.05512977
Error 96.679425 3069 0.03150193

$test.result

[,1]
F.value 1.75004422
p.perm  0.04300000
p.approx 0.03463237

$terms
[1] "(Intercept)" "grade.L" "grade.Q"



4.2.2 Gene—Gene Interaction

Now we want to go into the matter of other interesting biological questions.
For example one might ask if there exists interaction between the expression of
genes which the authors in [14] presented as signature for prediction of cancer
recurrence and the expression of genes in a certain pathway. This question can
be answered by viewing the expression values of the signature genes as linear
regressors and to test their effects on the expression pattern of the pathway
genes. For demonstration we pick the signature gene "AL137718", which is not
part of any of the pathways, and test its effect on the p53—signalling pathway.
Assume that we also want to adjust for the Estrogen receptor status. The
analysis can be carried out in the following way.

> signature.gene <- "AL137718"

> model <- data.frame(phenodata, signature.gene=vantVeer[signature.gene, ])

> vV.4 <- GlobalAncova(xx=vantVeer, formula.full="signature.gene + ERstatus,
+ formula.red="ERstatus, model.dat=model, test.genes=p53,
+ method="both", perm=1000)

> vV.4

$effect
[1] "signature.gene"

$ANOVA

SSQ DF MS
Effect 2.667014 33 0.08081859
Error 89.867452 3069 0.02928232

$test.result

[,1]
F.value 2.75997881
p.perm  0.01100000
p.approx 0.01387833

$terms
[1] "(Intercept)" "signature.gene" "ERstatuspos"

Assuming a significance level of 0.05 we get a significant effect of the signa-
ture gene on the p53-signalling pathway.

4.2.3 Co—Expression

Next we want to analyse co—expression regarding the clinical outcome of building
distant metastases within five years. This can be done by simply adding the
variable metastases to the full and reduced model, respectively. Such layout
corresponds to testing the linear effect of the signature gene stratified not only
by Estrogen receptor status but also by metastases.

> vV.5 <- GlobalAncova(xx=vantVeer, formula.full="metastases + signature.gene + ERstatus,

+ formula.red="metastases + ERstatus, model.dat=model,
+ test.genes=p53, method="both", perm=1000)
> vli.5

10



$effect
[1] "signature.gene"

$ANOVA

SSQ DF MS
Effect 2.284391 33 0.06922396
Error 87.463681 3036 0.02880885

$test.result

[,1]
F.value 2.40287099
p.perm  0.04200000
p.approx 0.02876237

$terms
[1] "(Intercept)" "metastases" "signature.gene"
[4] "ERstatuspos"

Again we get a significant result.

Supposably the most interesting question in this case concerns differential
co—expression. Differential co—expression is on hand if the effect of the sig-
nature gene behaves different in both metastases groups. In a one dimen-
sional context this would become manifest by different slopes of the regression
lines. Hence what we have to test is the interaction between metastases and
signature.gene.

> vV.6 <- GlobalAncova(xx=vantVeer, formula.full="metastases * signature.gene + ERstatus,

+ formula.red="metastases + signature.gene + ERstatus,

+ model.dat=model, test.genes=p53, method="both", perm=1000)
> vV.6

$effect

[1] "metastases:signature.gene"

$ANOVA

SSQ DF MS
Effect 2.520643 33 0.07638311
Error 84.943038 3003 0.02828606

$test.result

[,1]
F.value 2.70038011
p.perm  0.02300000
p.approx 0.01829782

$terms
[1] "(Intercept)" "metastases"
[3] "signature.gene" "ERstatuspos"

[6] "metastases:signature.gene"

We observe a significant differential co-expression between the chosen signa-
ture gene and the p53-signalling pathway.
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With globaltest we can also test gene-gene interaction, also adjusted for
phenotype groups. But it is not possible to test for differential co-expression or
the influence of more than one signature gene on a pathway. On the other hand
globaltest is able to deal with survival times as clinical outcome.

5 Testing Several Sets Simultaneously

Systems biology involves the study of mechanisms underlying complex biological
processes as integrated systems of many diverse interacting components, often
referred to as pathways.

We regard the possibility to investigate differential gene expression simulta-
neously for several of those pathways as a contribution towards understanding
biological relevant relations.

The user can apply GlobalAncova to compute p—values for a couple of path-
ways with one call by specifying the test.genes option. The members of each
pathway to be tested must belong to genes in the expression—matrix. Afterwards
a suitable correction for multiple testing has to be applied. An alternative based
on the closed testing approach is described later.

Suppose for example that for sake of simplicity we want to test the first four
of the cancer related pathways with the van’t Veer data. We proceed as follows.

> metastases <- phenodata$metastases
> ga.pw <- GlobalAncova(xx=vantVeer, group=metastases, test.genes=pathways[1:4],

+ method="both", perm=1000)
> ga.pw

genes F.value p.perm P.approx
androgen_receptor_signaling 72 2.389837 0.019 3.045062e-03
apoptosis 187 1.968467 0.012 7.694809e-04
cell_cycle_control 31 4.639853 0.000 2.958656e-05
notch_delta_signalling 34 1.497222 0.146 8.537110e-02

The result is a matrix whose rows correspond to the different pathways.
With the globaltest we get a similar matrix.

> gt.options(transpose = TRUE)
> gt.pw <- gt(metastases, vantVeer, subsets=pathways[1:4])

> gt.pw

p-value Statistic Expected Std.dev #Cov
androgen_receptor_signaling 0.008540 2.48 1.06 0.409 72
apoptosis 0.012427 2.05 1.06 0.327 187
cell_cycle_control 0.000216 4.70 1.06 0.515 31
notch_delta_signalling 0.131999 1.57 1.06 0.496 34

5.1 Simultaneous Adjustment of p—values

Next we show how to extract p—values for correction for multiple testing. Note
however that due to the extremely high correlations between these tests, many
procedures that correct for multiple testing here are inappropriate. An appro-
priate way of adjusting would be for example the method of Holm (1979) [6].
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An alternative to such adjustments that is not affected by correlations between
tests is a closed testing procedure. For this approach you need a family of null
hypotheses that is closed under intersection. Then a single hypothesis can be
rejected at level « if it is rejected along with all hypotheses included in it ([9]).

For the adjustment according to Bonferroni and Holm we build a vector of
the raw p—values. The function p.adjust provides several adjusting methods
for any vector of raw p-values. For the output of function gt there is a specific
p.adjust method.

> ga.pw.raw <- ga.pw[ ,"p.perm"]

> ga.pw.adj <- p.adjust(ga.pw.raw, "holm")

> ga.result <- data.frame(rawp=ga.pw.raw, Holm=ga.pw.adj)
> ga.result

rawp Holm
androgen_receptor_signaling 0.019 0.038

apoptosis 0.012 0.036
cell_cycle_control 0.000 0.000
notch_delta_signalling 0.146 0.146

> gt.result <- p.adjust(gt.pw)
> gt.result

holm p-value Statistic Expected

androgen_receptor_signaling 0.025620 0.008540 2.48 1.05
apoptosis 0.025620 0.012427 2.05 1.05
cell_cycle_control 0.000865 0.000216 4.70 1.05
notch_delta_signalling 0.131999 0.131999 1.57 1.05

Std.dev #Cov
androgen_receptor_signaling 0.409 72

apoptosis 0.327 187
cell_cycle_control 0.515 31
notch_delta_signalling 0.496 34

Allowing a family—wise error rate of 0.05 all but one pathways remain sig-
nificant for both methods.

5.2 Closed Testing Procedure

Closed testing procedures ([9]) offer a versatile and powerful approach to the
multiple testing problem. Implementation is non—trivial, therefore, the program
given in this version should be regarded as a prototype.

In order to apply the closed testing procedure we first have to create the
required family of hypotheses by building all intersections between the “natural”
hypotheses tested above and all intersections of those new hypotheses and so
on.

The resulting family of hypotheses can be illustrated in a directed graph. If
we just for the sake of illustration assume that we have only four hypotheses
named “1”, ... “4” then the node “1-2-3-4” for example stands for the global
hypothesis that the genes of all four pathways are not differentially expressed.
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Now the interesting hypothesis “1” for example can be rejected if also the hy-
potheses “1-2-3-47, ¥1-2-3”, “1-2-47, “1-3-4”, “2-3-4”, “1-2”, ..., “1-4” are rejected.
These relationships are represented by the edges of the graph.

We can compute the closed testing procedure using the function

> ga.closed <- GlobalAncova.closed(xx=vantVeer, group=metastases,
+ test.genes=pathways[1:4], previous.test=ga.pw,
+ level=0.05, method="approx")

where test.genes is again a list of pathways. In order to shorten computing
time we can provide the results of the previous application of GlobalAncova
for the pathways of interest. The option level allows to manipulate the level of
significance. There is again the possibility to choose between permutation and
asymptotic p-values via the option method. Note that if you provide results of
previous computation, the type of p-values has to correspond, i.e. if we now
want to use method = "approz” in the previous test we should have used method
= "approz" or method = "both” such that asymptotic p-values are available.

Also for GlobalAncova.closed all three different function calls as for GlobalAncova
itself are possible.

The function GlobalAncova.closed provides the formed null hypotheses
(this means lists of genes to be tested simultaneously), the test results for each
pathway of interest and the names of significant and non significant pathways.
Names for the intersections of hypotheses are built by simply coercing the names
of the respective pathways. If for a pathway one single hypothesis can not be
rejected there is no need to test all the remaining hypotheses. That is why in
test results of non significant pathways lines are filled with NA’s after a p—value
> « occured. Here only test results for the first pathway are displayed.

> names (ga.closed)

[1] "new.data" "test.results" "significant"
[4] "not.significant"

> rownames(ga.closed$test.results[[1]])

[1] "androgen_receptor_signaling"

[2] "androgen_receptor_signaling.apoptosis"

[3] "androgen_receptor_signaling.cell_cycle_control"

[4] "androgen_receptor_signaling.notch_delta_signalling"

[5] "apoptosis.androgen_receptor_signaling.cell_cycle_control"

[6] "apoptosis.androgen_receptor_signaling.notch_delta_signalling"

[7] "cell_cycle_control.androgen_receptor_signaling.notch_delta_signalling"

[8] "cell_cycle_control.apoptosis.androgen_receptor_signaling.notch_delta_signalling"

> rownames(ga.closed$test.results[[1]]) <- NULL
> ga.closed$test.results[1]

$androgen_receptor_signaling
genes F.value p.approx

[1,] 72 2.389837 0.003045062

[2,] 258 2.096100 0.000400000
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[3,] 100 3.040900 0.000200000
[4,] 106 2.120700 0.002400000
[5,] 286 2.381000 0.000100000
(6,1 292 2.027300 0.000400000
[7,] 134 2.686400 0.000200000
[8,] 320 2.290200 0.000100000

> ga.closed$significant

[1] "androgen_receptor_signaling" "apoptosis"
g p g g pop
[3] "cell_cycle_control"

> ga.closed$not.significant
[1] "notch_delta_signalling"

We get the same significant and non significant pathways as before.

6 Testing Public Gene Set Collections

6.1 Gene Ontology

When testing gene sets defined by the Gene Ontology it is of special interest
to incorporate the hierarchical structure of the GO graph. Goeman and Mans-
mann (2008)[4] developed the focus level method, a multiple testing approach on
the GO that combines the correction method of Holm (1979) [6] and the closed
testing procedure from Marcus et al. (1976) [9] (also used in section 5.2). The
method is originally implemented in package globaltest. We adapted the corre-
sponding functions such that the procedure is available also with GlobalAncova.
For details see the vignette of globaltest.

For reasons of computing time here we only apply the focus level method the
subgraph of the ’cell cycle’ GO term and all its descendants. To test all terms
within an ontology (or several ontologies) the id argument can just be omitted.

> library(GO0.db)

> descendants <- get("G0:0007049", GOBPOFFSPRING)

> gago <- GAGO(xx=exprs(golubX), formula.full="ALL.AML, formula.red="1,
+ model.dat=pData(golubX), id=c("G0:0007049", descendants),
+ annotation="hu6800", ontology="BP", multtest="focuslevel)

> head(gago)

raw.p focuslevel Term
G0:0007049 7.182091e-16 7.337469e-14 cell cycle
G0:0010564 1.046562e-14 7.337469e-14 regulation of cell cycle process
G0:0022402 1.493744e-14 7.337469e-14 cell cycle process
G0:0044770 2.224202e-14 7.337469e-14 cell cycle phase transition
G0:0044843 2.216966e-15 7.337469e-14 cell cycle G1/S phase transition
G0:0051726 5.292169e-16 7.337469e-14 regulation of cell cycle
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All arguments for specifying the linear model used in GlobalAncova can
be given here. Only the parameter method is not available because the focus
level procedure does only work with the asymptotic test. Note however, that
still a number of permutations can be specified (perm, default 10,000) since
very large GO terms (with more annotated genes than defined by parameter
maz.group.size, default 2500) are tested permutation-based.

Alternative to the focus level procedure, one can choose between the methods
of Holm [6], Benjamini & Hochberg [1] and Benjamini & Yekutieli [2] for multiple
testing correction, using the argument multtest.

6.2 The Broad Gene Sets

As described in the globaltest vignette, also the gene set collection from the
Broad Institute can be tested quite easily (cl: positional gene sets, c¢2: cu-
rated gene sets, c3: motif gene sets, c4: computational gene sets, c5: GO gene
sets). First the file msigdb_v.2.5.xml containing all gene sets has to be down-
loaded from http://www.broad.mit.edu/gsea/downloads. jsp#msigdb. The
function getBroadSets from package GSEABase can then be used to read the
xml file into R. With the function GABroad gene sets can be selected and tested
using the gene set IDs

> broad <- getBroadSets ("your/path/to/msigdb_v.2.5.xml1")

> GABroad (xx=exprs(golubX), formula.full="ALL.AML, formula.red="1,
+ model.dat=pData(golubX), id="chr5q33", collection=broad,
+ annotation="hu6800")

or all gene sets from one or several categories can be tested

> GABroad (xx=exprs(golubX), formula.full="ALL.AML, formula.red="1,
+ model.dat=pData(golubX), category=c("cl1", "c3"), collection=broad,
+ annotation="hu6800", multtest="holm")

7 Diagnostic Plots

There are two types of diagnostic plots available supporting communication
and interpretation of results of the global ANCOVA. The Plot.genes visualize
the influence of individual genes on the test result while the Plot.subjects
visualizes the influence of individual samples. Both functions are based on the
decomposition of sums of squares.

We use again the van’t Veer data constricted to the genes of the p53-
signalling pathway for demonstration of the plot functions.

7.1 Gene Plot

The influence of each gene on the outcome of the test can be assessed and
visualized with a diagnostic plot generated by our function Plot.genes. It
corresponds to the function features in the globaltest package. We use the
features function with the option what = "w” for displaying weighted gene-
wise test statistics, which corresponds best to what is shown in Plot.genes.
The function Plot.genes gives a graphical display of single gene-wise analysis
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for all genes. Bars are always positive as a reduction of sum of squares is always
achieved in this case. The bar height indicates the influence of the respective
gene on the test statistic. The added reference line is the residual mean square
error per gene and corresponds to the expected height of the bars under the null
hypothesis which says that the gene is not associated with the clinical outcome.
The actual and expected bar heights also correspond to the nominator and
denominator of gene-wise F-statistics. Hence the ratio of the two values is
a measure for the association of the respective gene with the phenotype. Bar
heights for all genes can be returned by setting the option return Values to TRUE.
This helps to detect genes with most influence on the global statistics. Note
however that comparisons between different gene groups can not easily be done
by means of these values directly since different group sizes have an impact on
global significance.

The bars can be colored according to a variable of interest with the option
Colorgroup in order to show in which of the groups a gene has the highest
expression values. The automatically chosen bar labels can be manipulated
with the parameter bar.names.

The commands for creating gene plots in the GlobalAncova and the globaltest
are as follows. Note that for the former one again three alternatives for function
calls are provided, see section 4 for details.

The two approaches show almost the same results (figures 1 and 2). We
prefer plotting horizontal bars rather than vertical because we think it is easier
to read off the bar heights this way.

> Plot.genes(xx=vantVeer, group=metastases, test.genes=p53)
> gt.vV <- gt(metastases, vantVeer, subsets=p53)
> features(gt.vV, what="w")

Figure 1: Gene Plot for the van’t Veer data with GlobalAncova. Shown are the genes
of the p53—signalling pathway. The bar height indicates the influence of the respective
gene on the test statistic. The color shows in which of the phenotype groups the gene
has higher expression values. The reference line is the residual mean square error per
gene.

Figure 2: Gene Plot for the van’t Veer data with globaltest. Shown are the genes of
the p53-signalling pathway. The bar height indicates the influence of the respective
gene on the test statistic. The position of the fat marks gives the expected height of
the bar under the null hypothesis. The other marks indicate with how many standard
deviations the bar exceeds this reference.

In this case where only the influence of one variable is of interest (and there-
fore the easiest version of possible function calls is chosen), the same variable
is assumed to be relevant for coloring. However one is free to specify another
coloring. For example for the same plot we could ask which genes are higher
expressed in samples with either positive or negative Estrogen receptor status,
see figure 3.
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> Plot.genes(xx=vantVeer, formula.full="metastases, formula.red="1,

+ model.dat=phenodata, test.genes=p53, Colorgroup="ERstatus")

Figure 3: Gene Plot for the van’t Veer data with GlobalAncova. Shown are the genes
of the p53-signalling pathway. The bar height indicates the influence of the respective
gene on the test statistic. The color shows in which of the specified phenotype groups,
in this case Estrogen receptor status, the gene has higher expression values. The
reference line is the residual mean square error per gene.

7.2 Subjects Plot

The function Plot.subjects visualizes the influence of the individual samples
on the test result and corresponds to the subjects of Goeman. As for the
features plot we use the option what = "w" to get closest to the output of
Plot.subjects. The function Plot.subjects gives information on the reduc-
tion of sum of squares per subject. Here we sum over genes. Large reduction
demonstrates a good approximation of a subject’s gene expressions by the cor-
responding group means. If an individual does not fit into the pattern of its
phenotype, negative values can occur. A small p—value will therefore generally
coincide with many positive bars. If there are still tall negative bars, these indi-
cate deviating samples: removing a sample with a negative bar would result in
a lower p-value. The bars are colored to distinguish samples of different clinical
entities that can again be specified by the user through the option Colorgroup.
With the option sort it is also possible to sort the bars with respect to the
phenotype groups. Bar labels can be changed with the argument bar.names.
Also in the subjects plot bar heights can be returned by setting the option re-
turn Values to TRUE. That may help to detect, not only visually, samples which
do not fit into their respective clinical groups.
We compare again the different approaches (figures 4 and 5):

> #colnames (exprs(golubX)) <- pData(golubX)[ ,1]

> Plot.subjects(xx=vantVeer, group=metastases, test.genes=p53, legendpos="bottomright")

> subjects(gt.vV, what="w")

Figure 4: Subjects Plot for the van’t Veer data with GlobalAncova. The bar height
indicates the influence of the respective sample on the test result. If an individual does
not fit into the pattern of its phenotype, negative values can occur. Bars are colored
corresponding to phenotype groups.

The function Plot.subjects can be invoked by the three alternative func-
tion calls (see section 4) and hence also plots corresponding to more complex
testing challenges can be produced as well. To give just one example we consider
again the influence of the tumour grade, which can take three possible values,
on gene expression (figure 6).

> Plot.subjects(xx=vantVeer, formula.full="grade, formula.red="1,

+ model.dat=phenodata, test.genes=p53, Colorgroup='grade"

18

, legendpos="toplef



Figure 5: Subjects Plot for the van’t Veer data with globaltest. The bar height
indicates the influence of the respective sample on the test result. If an individual does
not fit into the pattern of its phenotype, negative values can occur. The fat marks on
the bars show the expected influence of the samples under the null hypothesis. The
other marks indicate the standard deviation of the influence of the sample under the
null hypothesis.

Figure 6: Subjects Plot for the van’t Veer data with GlobalAncova. Tumour grade is
the clinical variable of interest. The bar height indicates the influence of the respective
sample on the test result. If an individual does not fit into the pattern of its phenotype,
negative values can occur. Bars are colored corresponding to phenotype groups.

8 Generalized Linear Models

By moving from comparison of residual sums of squares to the comparison of
model deviances, the GlobalAncova approach can be generalized to groups of
non-quantitative variables. By transformation of individual test statistics to
follow the same distribution, the generalized GlobalAncova can even be applied
to mixed data types. Significance is assessed by a permutation approach as
described in section 4. The generalized GlobalAncova test is performed by
function gGlobalAncova. We demonstrate its use with a small simulated dataset
of binary variables, where we want to test for global differences between two
experimental groups (group).

> data(bindata)
> X <- as.matrix(bindatal,-1])
> gGlobalAncova (X, formula.full="group, model.dat=bindata, perm=1000)

p-.value Statistic
1 0 194.2137

The syntax of the function is similar to GlobalAncova. The parameter
to specify several sets simultaneously, however, is called Sets here (instead of
test.genes).

> gGlobalAncova (X, formula.full="group, model.dat=bindata,
+ Sets=1ist(2:5, 6:10, 19:24), perm=1000)

p-value Statistic

1 0.001 22.80652
0.006 17.45448

3 0.002 25.72998

In analogy to Plot.genes, contributions of individual variables on the global
test statistic can be visualized by function Plot.features, which shows the
variable-wise differences in model deviances. A subjects plot for the generalized
GlobalAncova is not yet implemented.

> Plot.features (X, formula.full="group, model.dat=bindata)
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9 Hierarchical Testing

Hierarchical testing procedures build an alternative to screening variables in-
dividually by subsequently testing groups of correlated variables within a hier-
archy. For testing those groups global tests like generalized GlobalAncova can
be used. We implement the hierarchical testing approach according to Mein-
shausen [10]. The procedure starts with testing the global null hypothesis that
all variables are not associated with the design of interest, and then moves
down the given hierarchy testing subclusters of variables. A subcluster is only
tested if the null hypothesis corresponding to its ancestor cluster could be re-
jected. The p-values are adjusted for multiple testing according to cluster size
pacdj = p®m/|C|, where m is the total number of variables and |C| is the number
of variables in cluster C'. By this, the family-wise error rate is simultaneously
controlled over all levels of the hierarchy.
Hierarchical testing can be performed by function gGlobalAncova.hierarchical.

A hierarchy of variables has to be given as a dendrogram object. It can be pre-
specified by domain knowledge or derived data-driven by clustering.

# get a hierarchy for variables

dend <- as.dendrogram(hclust (dist(t(X))))

# hierarchical test

set.seed(555)

res <- gGlobalAncova.hierarchical (X, H=dend, formula.full="group,
model.dat=bindata, alpha=0.05, perm=1000)

+ VvV VvV Vv Vv Vv

testing global hypothesis...
[1] "global p-value = O"
hierarchical testing...
[1] " level 2"

[11 " level 3"

[11 " level 4"

[1] " level 5"

[1] " level 6"

[1] " level 9"

[11 " level 12"

[1] " level 14"

[11 " level 17"

[1] " level 18"

[1] " level 19"

[1] " level 21"

[11 " level 22"

The output is an object of class GAhier. The most relevant results are the
significant end nodes, i.e. the groups or individual variables down to which the
hierarchical testing could procede while still getting significant test results.

> res

results of hierarchical testing procedure for 24 variables
global alpha = 0.05
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significant end nodes:
variables n.variables p.value

level22.16 true2 1 0.012
level22.19 trueb 1 0.000
level21.12 true9 1 0.000
level21.15 trueb 1 0.000
levell9.1 trued 1 0.000
levell9.3 trued 1 0.000
levell8.9 true7 1 0.012
levell7.7 truel 1 0.000
levell7.8 truell 1 0.012

> results(res)

variables n.variables p.value

level22.16 true2 1 0.012
level22.19 trueb 1 0.000
level21.12 true9 1 0.000
level21.15 trueb 1 0.000
levell9.1 trued 1 0.000
levell9.3 trued 1 0.000
levell8.9 true7 1 0.012
levell7.7 truel 1 0.000
levell7.8 truell 1 0.012

You can also retrieve just the names of significant end nodes. In case the
main interest is in individual variables, option onlySingleton can be set to
TRUE. For the example this does not make a difference, since all significant
end nodes are individual variables anyway.

> # get names of significant clusters
> sigEndnodes (res)

level22.16 level22.19 level21.12 level21.15 1levell9.1 1levell9.3

"true2" "trueb" "true9" "true6" "trued" "true8"
levell8.9 1levell7.7 1levell7.8
"true7" "truel" "truel0"

> sigEndnodes (res, onlySingleton=TRUE)

level22.16 level22.19 level21.12 level21.15 1levell9.1 1levell9.3

"true2" "trueb" "true9" "true6" "trued" "true8"
levell8.9 1levell7.7 1levell7.8
"true7" "truel" "truelO"

The dendrogram can be visualized with Plot.hierarchy, where the paths
to significant end nodes are highlighted.

> # visualize results
> Plot.hierarchy(res, dend)

21



In order to reduce computational complexity for large hierarchies, a "short
cut" is implemented, where the testing procedure is applied separately to K sub-
hierarchies containing my, ..., mg variables. The p-values resulting within sub-
hierarchies are additionally adjusted by 7 = m/myg, k = 1,..., K such that final
p-values are identical to the ones obtained when testing the complete hierarchy

myp m m
pacdj,k - T :pcﬁ : mik = pcﬁ = pacdj

> # starting with 3 sub-hierarchies
> set.seed(555)
> res2 <- gGlobalAncova.hierarchical (X, H=dend, K=3, formula.full="group,
+ model.dat=bindata, alpha=0.05, perm=1000)

testing global hypothesis...
[1] "global p-value = 0"
hierarchical testing...
[1] "subtree 1"

[1] " level 2"

[1] " level 4"

[11 " 1level 5"

[11 " level 7"

[1] "subtree 2"

[1] " level 2"

[1] " level 6"

[1] "subtree 3"

[11 " level 2"

[1] " level 4"

[1] " level 6"

[1] " level 7"

[1] " level 8"

> results(res2)

variables n.variables p.value

K3_level8.5 trued 1 0.000
K3_level8.8 trueb 1 0.000
K3_level7.4 true’ 1 0.012
K3_level6.2 truel 1 0.000
K3_level6.3 truell 1 0.012
K2_level6.1 trued 1 0.000
K2_level6.3 true8 1 0.000
Ki_level7.1 true2 1 0.012
Ki_level7.4 trueb 1 0.000
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11 Session Info
> sessionInfo()

R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS

Matrix products: default
BLAS:  /home/biocbuild/bbs-3.16-bioc/R/1ib/1ibRblas.so
LAPACK: /home/biocbuild/bbs-3.16-bioc/R/1ib/libRlapack.so

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:

[1] grid stats4 stats graphics grDevices utils
[7] datasets methods base

other attached packages:

[1] GO.db_3.16.0 Rgraphviz_2.42.0 graph_1.76.0

[4] vsn_3.66.0 hu6800.db_3.13.0 org.Hs.eg.db_3.16.0
[7] AnnotationDbi_1.60.0 IRanges_2.32.0 S4Vectors_0.36.0
[10] golubEsets_1.39.0 Biobase_2.58.0 BiocGenerics_0.44.0

[13] GlobalAncova_4.16.0 globaltest_5.52.0 survival_3.4-0
[16] corpcor_1.6.10

loaded via a namespace (and not attached):

[1] Repp_1.0.9 lattice_0.20-45

[3] png_0.1-7 Biostrings_2.66.0
[5] assertthat_0.2.1 utf8_1.2.2

[7] R6_2.5.1 GenomeInfoDb_1.34.0
[9] RSQLite_2.2.18 httr_1.4.4

[11] ggplot2_3.3.6 pillar_1.8.1

[13] zlibbioc_1.44.0 rlang_1.0.6

[15] annotate_1.76.0 blob_1.2.3

[17] Matrix_1.5-1 preprocessCore_1.60.0
[19] splines_4.2.1 RCurl_1.98-1.9

[21] bit_4.0.4 munsell_0.5.0

[23] compiler_4.2.1 pkgconfig_2.0.3
[25] tidyselect_1.2.0 KEGGREST_1.38.0
[27] tibble_3.1.8 gridExtra_2.3

[29] GenomeInfoDbData_1.2.9 dendextend_1.16.0
[31] XML_3.99-0.12 fansi_1.0.3

[33] viridisLite_0.4.1 crayon_1.5.2
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[35]
[37]
[39]
[41]
[43]
[45]
[47]
[49]
[51]
[53]
[55]
[57]
[59]

dplyr_1.0.10
affy_1.76.0
GSEABase_1.60.0
lifecycle_1.0.3
magrittr_2.0.3
cli_3.4.1
XVector_0.38.0
viridis_0.6.2
generics_0.1.3
tools_4.2.1
glue_1.6.2
colorspace_2.0-3
memoise_2.0.1

bitops_1.0-7
xtable_1.8-4
gtable_0.3.1
DBI_1.1.3
scales_1.2.1
cachem_1.0.6
affyio_1.68.0
limma_3.54.0
vctrs_0.5.0
bit64_4.0.5
fastmap_1.1.0
BiocManager_1.30.19
VGAM_1.1-7
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