
How To Use GOstats and Category to do Hypergeometric testing
with unsupported model organisms

M. Carlson

November 1, 2022

1 Introduction

This vignette is meant as an extension of what already exists in the GOstatsHyperG.pdf vignette. It is
intended to explain how a user can run hypergeometric testing on GO terms or KEGG terms when the
organism in question is not supported by an annotation package. The 1st thing for a user to determine
then is whether or not their organism is supported by an organism package through AnnotationForge.
In order to do that, they need only to call the available.dbschemas() method from AnnotationForge.

> library("AnnotationForge")
> available.dbschemas()

[1] "ARABIDOPSISCHIP_DB" "BOVINECHIP_DB" "BOVINE_DB"
[4] "CANINECHIP_DB" "CANINE_DB" "CHICKENCHIP_DB"
[7] "CHICKEN_DB" "ECOLICHIP_DB" "ECOLI_DB"

[10] "FLYCHIP_DB" "FLY_DB" "GO_DB"
[13] "HUMANCHIP_DB" "HUMANCROSSCHIP_DB" "HUMAN_DB"
[16] "INPARANOIDDROME_DB" "INPARANOIDHOMSA_DB" "INPARANOIDMUSMU_DB"
[19] "INPARANOIDRATNO_DB" "INPARANOIDSACCE_DB" "KEGG_DB"
[22] "MALARIA_DB" "MOUSECHIP_DB" "MOUSE_DB"
[25] "PFAM_DB" "PIGCHIP_DB" "PIG_DB"
[28] "RATCHIP_DB" "RAT_DB" "WORMCHIP_DB"
[31] "WORM_DB" "YEASTCHIP_DB" "YEAST_DB"
[34] "ZEBRAFISHCHIP_DB" "ZEBRAFISH_DB"

If the organism that you are using is listed here, then your organism is supported. If not, then you
will need to find a source or GO (org KEGG) to gene mappings. One source for GO to gene mappings
is the blast2GO project. But you might also find such mappings at Ensembl or NCBI. If your organism
is not a typical model organism, then the GO terms you will find are probably going to be predictions
based on sequence similarity measures instead of direct measurements. This is something that you
might want to bear in mind when you draw conclusions later.

In preparation for our subsequent demonstrations, lets get some data to work with by borrowing
from an organism package. We will assume that you will use something like read.table to load
your own annotation packages into a data.frame object. The starting object needs to be a data.frame
with the GO Id’s in the 1st col, the evidence codes in the 2nd column and the gene Id’s in the 3rd.

1

> library("org.Hs.eg.db")
> frame = toTable(org.Hs.egGO)
> goframeData = data.frame(frame$go_id, frame$Evidence, frame$gene_id)
> head(goframeData)

frame.go_id frame.Evidence frame.gene_id
1 GO:0008150 ND 1
2 GO:0001553 IEA 2
3 GO:0001869 IDA 2
4 GO:0002438 IEA 2
5 GO:0006953 IEA 2
6 GO:0007584 IEA 2

1.1 Preparing GO to gene mappings

When using GO mappings, it is important to consider the data structure of the GO ontologies. The
terms are organized into a directed acyclic graph. The structure of the graph creates implications about
the mappings of less specific terms to genes that are mapped to more specific terms. The Category
and GOstats packages normally deal with this kind of complexity by using a special GO2All mapping
in the annotation packages. You won’t have one of those, so instead you will have to make one.
AnnotationDbi provides some simple tools to represent your GO term to gene mappings so that this
process will be easy. First you need to put your data into a GOFrame object. Then the simple act of
casting this object to a GOAllFrame object will tap into the GO.db package and populate this object
with the implicated GO2All mappings for you.

> goFrame=GOFrame(goframeData,organism="Homo sapiens")
> goAllFrame=GOAllFrame(goFrame)

In an effort to standardize the way that we pass this kind of custom information around, we have
chosen to support geneSetCollection objects from GSEABase package. You can generate one of these
objects in the following way:

> library("GSEABase")
> gsc <- GeneSetCollection(goAllFrame, setType = GOCollection())

1.2 Setting up the parameter object

Now we can make a parameter object for GOstats by using a special constructor function. For the sake
of demonstration, I will just use all the EGs as the universe and grab some arbitrarily to be the geneIds
tested. For your case, you need to make sure that the gene IDs you use are unique and that they are the
same type for both the universe, the geneIds and the IDs that are part of your geneSetCollection.

> library("GOstats")
> universe = Lkeys(org.Hs.egGO)
> genes = universe[1:500]
> params <- GSEAGOHyperGParams(name="My Custom GSEA based annot Params",

2

+ geneSetCollection=gsc,
+ geneIds = genes,
+ universeGeneIds = universe,
+ ontology = "MF",
+ pvalueCutoff = 0.05,
+ conditional = FALSE,
+ testDirection = "over")

And finally we can call hyperGTest in the same way we always have before.

> Over <- hyperGTest(params)
> head(summary(Over))

GOMFID Pvalue OddsRatio ExpCount Count Size
1 GO:0042626 9.993781e-33 25.900433 2.2330729 35 98
2 GO:0019829 1.116968e-30 47.526130 1.2076823 27 53
3 GO:0015662 9.351872e-26 253.228288 0.4557292 17 20
4 GO:0042802 9.822601e-24 3.396463 45.5045573 119 1997
5 GO:0015399 1.040746e-23 12.128901 3.8509115 35 169
6 GO:0140358 2.611689e-23 108.502304 0.5468750 17 24

Term
1 ATPase-coupled transmembrane transporter activity
2 ATPase-coupled cation transmembrane transporter activity
3 P-type ion transporter activity
4 identical protein binding
5 primary active transmembrane transporter activity
6 P-type transmembrane transporter activity

1.3 Preparing KEGG to gene mappings

This is much the same as what you did with the GO mappings except for two important simplifications.
First of all you will no longer need to track evidence codes, so the object you start with only needs
to hold KEGG Ids and gene IDs. Seconly, since KEGG is not a directed graph, there is no need for a
KEGG to All mapping. Once again I will borrow some data to use as an example. Notice that we have
to put the KEGG Ids in the left hand column of our initial two column data.frame.

> frame = toTable(org.Hs.egPATH)
> keggframeData = data.frame(frame$path_id, frame$gene_id)
> head(keggframeData)

frame.path_id frame.gene_id
1 04610 2
2 00232 9
3 00983 9
4 01100 9
5 00232 10
6 00983 10

3

> keggFrame=KEGGFrame(keggframeData,organism="Homo sapiens")

The rest of the process should be very similar.

> gsc <- GeneSetCollection(keggFrame, setType = KEGGCollection())
> universe = Lkeys(org.Hs.egGO)
> genes = universe[1:500]
> kparams <- GSEAKEGGHyperGParams(name="My Custom GSEA based annot Params",
+ geneSetCollection=gsc,
+ geneIds = genes,
+ universeGeneIds = universe,
+ pvalueCutoff = 0.05,
+ testDirection = "over")
> kOver <- hyperGTest(params)
> head(summary(kOver))

GOMFID Pvalue OddsRatio ExpCount Count Size
1 GO:0042626 9.993781e-33 25.900433 2.2330729 35 98
2 GO:0019829 1.116968e-30 47.526130 1.2076823 27 53
3 GO:0015662 9.351872e-26 253.228288 0.4557292 17 20
4 GO:0042802 9.822601e-24 3.396463 45.5045573 119 1997
5 GO:0015399 1.040746e-23 12.128901 3.8509115 35 169
6 GO:0140358 2.611689e-23 108.502304 0.5468750 17 24

Term
1 ATPase-coupled transmembrane transporter activity
2 ATPase-coupled cation transmembrane transporter activity
3 P-type ion transporter activity
4 identical protein binding
5 primary active transmembrane transporter activity
6 P-type transmembrane transporter activity

> toLatex(sessionInfo())

• R version 4.2.1 (2022-06-23), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Running under: Ubuntu 20.04.5 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so

• LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so

4

• Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

• Other packages: AnnotationDbi 1.60.0, AnnotationForge 1.40.0, Biobase 2.58.0,
BiocGenerics 0.44.0, Category 2.64.0, GO.db 3.16.0, GOstats 2.64.0, GSEABase 1.60.0,
IRanges 2.32.0, Matrix 1.5-1, S4Vectors 0.36.0, XML 3.99-0.12, annotate 1.76.0, graph 1.76.0,
org.Hs.eg.db 3.16.0

• Loaded via a namespace (and not attached): Biostrings 2.66.0, DBI 1.1.3,
GenomeInfoDb 1.34.0, GenomeInfoDbData 1.2.9, KEGGREST 1.38.0, R6 2.5.1, RBGL 1.74.0,
RCurl 1.98-1.9, RSQLite 2.2.18, Rcpp 1.0.9, Rgraphviz 2.42.0, XVector 0.38.0, bit 4.0.4,
bit64 4.0.5, bitops 1.0-7, blob 1.2.3, cachem 1.0.6, cli 3.4.1, compiler 4.2.1, crayon 1.5.2,
curl 4.3.3, fastmap 1.1.0, genefilter 1.80.0, grid 4.2.1, httr 1.4.4, lattice 0.20-45, memoise 2.0.1,
pkgconfig 2.0.3, png 0.1-7, rlang 1.0.6, splines 4.2.1, survival 3.4-0, tools 4.2.1, vctrs 0.5.0,
xtable 1.8-4, zlibbioc 1.44.0

>

5

	Introduction
	Preparing GO to gene mappings
	Setting up the parameter object
	Preparing KEGG to gene mappings

