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1 Overview

The BGmix package implements the models used in Lewin et al. (2007) for �nding di�erential ex-

pression for genes in two or more samples. When there are two samples, a 3-component mixture

is used to classify genes as over-expressed, under-expressed and non-di�erentially expressed, and
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gene variances are modelled exchangeably to allow for variability between genes. The model is fully

Bayesian, estimating the proportion of di�erentially expressed genes and the mixture parameters

simultaneously. The model can also be run with unstructured priors, for use with multi-class data.

Several di�erent parametric models are possible. An important part of the analysis is to check if

the model is a reasonable �t to the data, and we do this via predictive checks.

The analysis is carried out using Markov Chain Monte Carlo. Convergence of the output can be

checked using the coda package available from CRAN. We also provide a function to plot the trace

of the parameters as part of the BGmix package.

Two alternatives are provided for assessing error rates. With the mixture model, an estimate of

the false discovery rate (FDR) based on posterior probabilities can be calculated. For unstructured

priors, a tail posterior probability method (Bochkina & Richardson (2007)) can be used.

The input to the model can be expression data processed by any algorithm. We provide a function

readBGX to read in the output from the package BGX, which is a fully Bayesian hierarchical model

for obtaining gene expression measures (Hein et al. (2005)).

2 Data format

Data input to BGmix consists of sample mean and sample variance for each gene, under each exper-

imental condition. Three R objects are required as arguments to the BGmix function:

� ybar: a matrix, whose columns correspond to experimental conditions and rows correspond

to genes. Each column contains sample means for all genes under one condition.

� ss: a matrix, whose columns correspond to experimental conditions and rows correspond to

genes. Each column contains sample variances for all genes under one condition. Sample

variances must be the unbiased estimates, i.e. divide by no. replicates - 1 (this is the default

for the standard R var function).

� nreps: a vector containing the number of replicates in each condition.

Note that for a paired design, the data is treated as having only one `condition', and ybar is then

the mean di�erence between the two experimental conditions.

The data must be transformed so that Normal sampling errors are a reasonable assumption (eg.

with a log or shifted-log transform), and normalised if necessary.

3 Experimental design

The �rst level of the model can be written as a regression for each gene:

ȳg = XT .βg + εg (1)

where ȳg is the vector of sample means for di�erent conditions and βg is a vector of e�ect param-

eters. Di�erent parametrisations can be achieved using the `design' matrix X. At most 1 e�ect
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parameter can have a mixture prior. (This will generally be the di�erential expression parameter.)

By default, genes have a separate variance parameter for each condition (σ2gc). However, a more

general variance structure can be used, for instance each gene can have one variance across all con-

ditions (σ2g).

The BGmix function takes four arguments relating to the parametrisation:

� xx: design matrix X. The dimensions of X must be no. e�ects x no. conditions.

� jstar: label of the e�ect which has the mixture prior. Labels start at 0, since this is passed

to C++. If all parameters are �xed e�ects, set jstar = -1.

� ntau: the number of variance parameters for each gene.

� indtau: label for each condition indicating which variance grouping that condition belongs

to. The length of indtau must be the same as the number of conditions.

The defaults for these parameters are those for the di�erential expression, unpaired data case

(see below).

3.1 Di�erential expression, unpaired data

For unpaired data βg1 is the overall mean for gene g and βg2 is the di�erential expression parameter.

Here X =

(
1 1

−1/2 1/2

)
, jstar = 1.

Two variance structures are commonly used: for gene variances per condition (σ2gc), use ntau = 2,

indtau = 0:1. For one variance across all conditions (σ2g), use ntau = 1, indtau = 0.

3.2 Di�erential expression, paired data

For paired data there is only one condition and one e�ect, which is the di�erential expression

parameter. Here X = 1, jstar = 0, ntau = 1, indtau = 0.

3.3 Multi-class data

If one �xed e�ect per condition is required, set X to be the identity matrix and jstar = -1. For

gene variances per condition (σ2gc), use ntau = no. conditions, indtau = 0:(nconds-1). For one

variance across all conditions (σ2g), use ntau = 1, indtau = 0.

4 Example: How to run the model

At a minimum, you must consider the data set and experimental design parameters in order to run

the model (see Sections 2 and 3).

We demonstrate BGmix on a small simulated data set. This consists of 8 replicates of 1000 genes

in 2 experimental conditions. We look for di�erential expression between the two conditions, with
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an unpaired design.

First read in the data:

> library(BGmix)

> data(ybar,ss)

The default experimental design parameters are those for unpaired di�erential expression, so these

can be left out here. The following command �ts BGmix using a mixture of a point mass at zero

for the null distribution and a Gamma and a re�ected Gamma for the alternatives.

> outdir <- BGmix(ybar, ss, nreps=c(8,8),niter=1000,nburn=1000)

[1] "Mixture prior on comp. 2"

[1] "delta ~ Gamma, MH"

[1] "eta (scale of Gamma) updated"

[1] "lambda (shape of Gamma) not updated"

[1] "Normal Likelihood"

[1] "tau ~ Gamma"

[1] "a (prior for tau) is updated"

[1] "trace output for parameters"

[1] "no trace for predicted data"

Burn-in:
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[1] "Output directory is ./run.1"

The function BGmix returns the output directory name. The output directory contains several types

of �le:

� summary of model options (summary.txt)

� posterior means (mean*.txt)

� probability of being classi�ed in the null component (prob-class.txt)

� trace of posterior distribution (trace*.txt)

� predictive p-values (pval*.txt)

Output data can be read into R with the functions ccSummary , ccParams (this reads in posterior

means and classi�cation probabilities), ccTrace and ccPred.

5 Plotting the results

First read in posterior means:

> params <- ccParams(file=outdir)
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[1] "got beta"

[1] "got sig2"

[1] "got zg"

The output of ccParams is a list of vectors and matrices corresponding to the di�erent model

parameters. These are easily plotted using standard R functions. For an unpaired di�erential

expression design some standard plots are included in the package. These show smoothing of

parameters and classi�cation of genes into di�erent mixture components:

> plotBasic(params,ybar,ss)

[1] "These plots are designed for differential expression model."
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The estimated FDR (false discovery rate) can also be plotted:

> par(mfrow=c(1,2))

> fdr <- calcFDR(params)

> plotFDR(fdr)
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[1] "No. DE genes for FDR<=5% is 148"

[1] "No. DE genes for FDR<=10% is 163"
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6 Predictive model checking

First read in the predictive p-values:

> pred <- ccPred(file=outdir)

It is a good idea to look at histograms of the predictive p-values for the gene variances:

> par(mfrow=c(1,2))

> hist(pred$pval.ss.mix[,1])

> hist(pred$pval.ss.mix[,2])
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Histogram of pred$pval.ss.mix[, 1]

pred$pval.ss.mix[, 1]
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Histogram of pred$pval.ss.mix[, 2]

pred$pval.ss.mix[, 2]
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For mixture models, there is a speci�c function to plot histograms of predictive p-values correspond-

ing to each of the mixture components.

> par(mfrow=c(2,3))

> plotPredChecks(pred$pval.ybar.mix2,params$pc,probz=0.8)
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7 Tail posterior probability

Tail posterior probability is used to �nd di�erentially expressed genes with unstructured prior for

the di�erence (�xed e�ects). It needs trace and parameters output from BGmix with jstar = -1

(all e�ects are �xed):

> nreps <- c(8,8)

> outdir2 <- BGmix(ybar, ss, nreps=nreps, jstar=-1, niter=1000,nburn=1000)

> params2 <- ccParams(outdir2)

> res2 <- ccTrace(outdir2)

and the tail posterior probability is calculated by

> tpp.res <- TailPP(res2, nreps=nreps, params2, p.cut = 0.7, plots = F)

Note that in this function the tail posterior probability is calculated only for the second contrast,

assuming that it is the di�erence between condition 2 and condition 1 for the default contrast matrix
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X (see Section 3.1), or for the �rst contrast in paired data.

The returned values are the tail posterior probabilities tpp, estimated False Discovery Rate FDR and

estimated proportion of non-di�erentially expressed genes pi0. FDR and pi0 can also be estimated

separately:

> FDR.res <- FDRforTailPP(tpp.res$tpp, a1 = params2$maa[1], a2

+ = params2$maa[2], n.rep1=nreps[1], n.rep2=nreps[2], p.cut = 0.8)

> pi0 <- EstimatePi0(tpp.res$tpp, tpp.res$pp0)

The histogram of the tail posterior probabilities with its density under the null (no di�erentially

expressed genes) and a graph of FDR can be plotted. (These plots can be done in function TailPP

by setting arguments plots = TRUE.)

> par(mfrow=c(1,2))

> histTailPP(tpp.res)

> FDRplotTailPP(tpp.res)
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8 Model options

To run the model with a �at prior on all e�ects (no mixture prior), set jstar = -1.

There are three main choices for the mixture prior, as presented in Lewin et al. (2007). These are

controlled by the option move.choice.bz in BGmix:

� Null point mass, alternatives Uniform (move.choice.bz = 1)

� Null point mass, alternatives Gamma (move.choice.bz = 4)

� Null small Normal, alternatives Gamma (move.choice.bz = 5)

There are two alternatives for the prior on the gene variances. These are controlled by the option

move.choice.tau in BGmix:

� Inverse Gamma (move.choice.tau = 1)

� log Normal (move.choice.tar = 2)

9 Other functions

plotTrace plots trace plots of model parameters (useful for assessing convergence of the MCMC)

plotCompare produces scatter plot of two variables using the same scale for x and y axes

plotMixDensity plots predictive density for mixture model (Note: you must save the trace of the

predicted data for this: option trace.pred=1 in BGmix and option q.trace=T in ccPred)

TailPP plots the tail posterior probability (for use with unstructured priors on the e�ect parameters)

readBGX reads in results from the BGX package.
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