
Package ‘netOmics’
January 23, 2023

Title Multi-Omics (time-course) network-based integration and
interpretation

Version 1.4.0

Description netOmics is a multi-omics networks builder and explorer.
It uses a combination of network inference algorithms and and knowledge-
based graphs to build multi-layered networks.
The package can be combined with timeOmics to incorporate time-
course expression data and build sub-networks from multi-omics kinetic clusters.
Finally, from the generated multi-
omics networks, propagation analyses allow the identification of missing biological functions (1),
multi-omics mechanisms (2) and molecules between kinetic clusters (3). This helps to re-
solve complex regulatory mechanisms.

License GPL-3

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

VignetteBuilder knitr

Depends R (>= 4.1)

Imports dplyr, ggplot2, igraph, magrittr, minet, purrr, tibble, tidyr,
AnnotationDbi, GO.db, RandomWalkRestartMH, gprofiler2, methods,
stats

Suggests mixOmics, timeOmics, tidyverse, BiocStyle, testthat, covr,
rmarkdown, knitr

biocViews GraphAndNetwork, Software, TimeCourse, WorkflowStep,
SystemsBiology, NetworkInference, Network

URL https://github.com/abodein/netOmics

BugReports https://github.com/abodein/netOmics/issues

git_url https://git.bioconductor.org/packages/netOmics

git_branch RELEASE_3_16

1

https://github.com/abodein/netOmics
https://github.com/abodein/netOmics/issues

2 combine_layers

git_last_commit 0f6398e

git_last_commit_date 2022-11-01

Date/Publication 2023-01-23

Author Antoine Bodein [aut, cre]

Maintainer Antoine Bodein <antoine.bodein.1@ulaval.ca>

R topics documented:
combine_layers . 2
get_go_info . 3
get_graph_stats . 4
get_grn . 5
get_interaction_from_correlation . 6
get_interaction_from_database . 7
get_interaction_from_ORA . 8
get_ORA . 9
hmp_T2D . 9
netOmics . 10
plot_rwr_subnetwork . 11
random_walk_restart . 12
rwr_find_closest_type . 13
rwr_find_seeds_between_attributes . 14
summary_plot_rwr_attributes . 15

Index 18

combine_layers Combine layers

Description

Return a merged graph from two graph layers.

Usage

combine_layers(graph1, graph2 = NULL, interaction.df = NULL)

Arguments

graph1 an igraph object or list of igraph (list.igraph).

graph2 an igraph object or list of igraph (list.igraph) with the same length as graph1.

interaction.df (optional) a 2 colomns data.frame (from, to) describing the edges between ver-
tices from both graphs.

get_go_info 3

Details

If graph2 is a single graph, it will be merged to each element of graph1 (igraph or list.igraph).

If graph2 is a list of graph (list.igraph), each element of graph1 and each element of graph2
are merged in pairs.

Optionally, interaction.df should be provide if any vertex are shared between graphs. It can also
be used to extend the first graph.

In both scenarios, vertex attributes are kept. If a vertex attribute is missing from graph1 or graph2,
NULL value is added. Otherwise, if there is an overlap between attribute values for the same vertex,
attribute from graph2 is dropped.

Value

a merged graph with both vertex attributes from graph1 and graph2.

Examples

with single graphs
graph1 <- igraph::graph_from_data_frame(list(from = c('A', 'B'),

to = c('B', 'C')),
directed = FALSE)

graph2 <- igraph::graph_from_data_frame(list(from = c(1),
to = c(2)),

directed = FALSE)
res <- combine_layers(graph1 = graph1,

graph2 = graph2)

with list of graphs
graph1.list <- list(graph1, graph1)
graph2.list <- list(graph2, graph2)
class(graph1.list) <- class(graph2.list) <- 'list.igraph'

res <- combine_layers(graph1 = graph1.list,
graph2 = graph2)

res <- combine_layers(graph1 = graph1.list,
graph2 = graph2.list)

with interaction dataframe
interaction.df1 <- as.data.frame(list(from = c('C', 'B'), to = c(1, 2)))
res <- combine_layers(graph1 = graph1.list,

graph2 = graph2,
interaction.df = interaction.df1)

get_go_info Get GO info

4 get_graph_stats

Description

From a GO terms (GOID), return definition, ontology and term values from GO.db

Usage

get_go_info(go)

Arguments

go a character, GO term

Value

a data.frame with the following columns: ’GOID’, ’DEFINITION’, ’ONTOLOGY’, ’TERM’

get_graph_stats Get graph statistics

Description

For a given igraph or list of igraph objects, this function summarize the number of vertices/edges
and other vertex attributes.

Usage

get_graph_stats(X)

Arguments

X an ’igraph’ or ’list.igraph’ object

Value

It returns a long data.frame with number of nodes/edges, and the count of the different attributes (if
X is a list of graph, each row describes a graph)

Examples

graph1 <- igraph::graph_from_data_frame(
list(from = c('A', 'B', 'A', 'D', 'C', 'A', 'C'),

to = c('B', 'C', 'D', 'E', 'D', 'F', 'G')),
directed = FALSE)

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c('A','B','C'),
value = '1')

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c('D','E'),

get_grn 5

value = '2')
graph1 <- igraph::set_vertex_attr(graph = graph1,

name = 'type',
index = c('F', 'G'),
value = '-1')

get_graph_stats(graph1)

graph1.list <- list(graph1 = graph1,
graph2 = graph1)

get_graph_stats(graph1.list)

get_grn Gene Regulatory Network

Description

Get Gene Regulatory Network (GRN) from a data.frame. Optionally, if the gene are clustered,
sub_network are build for each cluster.

Usage

get_grn(X, cluster = NULL, method = c("aracne"), type = "gene")

Arguments

X a data.frame/matrix with gene expression (genes in columns, samples in rows).

cluster (optional) clustering result from getCluster

method network building method, one of c(’aracne’)

type character added to node metadata

Details

Methods of GRN reconstruction are as follows: ’aracne’: use ARACNe algorithm on Mutual Infor-
mation (MI) adjency matrix to remove low MI edges in triangles.

Value

An igraph object if no cluster informations are given. Otherwise, it returns a list of igraph object
(list.igraph) with a subgraph for each cluster and a global graph with all the genes.

See Also

build.mim, aracne, getCluster

6 get_interaction_from_correlation

Examples

data(hmp_T2D)
grn only on gene
cluster.mRNA <- timeOmics::getCluster(hmp_T2D$getCluster.res,

user.block = 'RNA')
X <- hmp_T2DrawRNA
grn.res <- get_grn(X = hmp_T2DrawRNA,

cluster = cluster.mRNA,
method = 'aracne')

get_interaction_from_correlation

Interaction_from_correlation

Description

Compute correlation between two dataframe X and Y (or list of data.frame). An incidence graph is
returned. A link between two features is produced if their correlation (absolute value) is above the
threshold.

Usage

get_interaction_from_correlation(X, Y, threshold = 0.5)

Arguments

X a data.frame or list of data.frame (with a similar number of row).

Y a data.frame or list of data.frame (with a similar number of row).

threshold a threshold to cut the correlation matrix above which a link is created between a
feature from X and a feature from Y.

Value

an ’igraph’ object

Examples

X <- matrix(rexp(200, rate=.1), ncol=20)
Y <- matrix(rexp(200, rate=.1), ncol=20)
get_interaction_from_correlation(X,Y)

X <- list(matrix(rexp(200, rate=.1), ncol=20),
matrix(rexp(200, rate=.1), ncol=20))

Y <- matrix(rexp(200, rate=.1), ncol=20)
get_interaction_from_correlation(X,Y)

get_interaction_from_database 7

get_interaction_from_database

Get interaction from database

Description

Returns an interaction graph from a vector of nodes (or a list of vectors) and an interaction database
(data.frame or igraph)

Usage

get_interaction_from_database(X, db = NULL, type = "db", user.ego = FALSE)

Arguments

X vector of nodes or list of vectors

db data.frame (with two columns: from, to) or igraph

type character added to node metadata

user.ego logical, if user.ego == TRUE looks for first degree neighbors in db and add
’mode’ metadata (’core’/’extended’)

Value

a subset graph of db from X list of nodes

Examples

X <- letters[1:4]
db <- as.data.frame(list(from = sample(letters[1:10], replace = TRUE),

to = sample(letters[1:10], replace = TRUE)))

sub <- get_interaction_from_database(X,
db)

db.graph <- igraph::graph_from_data_frame(db,
directed=FALSE)

sub <- get_interaction_from_database(X,
db)

8 get_interaction_from_ORA

get_interaction_from_ORA

Get interaction from ORA enrichment analysis

Description

Returns results of an ORA analysis as an interaction graph

Usage

get_interaction_from_ORA(
query,
sources = "GO",
organism = "hsapiens",
signif.value = TRUE

)

Arguments

query a vector (or a list) of character with the ID to perform the ORA analysis

sources (optional) a character in (GO, KEGG, REAC, TF, MIRNA, CORUM, HP, HPA,
WP)

organism (optional) a character (default = ’hsapiens’)

signif.value (optional) a logical, default = ”

Value

a graph object (or list of graph) containing the interaction between the query and the target terms.

See Also

gost gconvert

Examples

query <- c('IL15', 'CDHR5', 'TGFA', 'C4B')
get_interaction_from_ORA(query,

sources = 'GO')

query <- list('All' = c('IL15', 'CDHR5', 'TGFA', 'C4B'),
'c1' = c('IL15', 'CDHR5', 'TGFA'))

get_interaction_from_ORA(query,
sources = 'GO')

get_ORA 9

get_ORA ORA enrichment analysis

Description

Returns results of an ORA analysis

Usage

get_ORA(query, sources = NULL, organism = "hsapiens")

Arguments

query a vector of character, a lit of ID

sources a character or list of character

organism a character (default = ’hsapiens’)

Value

a data.frame containing the enrichment result

See Also

gost

hmp_T2D hmp_T2D

Description

This dataset contained a list of data.frames. Raw data is a subset of the data available at: https://github.com/aametwally/ipop_seasonal
The package will be illustrated on longitudinal MO dataset to study the seasonality of MO expres-
sion in patients with diabetes (see netOmics vignette). In this subset we focused on a single indi-
vidual with 7 timepoints. Briefly 6 different omics were sampled (RNA, proteins, cytokines, gut
microbiome, metabolites and clinical variables).

Usage

hmp_T2D

10 netOmics

Format

a list of data.frame

raw data.frame, raw data

modelled data.frame, modelled data

getCluster.res data.frame, clustering results from timeOmics

getCluster.sparse.res data.frame, sparse clustering results from timeOmics

interaction.biogrid data.frame, interactions from BioGRID database

interaction.TF data.frame, TFome interactions from TTrust and TF2DNA

medlineranker.res.df data.frame, medlineRanker enrichment results

graph.gut list of igraph, gut graph obtained with SparCC

netOmics netOmics: network-based multi-omics integration and interpretation

Description

netOmics is a multi-omics networks builder and explorer. It uses a combination of network infer-
ence algorithms and and knowledge-based graphs to build multi-layered networks.

The package can be combined with timeOmics to incorporate time-course expression data and build
sub-networks from multi-omics kinetic clusters.

Finally, from the generated multi-omics networks, propagation analyses allow the identification
of missing biological functions (1), multi-omics mechanisms (2) and molecules between kinetic
clusters (3). This helps to resolve complex regulatory mechanisms. Here are the main functions.

Network building

get_grn Based on expression matrix, this function build a gene gene regulatory network. Addi-
tionally, if clustering information is given, it builds cluster specific graph.

get_interaction_from_database From a database (graph or data.frame with interactions be-
tween 2 molecules), this function build the induced graph based on a list of molecules . Alter-
natively, the function can build a graph with the first degree neighbors.

get_interaction_from_correlation Compute correlation between two dataframe X and Y (or
list of data.frame). An incidence graph is returned. A link between two features is produced
if their correlation (absolute value) is above the threshold.

combine_layers Combine 2 (or list of) graphs based on given intersections.

plot_rwr_subnetwork 11

Network exploration

random_walk_restart This function performs a propagation analysis by random walk with restart
in a multi-layered network from specific seeds.

rwr_find_seeds_between_attributes From rwr results, this function returns a subgraph if any
vertex shares different attributes value. In biological context, this might be useful to identify
vertex shared between clusters or omics types.

rwr_find_closest_type From a rwr results, this function returns the closest nodes from a seed
with a given attribute and value. In biological context, it might be useful to get the closest
Gene Ontology annotation nodes from unannotated seeds.

Visualisation

summary_plot_rwr_attributes #’ Based on the results of rwr_find_seeds_between_attributes
which identify the closest k neighbors from a seed, this function returns a barplot of the node
types (layers) reached for each seed.

plot_rwr_subnetwork Display the subgraph from a RWR results. This function colors adds a
specific color to each node based on their ’type’ attribute. It also adds a legend including the
number of vertices/edges and the number of nodes of specific type. Additionally, the function
can display any igraph object.

plot_rwr_subnetwork Plot RWR subnetwork

Description

Display the subgraph from a RWR results. This function colors adds a specific color to each node
based on their ’type’ attribute. It also adds a legend including the number of vertices/edges and the
number of nodes of specific type. Additionally, the function can display any igraph object.

Usage

plot_rwr_subnetwork(X, color = NULL, plot = TRUE, legend = TRUE, ...)

Arguments

X an igraph object

color (optional) a named character vector or list, list of color to apply to each type

plot logical, if TRUE then the plot is produced

legend (optional) logical, if TRUE then the legend is displayed with number of veretices/edges
and the number of nodes of specific type.

... Arguments to be passed to the plot method

Value

X is returned with additional vertex attributes

12 random_walk_restart

Examples

graph1 <- igraph::graph_from_data_frame(
list(from = c("A", "B", "A", "D", "C", "A", "C"),

to = c("B", "C", "D", "E", "D", "F", "G")),
directed = FALSE)

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("A","B","C"),
value = "1")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("D","E"),
value = "2")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("F", "G"),
value = "3")

rwr_res <- random_walk_restart(X = graph1,
seed = c("A"))

rwr_res_type <- rwr_find_seeds_between_attributes(X = rwr_res,
attribute = "type")

plot_rwr_subnetwork(rwr_res_type$A)

random_walk_restart Random Walk with Restart

Description

This function performs a propagation analysis by random walk with restart in a multi-layered net-
work from specific seeds.

Usage

random_walk_restart(X, seed = NULL, r = 0.7)

Arguments

X an igraph or list.igraph object.

seed a character vector. Only seeds present in X are considered.

r a numeric value between 0 and 1. It sets the probability of restarting to a seed
node after each step.

rwr_find_closest_type 13

Value

Each element of X returns a list (class = ’rwr’) containing the following elements:

rwr a data.frame, the RWR results for each valid seed.

seed a character vector with the valid seeds

graph igraph object from X

If X is a list.igraph, the returned object is a list.rwr.

See Also

Random.Walk.Restart.Multiplex, rwr_find_seeds_between_attributes, rwr_find_closest_type

Examples

graph1 <- igraph::graph_from_data_frame(
list(from = c('A', 'B', 'A', 'D', 'C', 'A', 'C'),

to = c('B', 'C', 'D', 'E', 'D', 'F', 'G')),
directed = FALSE)

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c('A','B','C'),
value = '1')

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c('D','E'),
value = '2')

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c('F', 'G'),
value = '3')

rwr_res <- random_walk_restart(X = graph1,
seed = c('A', 'B', 'C', 'D', 'E'))

rwr_find_closest_type RWR Find closest nodes

Description

From a rwr results, this function returns the closest nodes from a seed with a given attribute and
value. In biological context, it might be useful to get the closest Gene Ontology annotation nodes
from unannotated seeds.

Usage

rwr_find_closest_type(X, seed = NULL, attribute = NULL, value = NULL, top = 1)

14 rwr_find_seeds_between_attributes

Arguments

X a random walk result from random_walk_restart

seed a character vector or NULL. If NULL, all the seeds from X are considered.

attribute a character value or NULL. If NULL, the closest node is returned.

value a character value or NULL. If NULL, the closest node for a given attribute is
returned.

top a numeric value, the top closest nodes to extract

Value

A list of data.frame for each seed containing the closest nodes per seed and their vertex attributes.
If X is list.rwr, the returned value is a list of list.

Examples

graph1 <- igraph::graph_from_data_frame(
list(from = c("A", "B", "A", "D", "C", "A", "C"),

to = c("B", "C", "D", "E", "D", "F", "G")),
directed = FALSE)

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("A","B","C"),
value = "1")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("D","E"),
value = "2")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("F", "G"),
value = "3")

rwr_res <- random_walk_restart(X = graph1,
seed = c("A", "B", "C", "D", "E"))

rwr_find_closest_type(X=rwr_res, attribute = "type",
seed = "A")

rwr_find_seeds_between_attributes

RWR Find seeds between attributes

Description

From rwr results, this function returns a subgraph if any vertex shares different attributes value. In
biological context, this might be useful to identify vertex shared between clusters or omics types.

summary_plot_rwr_attributes 15

Usage

rwr_find_seeds_between_attributes(X, seed = NULL, k = 15, attribute = "type")

Arguments

X a random walk result from random_walk_restart

seed a character vector or NULL. If NULL, all the seeds from X are considered.

k a integer, k closest nodes to consider in the search

attribute a character value or NULL. If NULL, the closest node is returned.

Value

A list of igraph object for each seed. If X is a list, it returns a list of list of graph.

Examples

graph1 <- igraph::graph_from_data_frame(
list(from = c("A", "B", "A", "D", "C", "A", "C"),

to = c("B", "C", "D", "E", "D", "F", "G")),
directed = FALSE)

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("A","B","C"),
value = "1")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("D","E"),
value = "2")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("F", "G"),
value = "3")

rwr_res <- random_walk_restart(X = graph1,
seed = c("A", "B", "C", "D", "E"))

rwr_res_type <- rwr_find_seeds_between_attributes(X = rwr_res,
attribute = "type",
k = 3)

summary_plot_rwr_attributes

Summary Plot RWR attributes

Description

Based on the results of rwr_find_seeds_between_attributes which identify the closest k neigh-
bors from a seed, this function returns a barplot of the node types (layers) reached for each seed.

16 summary_plot_rwr_attributes

Usage

summary_plot_rwr_attributes(
X,
color = NULL,
seed.id = NULL,
seed.type = NULL,
plot = TRUE

)

Arguments

X a ’rwr.attributes’ or ’list.rwr.attributes’ object from rwr_find_seeds_between_attributes()

color (optional) a named character vector or list, list of color to apply to each type

seed.id (optional) a character vector, to filter the results and filter on specific seeds IDs

seed.type (optional) a character vector, to filter the results and filter on specific seeds types

plot logical, if TRUE then the plot is produced

Value

a ’ggplot’ object

See Also

random_walk_restart, rwr_find_seeds_between_attributes

Examples

graph1 <- igraph::graph_from_data_frame(
list(from = c("A", "B", "A", "D", "C", "A", "C"),

to = c("B", "C", "D", "E", "D", "F", "G")),
directed = FALSE)

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("A","B","C"),
value = "1")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("D","E"),
value = "2")

graph1 <- igraph::set_vertex_attr(graph = graph1,
name = 'type',
index = c("F", "G"),
value = "3")

rwr_res <- random_walk_restart(X = graph1,
seed = c("A", "B", "C", "D", "E"))

rwr_res_type <- rwr_find_seeds_between_attributes(X = rwr_res,
attribute = "type",
k = 3)

summary_plot_rwr_attributes 17

summary_plot_rwr_attributes(rwr_res_type)

Index

∗ datasets
hmp_T2D, 9

aracne, 5

build.mim, 5

combine_layers, 2

gconvert, 8
get_go_info, 3
get_graph_stats, 4
get_grn, 5
get_interaction_from_correlation, 6
get_interaction_from_database, 7
get_interaction_from_ORA, 8
get_ORA, 9
getCluster, 5
gost, 8, 9

hmp_T2D, 9

netOmics, 10

plot_rwr_subnetwork, 11

Random.Walk.Restart.Multiplex, 13
random_walk_restart, 12, 16
rwr_find_closest_type, 13, 13
rwr_find_seeds_between_attributes, 11,

13, 14, 15, 16

summary_plot_rwr_attributes, 15

18

	combine_layers
	get_go_info
	get_graph_stats
	get_grn
	get_interaction_from_correlation
	get_interaction_from_database
	get_interaction_from_ORA
	get_ORA
	hmp_T2D
	netOmics
	plot_rwr_subnetwork
	random_walk_restart
	rwr_find_closest_type
	rwr_find_seeds_between_attributes
	summary_plot_rwr_attributes
	Index

