
Package ‘mia’
April 10, 2023

Type Package

Version 1.6.0

Title Microbiome analysis

Description mia implements tools for microbiome analysis based on the
SummarizedExperiment, SingleCellExperiment and TreeSummarizedExperiment
infrastructure. Data wrangling and analysis in the context of taxonomic data
is the main scope. Additional functions for common task are implemented such
as community indices calculation and summarization.

biocViews Microbiome, Software, DataImport

License Artistic-2.0 | file LICENSE

Encoding UTF-8

LazyData false

Depends R (>= 4.0), SummarizedExperiment, SingleCellExperiment,
TreeSummarizedExperiment (>= 1.99.3), MultiAssayExperiment

Imports methods, stats, utils, MASS, ape, decontam, vegan,
BiocGenerics, S4Vectors, IRanges, Biostrings, DECIPHER,
BiocParallel, DelayedArray, DelayedMatrixStats, scuttle,
scater, DirichletMultinomial, rlang, dplyr, tibble, tidyr

Suggests testthat, knitr, patchwork, BiocStyle, yaml, phyloseq, dada2,
stringr, biomformat, reldist, ade4, microbiomeDataSets,
rmarkdown

URL https://github.com/microbiome/mia

BugReports https://github.com/microbiome/mia/issues

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.1

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/mia

git_branch RELEASE_3_16

git_last_commit 41e31ad

git_last_commit_date 2022-11-01

1

https://github.com/microbiome/mia
https://github.com/microbiome/mia/issues

2 R topics documented:

Date/Publication 2023-04-10

Author Felix G.M. Ernst [aut] (<https://orcid.org/0000-0001-5064-0928>),
Sudarshan A. Shetty [aut] (<https://orcid.org/0000-0001-7280-9915>),
Tuomas Borman [aut, cre] (<https://orcid.org/0000-0002-8563-8884>),
Leo Lahti [aut] (<https://orcid.org/0000-0001-5537-637X>),
Yang Cao [ctb],
Nathan D. Olson [ctb],
Levi Waldron [ctb],
Marcel Ramos [ctb],
Héctor Corrada Bravo [ctb],
Jayaram Kancherla [ctb],
Domenick Braccia [ctb]

Maintainer Tuomas Borman <tuomas.v.borman@utu.fi>

R topics documented:
mia-package . 3
agglomerate-methods . 3
calculateDMN . 5
calculateJSD . 9
calculateOverlap . 11
calculateUnifrac . 12
estimateDivergence . 15
estimateDiversity . 17
estimateDominance . 22
estimateEvenness . 26
estimateRichness . 29
getAbundance . 32
getExperimentCrossAssociation . 34
getPrevalence . 39
isContaminant . 44
loadFromMetaphlan . 46
loadFromMothur . 48
loadFromQIIME2 . 49
makePhyloseqFromTreeSE . 51
makeTreeSEFromBiom . 53
makeTreeSEFromDADA2 . 54
makeTreeSEFromPhyloseq . 55
meltAssay . 56
merge-methods . 57
mergeSEs . 59
mia-datasets . 62
perSampleDominantTaxa . 65
relabundance . 67
runCCA . 68
runDPCoA . 70
runNMDS . 72

https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-7280-9915
https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5537-637X

mia-package 3

splitByRanks . 75
splitOn . 77
subsampleCounts . 79
subsetSamples . 81
summaries . 82
taxonomy-methods . 85
transformCounts . 88

Index 94

mia-package mia Package.

Description

mia implements tools for microbiome analysis based on the SummarizedExperiment, SingleCellExperiment
and TreeSummarizedExperiment infrastructure. Data wrangling and analysis in the context of tax-
onomic data is the main scope. Additional functions for common task are implemented such as
community indices calculation and summarization.

See Also

TreeSummarizedExperiment class

agglomerate-methods Agglomerate data using taxonomic information

Description

agglomerateByRank can be used to sum up data based on the association to certain taxonomic
ranks given as rowData. Only available taxonomyRanks can be used.

Usage

S4 method for signature 'SummarizedExperiment'
agglomerateByRank(
x,
rank = taxonomyRanks(x)[1],
onRankOnly = FALSE,
na.rm = FALSE,
empty.fields = c(NA, "", " ", "\t", "-", "_"),
...

)

S4 method for signature 'SingleCellExperiment'
agglomerateByRank(x, ..., altexp = NULL, strip_altexp = TRUE)

S4 method for signature 'TreeSummarizedExperiment'
agglomerateByRank(x, ..., agglomerateTree = FALSE)

4 agglomerate-methods

Arguments

x a SummarizedExperiment object

rank a single character defining a taxonomic rank. Must be a value of taxonomyRanks()
function.

onRankOnly TRUE or FALSE: Should information only from the specified rank be used or from
ranks equal and above? See details. (default: onRankOnly = FALSE)

na.rm TRUE or FALSE: Should taxa with an empty rank be removed? Use it with cau-
tion, since empty entries on the selected rank will be dropped. This setting can
be tweaked by defining empty.fields to your needs. (default: na.rm = TRUE)

empty.fields a character value defining, which values should be regarded as empty. (De-
fault: c(NA, "", " ", "\t")). They will be removed if na.rm = TRUE before
agglomeration.

... arguments passed to agglomerateByRank function for SummarizedExperiment
objects, mergeRows and sumCountsAcrossFeatures.

• remove_empty_ranksA single boolean value for selecting whether to re-
move those columns of rowData that include only NAs after agglomeration.
(By default: remove_empty_ranks = FALSE)

• make_uniqueA single boolean value for selecting whether to make row-
names unique. (By default: make_unique = TRUE)

altexp String or integer scalar specifying an alternative experiment containing the input
data.

strip_altexp TRUE or FALSE: Should alternative experiments be removed prior to agglomera-
tion? This prevents to many nested alternative experiments by default (default:
strip_altexp = TRUE)

agglomerateTree

TRUE or FALSE: should rowTree() also be agglomerated? (Default: agglomerateTree
= FALSE)

Details

Based on the available taxonomic data and its structure setting onRankOnly = TRUE has certain
implications on the interpretability of your results. If no loops exist (loops meaning two higher
ranks containing the same lower rank), the results should be comparable. you can check for loops
using detectLoop.

Agglomeration sum up values of assays at specified taxonomic level. Certain assays, e.g. those
that include binary or negative values, can lead to meaningless values, when values are summed. In
those cases, consider doing agglomeration first and then transformation.

Value

A taxonomically-agglomerated, optionally-pruned object of the same class as x.

See Also

mergeRows, sumCountsAcrossFeatures

calculateDMN 5

Examples

data(GlobalPatterns)
print the available taxonomic ranks
colnames(rowData(GlobalPatterns))
taxonomyRanks(GlobalPatterns)

agglomerate at the Family taxonomic rank
x1 <- agglomerateByRank(GlobalPatterns, rank="Family")
How many taxa before/after agglomeration?
nrow(GlobalPatterns)
nrow(x1)

with agglomeration of the tree
x2 <- agglomerateByRank(GlobalPatterns, rank="Family",

agglomerateTree = TRUE)
nrow(x2) # same number of rows, but
rowTree(x1) # ... different
rowTree(x2) # ... tree

If assay contains binary or negative values, summing might lead to meaningless
values, and you will get a warning. In these cases, you might want to do
agglomeration again at chosen taxonomic level.
tse <- transformSamples(GlobalPatterns, method = "pa")
tse <- agglomerateByRank(tse, rank = "Genus")
tse <- transformSamples(tse, method = "pa")

removing empty labels by setting na.rm = TRUE
sum(is.na(rowData(GlobalPatterns)$Family))
x3 <- agglomerateByRank(GlobalPatterns, rank="Family", na.rm = TRUE)
nrow(x3) # different from x2

Because all the rownames are from the same rank, rownames do not include
prefixes, in this case "Family:".
print(rownames(x3[1:3,]))

To add them, use getTaxonomyLabels function.
rownames(x3) <- getTaxonomyLabels(x3, with_rank = TRUE)
print(rownames(x3[1:3,]))

use 'remove_empty_ranks' to remove columns that include only NAs
x4 <- agglomerateByRank(GlobalPatterns, rank="Phylum", remove_empty_ranks = TRUE)
head(rowData(x4))

Look at enterotype dataset...
data(enterotype)
print the available taxonomic ranks. Shows only 1 rank available
not useful for agglomerateByRank
taxonomyRanks(enterotype)

6 calculateDMN

calculateDMN Dirichlet-Multinomial Mixture Model: Machine Learning for Micro-
biome Data

Description

These functions are accessors for functions implemented in the DirichletMultinomial package

Usage

calculateDMN(x, ...)

S4 method for signature 'ANY'
calculateDMN(
x,
k = 1,
BPPARAM = SerialParam(),
seed = runif(1, 0, .Machine$integer.max),
...

)

S4 method for signature 'SummarizedExperiment'
calculateDMN(
x,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...

)

runDMN(x, name = "DMN", ...)

getDMN(x, name = "DMN", ...)

S4 method for signature 'SummarizedExperiment'
getDMN(x, name = "DMN")

bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)

S4 method for signature 'SummarizedExperiment'
bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))

getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)

S4 method for signature 'SummarizedExperiment'
getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))

calculateDMN 7

calculateDMNgroup(x, ...)

S4 method for signature 'ANY'
calculateDMNgroup(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...

)

S4 method for signature 'SummarizedExperiment'
calculateDMNgroup(
x,
variable,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...

)

performDMNgroupCV(x, ...)

S4 method for signature 'ANY'
performDMNgroupCV(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...

)

S4 method for signature 'SummarizedExperiment'
performDMNgroupCV(
x,
variable,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...

)

Arguments

x a numeric matrix with samples as rows or a SummarizedExperiment object.

... optional arguments not used.

8 calculateDMN

k the number of Dirichlet components to fit. See dmn

BPPARAM A BiocParallelParam object specifying whether the UniFrac calculation should
be parallelized.

seed random number seed. See dmn

assay_name a single character value for specifying which assay to use for calculation.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

exprs_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead.)

transposed Logical scalar, is x transposed with samples in rows?

name the name to store the result in metadata

type the type of measure used for the goodness of fit. One of ‘laplace’, ‘AIC’ or
‘BIC’.

variable a variable from colData to use as a grouping variable. Must be a character of
factor.

Value

calculateDMN and getDMN return a list of DMN objects, one element for each value of k provided.

bestDMNFit returns the index for the best fit and getBestDMNFit returns a single DMN object.

calculateDMNgroup returns a DMNGroup object

performDMNgroupCV returns a data.frame

See Also

DMN-class, DMNGroup-class, dmn, dmngroup, cvdmngroup , accessors for DMN objects

Examples

fl <- system.file(package="DirichletMultinomial", "extdata", "Twins.csv")
counts <- as.matrix(read.csv(fl, row.names=1))
fl <- system.file(package="DirichletMultinomial", "extdata", "TwinStudy.t")
pheno0 <- scan(fl)
lvls <- c("Lean", "Obese", "Overwt")
pheno <- factor(lvls[pheno0 + 1], levels=lvls)
colData <- DataFrame(pheno = pheno)

tse <- TreeSummarizedExperiment(assays = list(counts = counts),
colData = colData)

#
dmn <- calculateDMN(tse)
dmn[[1L]]

since this take a bit of resources to calculate for k > 1, the data is

calculateJSD 9

loaded
Not run:
tse <- runDMN(tse, name = "DMN", k = 1:7)

End(Not run)
data(dmn_se)
Convert SE to TreeSE to enable all features of mia and TreeSE object
(Optional step at this point)
dmn_tse <- as(dmn_se, "TreeSummarizedExperiment")
names(metadata(dmn_tse))

return a list of DMN objects
getDMN(dmn_tse)
return, which objects fits best
bestDMNFit(dmn_tse, type = "laplace")
return the model, which fits best
getBestDMNFit(dmn_tse, type = "laplace")

calculateJSD Calculate the Jensen-Shannon Divergence

Description

This function calculates the Jensen-Shannon Divergence (JSD) in a SummarizedExperiment object.

Usage

S4 method for signature 'ANY'
calculateJSD(x, ...)

S4 method for signature 'SummarizedExperiment'
calculateJSD(
x,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...

)

runJSD(x, BPPARAM = SerialParam(), chunkSize = nrow(x))

Arguments

x a numeric matrix or a SummarizedExperiment.

... optional arguments not used.

assay_name a single character value for specifying which assay to use for calculation.

10 calculateJSD

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

exprs_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead.)

transposed Logical scalar, is x transposed with cells in rows?

BPPARAM A BiocParallelParam object specifying whether the JSD calculation should
be parallelized.

chunkSize an integer scalar, defining the size of data send to the individual worker. Only
has an effect, if BPPARAM defines more than one worker. (default: chunkSize =
nrow(x))

Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

Author(s)

Susan Holmes <susan@stat.stanford.edu>. Adapted for phyloseq by Paul J. McMurdie. Adapted
for mia by Felix G.M. Ernst

References

Jensen-Shannon Divergence and Hilbert space embedding. Bent Fuglede and Flemming Top-
soe University of Copenhagen, Department of Mathematics http://www.math.ku.dk/~topsoe/
ISIT2004JSD.pdf

See Also

http://en.wikipedia.org/wiki/Jensen-Shannon_divergence

Examples

data(enterotype)
library(scater)

jsd <- calculateJSD(enterotype)
class(jsd)
head(jsd)

enterotype <- runMDS(enterotype, FUN = calculateJSD, name = "JSD",
exprs_values = "counts")

head(reducedDim(enterotype))
head(attr(reducedDim(enterotype),"eig"))
attr(reducedDim(enterotype),"GOF")

http://www.math.ku.dk/~topsoe/ISIT2004JSD.pdf
http://www.math.ku.dk/~topsoe/ISIT2004JSD.pdf
http://en.wikipedia.org/wiki/Jensen-Shannon_divergence

calculateOverlap 11

calculateOverlap Estimate overlap

Description

This function calculates overlap for all sample-pairs in a SummarizedExperiment object.

Usage

calculateOverlap(
x,
assay_name = abund_values,
abund_values = "counts",
detection = 0,
...

)

S4 method for signature 'SummarizedExperiment'
calculateOverlap(
x,
assay_name = abund_values,
abund_values = "counts",
detection = 0,
...

)

runOverlap(x, ...)

S4 method for signature 'SummarizedExperiment'
runOverlap(x, name = "overlap", ...)

Arguments

x a SummarizedExperiment object containing a tree.

assay_name A single character value for selecting the assay to calculate the overlap.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

detection A single numeric value for selecting detection threshold for absence/presence of
features. Feature that has abundance under threshold in either of samples, will
be discarded when evaluating overlap between samples.

... Optional arguments not used.

name A single character value specifying the name of overlap matrix that is stored in
reducedDim(x).

12 calculateUnifrac

Details

These function calculates overlap between all the sample-pairs. Overlap reflects similarity between
sample-pairs.

When overlap is calculated using relative abundances, the higher the value the higher the similar-
ity is, When using relative abundances, overlap value 1 means that all the abundances of features
are equal between two samples, and 0 means that samples have completely different relative abun-
dances.

Value

calculateOverlap returns sample-by-sample distance matrix. runOverlap returns x that includes
overlap matrix in its reducedDim.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also

calculateJSD calculateUnifrac

Examples

data(esophagus)
tse <- esophagus
tse <- transformSamples(tse, method = "relabundance")
overlap <- calculateOverlap(tse, assay_name = "relabundance")
overlap

Store result to reducedDim
tse <- runOverlap(tse, assay_name = "relabundance", name = "overlap_between_samples")
head(reducedDims(tse)$overlap_between_samples)

calculateUnifrac Calculate weighted or unweighted (Fast) Unifrac distance

Description

This function calculates the (Fast) Unifrac distance for all sample-pairs in a TreeSummarizedExperiment
object.

microbiome.github.io

calculateUnifrac 13

Usage

calculateUnifrac(x, tree, ...)

S4 method for signature 'ANY,phylo'
calculateUnifrac(
x,
tree,
weighted = FALSE,
normalized = TRUE,
BPPARAM = SerialParam()

)

S4 method for signature 'TreeSummarizedExperiment,missing'
calculateUnifrac(
x,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
tree_name = "phylo",
transposed = FALSE,
...

)

runUnifrac(
x,
tree,
weighted = FALSE,
normalized = TRUE,
BPPARAM = SerialParam()

)

Arguments

x a numeric matrix or a TreeSummarizedExperiment object containing a tree.
Please note that runUnifrac expects a matrix with samples per row and not per
column. This is implemented to be compatible with other distance calculations
such as dist as much as possible.

tree if x is a matrix, a phylo object matching the matrix. This means that the phylo
object and the columns should relate to the same type of features (aka. microor-
ganisms).

... optional arguments not used.

weighted TRUE or FALSE: Should use weighted-Unifrac calculation? Weighted-Unifrac
takes into account the relative abundance of species/taxa shared between sam-
ples, whereas unweighted-Unifrac only considers presence/absence. Default is
FALSE, meaning the unweighted-Unifrac distance is calculated for all pairs of
samples.

14 calculateUnifrac

normalized TRUE or FALSE: Should the output be normalized such that values range from 0 to
1 independent of branch length values? Default is TRUE. Note that (unweighted)
Unifrac is always normalized by total branch-length, and so this value is ig-
nored when weighted == FALSE.

BPPARAM A BiocParallelParam object specifying whether the Unifrac calculation should
be parallelized.

assay_name a single character value for specifying which assay to use for calculation.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

exprs_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead.)

tree_name a single character value for specifying which tree will be used in calculation.
(By default: tree_name = "phylo")

transposed Logical scalar, is x transposed with cells in rows, i.e., is Unifrac distance calcu-
lated based on rows (FALSE) or columns (TRUE). (By default: transposed =
FALSE)

Details

Please note that if calculateUnifrac is used as a FUN for runMDS, the argument ntop has to be set
to nrow(x).

Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

Author(s)

Paul J. McMurdie. Adapted for mia by Felix G.M. Ernst

References

http://bmf.colorado.edu/unifrac/

The main implementation (Fast Unifrac) is adapted from the algorithm’s description in:

Hamady, Lozupone, and Knight, “Fast UniFrac: facilitating high-throughput phylogenetic analyses
of microbial communities including analysis of pyrosequencing and PhyloChip data.” The ISME
Journal (2010) 4, 17–27.

See also additional descriptions of Unifrac in the following articles:

Lozupone, Hamady and Knight, “Unifrac - An Online Tool for Comparing Microbial Community
Diversity in a Phylogenetic Context.”, BMC Bioinformatics 2006, 7:371

Lozupone, Hamady, Kelley and Knight, “Quantitative and qualitative (beta) diversity measures lead
to different insights into factors that structure microbial communities.” Appl Environ Microbiol.
2007

Lozupone C, Knight R. “Unifrac: a new phylogenetic method for comparing microbial communi-
ties.” Appl Environ Microbiol. 2005 71 (12):8228-35.

http://bmf.colorado.edu/unifrac/
http://www.nature.com/ismej/journal/v4/n1/full/ismej200997a.html

estimateDivergence 15

Examples

data(esophagus)
library(scater)
calculateUnifrac(esophagus, weighted = FALSE)
calculateUnifrac(esophagus, weighted = TRUE)
calculateUnifrac(esophagus, weighted = TRUE, normalized = FALSE)
for using calculateUnifrac in conjunction with runMDS the tree argument
has to be given separately. In addition, subsetting using ntop must
be disabled
esophagus <- runMDS(esophagus, FUN = calculateUnifrac, name = "Unifrac",

tree = rowTree(esophagus),
exprs_values = "counts",
ntop = nrow(esophagus))

reducedDim(esophagus)

estimateDivergence Estimate divergence

Description

Estimate divergence against a given reference sample.

Usage

estimateDivergence(
x,
assay_name = abund_values,
abund_values = "counts",
name = "divergence",
reference = "median",
FUN = vegan::vegdist,
method = "bray",
...

)

S4 method for signature 'SummarizedExperiment'
estimateDivergence(
x,
assay_name = abund_values,
abund_values = "counts",
name = "divergence",
reference = "median",
FUN = vegan::vegdist,
method = "bray",
...

)

16 estimateDivergence

Arguments

x a SummarizedExperiment object.

assay_name the name of the assay used for calculation of the sample-wise estimates.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

name a name for the column of the colData the results should be stored in. By defaut,
name is "divergence".

reference a numeric vector that has length equal to number of features, or a non-empty
character value; either ’median’ or ’mean’. reference specifies the reference
that is used to calculate divergence. by default, reference is "median".

FUN a function for distance calculation. The function must expect the input matrix
as its first argument. With rows as samples and columns as features. By default,
FUN is vegan::vegdist.

method a method that is used to calculate the distance. Method is passed to the function
that is specified by FUN. By default, method is "bray".

... optional arguments

Details

Microbiota divergence (heterogeneity / spread) within a given sample set can be quantified by the
average sample dissimilarity or beta diversity with respect to a given reference sample.

This measure is sensitive to sample size. Subsampling or bootstrapping can be applied to equalize
sample sizes between comparisons.

Value

x with additional colData named *name*

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also

plotColData

• estimateRichness

• estimateEvenness

• estimateDominance

microbiome.github.io

estimateDiversity 17

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

By default, reference is median of all samples. The name of column where results
is "divergence" by default, but it can be specified.
tse <- estimateDivergence(tse)

The method that are used to calculate distance in divergence and
reference can be specified. Here, euclidean distance and dist function from
stats package are used. Reference is the first sample.
tse <- estimateDivergence(tse, name = "divergence_first_sample",

reference = assays(tse)$counts[,1],
FUN = stats::dist, method = "euclidean")

Reference can also be median or mean of all samples.
By default, divergence is calculated by using median. Here, mean is used.
tse <- estimateDivergence(tse, name = "divergence_average", reference = "mean")

All three divergence results are stored in colData.
colData(tse)

estimateDiversity Estimate (alpha) diversity measures

Description

Several functions for calculating (alpha) diversity indices, including the vegan package options and
some others.

Usage

estimateDiversity(
x,
assay_name = abund_values,
abund_values = "counts",
index = c("coverage", "fisher", "gini_simpson", "inverse_simpson",
"log_modulo_skewness", "shannon"),

name = index,
...

)

S4 method for signature 'SummarizedExperiment'
estimateDiversity(
x,
assay_name = abund_values,
abund_values = "counts",

18 estimateDiversity

index = c("coverage", "fisher", "gini_simpson", "inverse_simpson",
"log_modulo_skewness", "shannon"),

name = index,
...,
BPPARAM = SerialParam()

)

S4 method for signature 'TreeSummarizedExperiment'
estimateDiversity(
x,
assay_name = abund_values,
abund_values = "counts",
index = c("coverage", "faith", "fisher", "gini_simpson", "inverse_simpson",
"log_modulo_skewness", "shannon"),

name = index,
tree_name = "phylo",
...,
BPPARAM = SerialParam()

)

estimateFaith(
x,
tree = "missing",
assay_name = abund_values,
abund_values = "counts",
name = "faith",
...

)

S4 method for signature 'SummarizedExperiment,phylo'
estimateFaith(
x,
tree,
assay_name = abund_values,
abund_values = "counts",
name = "faith",
node_lab = NULL,
...

)

S4 method for signature 'TreeSummarizedExperiment,missing'
estimateFaith(
x,
assay_name = abund_values,
abund_values = "counts",
name = "faith",
tree_name = "phylo",
...

estimateDiversity 19

)

Arguments

x a SummarizedExperiment object or TreeSummarizedExperiment. The latter is
recommended for microbiome data sets and tree-based alpha diversity indices.

assay_name the name of the assay used for calculation of the sample-wise estimates.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

index a character vector, specifying the diversity measures to be calculated.

name a name for the column(s) of the colData the results should be stored in. By
default this will use the original names of the calculated indices.

... optional arguments:

• threshold A numeric value in the unit interval, determining the threshold
for coverage index. By default, threshold is 0.9.

• quantile Arithmetic abundance classes are evenly cut up to to this quantile
of the data. The assumption is that abundances higher than this are not
common, and they are classified in their own group. By default, quantile
is 0.5.

• num_of_classes The number of arithmetic abundance classes from zero to
the quantile cutoff indicated by quantile. By default, num_of_classes is
50.

BPPARAM A BiocParallelParam object specifying whether calculation of estimates should
be parallelized.

tree_name a single character value for specifying which rowTree will be used to calculate
faith index. (By default: tree_name = "phylo")

tree A phylogenetic tree that is used to calculate ’faith’ index. If x is a TreeSummarizedExperiment,
rowTree(x) is used by default.

node_lab NULL or a character vector specifying the links between rows and node labels
of tree. If a certain row is not linked with the tree, missing instance should be
noted as NA. When NULL, all the rownames should be found from the tree. (By
default: node_lab = NULL)

Details

The available indices include the ‘Coverage’, ‘Faith’s phylogenetic diversity’, ‘Fisher alpha’, ‘Gini-
Simpson’, ‘Inverse Simpson’, ‘log-modulo skewness’, and ‘Shannon’ indices. See details for more
information and references.

Alpha diversity is a joint quantity that combines elements or community richness and evenness.
Diversity increases, in general, when species richness or evenness increase.

By default, this function returns all indices.

• ’coverage’ Number of species needed to cover a given fraction of the ecosystem (50 percent
by default). Tune this with the threshold argument.

20 estimateDiversity

• ’faith’ Faith’s phylogenetic alpha diversity index measures how long the taxonomic distance
is between taxa that are present in the sample. Larger values represent higher diversity. Using
this index requires rowTree. (Faith 1992)

• ’fisher’ Fisher’s alpha; as implemented in vegan::fisher.alpha. (Fisher et al. 1943)

• ’gini_simpson’ Gini-Simpson diversity i.e. 1 − lambda, where lambda is the Simpson in-
dex, calculated as the sum of squared relative abundances. This corresponds to the diversity
index ’simpson’ in vegan::diversity. This is also called Gibbs–Martin, or Blau index in
sociology, psychology and management studies. The Gini-Simpson index (1-lambda) should
not be confused with Simpson’s dominance (lambda), Gini index, or inverse Simpson index
(1/lambda).

• ’inverse_simpson’ Inverse Simpson diversity: 1/lambda where lambda = sum(p2) and p
refers to relative abundances. This corresponds to the diversity index ’invsimpson’ in ve-
gan::diversity. Don’t confuse this with the closely related Gini-Simpson index

• ’log_modulo_skewness’ The rarity index characterizes the concentration of species at low
abundance. Here, we use the skewness of the frequency distribution of arithmetic abundance
classes (see Magurran & McGill 2011). These are typically right-skewed; to avoid taking
log of occasional negative skews, we follow Locey & Lennon (2016) and use the log-modulo
transformation that adds a value of one to each measure of skewness to allow logarithmization.

• ’shannon’ Shannon diversity (entropy).

Value

x with additional colData named *name*

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Beisel J-N. et al. (2003) A Comparative Analysis of Diversity Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.
pdf

Bulla L. (1994) An index of diversity and its associated diversity measure. Oikos 70:167–171

Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation
61(1):1-10.

Fisher R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species and
the number of individuals in a random sample of animal population. Journal of Animal Ecology 12,
42-58.

Locey K.J. & Lennon J.T. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975.

Magurran A.E., McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment. (Oxford Univ Press, Oxford), Vol 12.

Smith B. & Wilson JB. (1996) A Consumer’s Guide to Diversity Indices. Oikos 76(1):70-82.

microbiome.github.io
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf

estimateDiversity 21

See Also

plotColData

• estimateRichness

• estimateEvenness

• estimateDominance

• diversity

• estimateR

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

All index names as known by the function
index <- c("shannon","gini_simpson","inverse_simpson", "coverage", "fisher",
"faith", "log_modulo_skewness")

Corresponding polished names
name <- c("Shannon","GiniSimpson","InverseSimpson", "Coverage", "Fisher",
"Faith", "LogModSkewness")

Calculate diversities
tse <- estimateDiversity(tse, index = index)

The colData contains the indices with their code names by default
colData(tse)[, index]

Removing indices
colData(tse)[, index] <- NULL

'threshold' can be used to determine threshold for 'coverage' index
tse <- estimateDiversity(tse, index = "coverage", threshold = 0.75)
'quantile' and 'num_of_classes' can be used when
'log_modulo_skewness' is calculated
tse <- estimateDiversity(tse, index = "log_modulo_skewness",

quantile = 0.75, num_of_classes = 100)

It is recommended to specify also the final names used in the output.
tse <- estimateDiversity(tse,

index = c("shannon", "gini_simpson", "inverse_simpson", "coverage",
"fisher", "faith", "log_modulo_skewness"),

name = c("Shannon", "GiniSimpson", "InverseSimpson", "Coverage",
"Fisher", "Faith", "LogModSkewness"))

The colData contains the indices by their new names provided by the user
colData(tse)[, name]

Compare the indices visually
pairs(colData(tse)[, name])

22 estimateDominance

Plotting the diversities - use the selected names
library(scater)
plotColData(tse, "Shannon")
... by sample type
plotColData(tse, "Shannon", "SampleType")
Not run:
combining different plots
library(patchwork)
plot_index <- c("Shannon","GiniSimpson")
plots <- lapply(plot_index,

plotColData,
object = tse,
x = "SampleType",
colour_by = "SampleType")

plots <- lapply(plots,"+",
theme(axis.text.x = element_text(angle=45,hjust=1)))

names(plots) <- plot_index
plots$Shannon + plots$GiniSimpson + plot_layout(guides = "collect")

End(Not run)

estimateDominance Estimate dominance measures

Description

This function calculates community dominance indices. This includes the ‘Absolute’, ‘Berger-
Parker’, ‘Core abundance’, ‘Gini’, ‘McNaughton’s’, ‘Relative’, and ‘Simpson’s’ indices.

Usage

estimateDominance(
x,
assay_name = abund_values,
abund_values = "counts",
index = c("absolute", "dbp", "core_abundance", "gini", "dmn", "relative",
"simpson_lambda"),

ntaxa = 1,
aggregate = TRUE,
name = index,
...,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
estimateDominance(
x,
assay_name = abund_values,
abund_values = "counts",

estimateDominance 23

index = c("absolute", "dbp", "core_abundance", "gini", "dmn", "relative",
"simpson_lambda"),

ntaxa = 1,
aggregate = TRUE,
name = index,
...,
BPPARAM = SerialParam()

)

Arguments

x a SummarizedExperiment object

assay_name A single character value for selecting the assay to calculate the sample-wise
estimates.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

index a character vector, specifying the indices to be calculated.

ntaxa Optional and only used for the Absolute and Relative dominance indices: The
n-th position of the dominant taxa to consider (default: ntaxa = 1). Disregarded
for the indices “dbp”, “core_abundance”, “Gini”, “dmn”, and “Simpson”.

aggregate Optional and only used for the Absolute, dbp, Relative, and dmn dominance
indices: Aggregate the values for top members selected by ntaxa or not. If TRUE,
then the sum of relative abundances is returned. Otherwise the relative abun-
dance is returned for the single taxa with the indicated rank (default: aggregate
= TRUE). Disregarded for the indices “core_abundance”, “gini”, “dmn”, and “simp-
son”.

name A name for the column(s) of the colData where the calculated Dominance in-
dices should be stored in.

... additional arguments currently not used.

BPPARAM A BiocParallelParam object specifying whether calculation of estimates should
be parallelized. (Currently not used)

Details

A dominance index quantifies the dominance of one or few species in a community. Greater values
indicate higher dominance.

Dominance indices are in general negatively correlated with alpha diversity indices (species rich-
ness, evenness, diversity, rarity). More dominant communities are less diverse.

estimateDominance calculates the following community dominance indices:

• ’absolute’ Absolute index equals to the absolute abundance of the most dominant n species of
the sample (specify the number with the argument ntaxa). Index gives positive integer values.

• ’dbp’ Berger-Parker index (See Berger & Parker 1970) calculation is a special case of the
’relative’ index. dbp is the relative abundance of the most abundant species of the sample.
Index gives values in interval 0 to 1, where bigger value represent greater dominance.

24 estimateDominance

dbp =
N1

Ntot

where N1 is the absolute abundance of the most dominant species and Ntot is the sum of
absolute abundances of all species.

• ’core_abundance’ Core abundance index is related to core species. Core species are species
that are most abundant in all samples, i.e., in whole data set. Core species are defined as
those species that have prevalence over 50\ species must be prevalent in 50\ calculate the core
abundance index. Core abundance index is sum of relative abundances of core species in the
sample. Index gives values in interval 0 to 1, where bigger value represent greater dominance.

coreabundance =
Ncore

Ntot

where Ncore is the sum of absolute abundance of the core species and Ntot is the sum of
absolute abundances of all species.

• ’gini’ Gini index is probably best-known from socio-economic contexts (Gini 1921). In eco-
nomics, it is used to measure, for example, how unevenly income is distributed among popu-
lation. Here, Gini index is used similarly, but income is replaced with abundance.
If there is small group of species that represent large portion of total abundance of microbes,
the inequality is large and Gini index closer to 1. If all species has equally large abundances,
the equality is perfect and Gini index equals 0. This index should not be confused with Gini-
Simpson index, which quantifies diversity.

• ’dmn’ McNaughton’s index is the sum of relative abundances of the two most abundant species
of the sample (McNaughton & Wolf, 1970). Index gives values in the unit interval:

dmn = (N1 +N2)/Ntot

where N1 and N2 are the absolute abundances of the two most dominant species and Ntot is
the sum of absolute abundances of all species.

• ’relative’ Relative index equals to the relative abundance of the most dominant n species of
the sample (specify the number with the argument ntaxa). This index gives values in interval
0 to 1.

relative = N1/Ntot

where N1 is the absolute abundance of the most dominant species and Ntot is the sum of
absolute abundances of all species.

• ’simpson_lambda’ Simpson’s (dominance) index or Simpson’s lambda is the sum of squared
relative abundances. This index gives values in the unit interval. This value equals the prob-
ability that two randomly chosen individuals belongs to the same species. The higher the
probability, the greater the dominance (See e.g. Simpson 1949).

lambda =
∑

(p2)

where p refers to relative abundances.
There is also a more advanced Simpson dominance index (Simpson 1949). However, this
is not provided and the simpler squared sum of relative abundances is used instead as the
alternative index is not in the unit interval and it is highly correlated with the simpler variant
implemented here.

estimateDominance 25

Value

x with additional colData named *name*

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Berger WH & Parker FL (1970) Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Sci-
ence 168(3937):1345-1347. doi: 10.1126/science.168.3937.1345

Gini C (1921) Measurement of Inequality of Incomes. The Economic Journal 31(121): 124-126.
doi: 10.2307/2223319

McNaughton, SJ and Wolf LL. (1970). Dominance and the niche in ecological systems. Science
167:13, 1–139

Simpson EH (1949) Measurement of Diversity. Nature 163(688). doi: 10.1038/163688a0

See Also

• estimateRichness

• estimateEvenness

• estimateDiversity

Examples

data(esophagus)

Calculates Simpson's lambda (can be used as a dominance index)
esophagus <- estimateDominance(esophagus, index="simpson_lambda")

Shows all indices
colData(esophagus)

Indices must be written correctly (e.g. dbp, not dbp), otherwise an error
gets thrown
Not run: esophagus <- estimateDominance(esophagus, index="dbp")
Calculates dbp and Core Abundance indices
esophagus <- estimateDominance(esophagus, index=c("dbp", "core_abundance"))
Shows all indices
colData(esophagus)
Shows dbp index
colData(esophagus)$dbp
Deletes dbp index
colData(esophagus)$dbp <- NULL
Shows all indices, dbp is deleted
colData(esophagus)
Deletes all indices
colData(esophagus) <- NULL

microbiome.github.io

26 estimateEvenness

Calculates all indices
esophagus <- estimateDominance(esophagus)
Shows all indices
colData(esophagus)
Deletes all indices
colData(esophagus) <- NULL

Calculates all indices with explicitly specified names
esophagus <- estimateDominance(esophagus,

index = c("dbp", "dmn", "absolute", "relative",
"simpson_lambda", "core_abundance", "gini"),

name = c("BergerParker", "McNaughton", "Absolute", "Relative",
"SimpsonLambda", "CoreAbundance", "Gini")

)
Shows all indices
colData(esophagus)

estimateEvenness Estimate Evenness measures

Description

This function calculates community evenness indices. These include the ‘Camargo’, ‘Pielou’,
‘Simpson’, ‘Evar’ and ‘Bulla’ evenness measures. See details for more information and references.

Usage

estimateEvenness(
x,
assay_name = abund_values,
abund_values = "counts",
index = c("pielou", "camargo", "simpson_evenness", "evar", "bulla"),
name = index,
...

)

S4 method for signature 'SummarizedExperiment'
estimateEvenness(
x,
assay_name = abund_values,
abund_values = "counts",
index = c("camargo", "pielou", "simpson_evenness", "evar", "bulla"),
name = index,
...,
BPPARAM = SerialParam()

)

estimateEvenness 27

Arguments

x a SummarizedExperiment object

assay_name A single character value for selecting the assay used for calculation of the
sample-wise estimates.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

index a character vector, specifying the eveness measures to be calculated.

name a name for the column(s) of the colData the results should be stored in.

... optional arguments:

• threshold a numeric threshold. assay values below or equal to this threshold
will be set to zero.

BPPARAM A BiocParallelParam object specifying whether calculation of estimates should
be parallelized.

Details

Evenness is a standard index in community ecology, and it quantifies how evenly the abundances of
different species are distributed. The following evenness indices are provided:

By default, this function returns all indices.

The available evenness indices include the following (all in lowercase):

• ’camargo’ Camargo’s evenness (Camargo 1992)

• ’simpson_evenness’ Simpson’s evenness is calculated as inverse Simpson diversity (1/lambda)
divided by observed species richness S: (1/lambda)/S.

• ’pielou’ Pielou’s evenness (Pielou, 1966), also known as Shannon or Shannon-Weaver/Wiener/Weiner
evenness; H/ln(S). The Shannon-Weaver is the preferred term; see Spellerberg and Fedor
(2003).

• ’evar’ Smith and Wilson’s Evar index (Smith & Wilson 1996).

• ’bulla’ Bulla’s index (O) (Bulla 1994).

Desirable statistical evenness metrics avoid strong bias towards very large or very small abundances;
are independent of richness; and range within the unit interval with increasing evenness (Smith &
Wilson 1996). Evenness metrics that fulfill these criteria include at least camargo, simpson, smith-
wilson, and bulla. Also see Magurran & McGill (2011) and Beisel et al. (2003) for further details.

Value

x with additional colData named *name*

28 estimateEvenness

References

Beisel J-N. et al. (2003) A Comparative Analysis of Evenness Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. URL: https://portais.ufg.br/up/202/o/2003-comparative_evennes_
index.pdf

Bulla L. (1994) An index of evenness and its associated diversity measure. Oikos 70:167–171.

Camargo, JA. (1992) New diversity index for assessing structural alterations in aquatic communi-
ties. Bull. Environ. Contam. Toxicol. 48:428–434.

Locey KJ and Lennon JT. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975; doi:10.1073/pnas.1521291113.

Magurran AE, McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment (Oxford Univ Press, Oxford), Vol 12.

Pielou, EC. (1966) The measurement of diversity in different types of biological collections. J
Theoretical Biology 13:131–144.

Smith B and Wilson JB. (1996) A Consumer’s Guide to Evenness Indices. Oikos 76(1):70-82.

Spellerberg and Fedor (2003). A tribute to Claude Shannon (1916 –2001) and a plea for more
rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Alpha Ecology
& Biogeography 12, 177–197.

See Also

plotColData

• estimateRichness

• estimateDominance

• estimateDiversity

Examples

data(esophagus)
tse <- esophagus

Specify index and their output names
index <- c("pielou", "camargo", "simpson_evenness", "evar", "bulla")
name <- c("Pielou", "Camargo", "SimpsonEvenness", "Evar", "Bulla")

Estimate evenness and give polished names to be used in the output
tse <- estimateEvenness(tse, index = index, name = name)

Check the output
head(colData(tse))

https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf

estimateRichness 29

estimateRichness Estimate richness measures

Description

Several functions for calculation of community richness indices available via wrapper functions.
They are implemented via the vegan package.

Usage

estimateRichness(
x,
assay_name = abund_values,
abund_values = "counts",
index = c("ace", "chao1", "hill", "observed"),
name = index,
detection = 0,
...,
BPPARAM = SerialParam()

)

S4 method for signature 'SummarizedExperiment'
estimateRichness(
x,
assay_name = abund_values,
abund_values = "counts",
index = c("ace", "chao1", "hill", "observed"),
name = index,
detection = 0,
...,
BPPARAM = SerialParam()

)

Arguments

x a SummarizedExperiment object.
assay_name the name of the assay used for calculation of the sample-wise estimates.
abund_values a single character value for specifying which assay to use for calculation.

(Please use assay_name instead. At some point abund_values will be dis-
abled.)

index a character vector, specifying the richness measures to be calculated.
name a name for the column(s) of the colData the results should be stored in.
detection a numeric value for selecting detection threshold for the abundances. The default

detection threshold is 0.
... additional parameters passed to estimateRichness

BPPARAM A BiocParallelParam object specifying whether calculation of estimates should
be parallelized.

30 estimateRichness

Details

These include the ‘ace’, ‘Chao1’, ‘Hill’, and ‘Observed’ richness measures. See details for more
information and references.

The richness is calculated per sample. This is a standard index in community ecology, and it pro-
vides an estimate of the number of unique species in the community. This is often not directly
observed for the whole community but only for a limited sample from the community. This has led
to alternative richness indices that provide different ways to estimate the species richness.

Richness index differs from the concept of species diversity or evenness in that it ignores species
abundance, and focuses on the binary presence/absence values that indicate simply whether the
species was detected.

The function takes all index names in full lowercase. The user can provide the desired spelling
through the argument name (see examples).

The following richness indices are provided.

• ’ace’ Abundance-based coverage estimator (ACE) is another nonparametric richness index
that uses sample coverage, defined based on the sum of the probabilities of the observed
species. This method divides the species into abundant (more than 10 reads or observations)
and rare groups in a sample and tends to underestimate the real number of species. The ACE
index ignores the abundance information for the abundant species, based on the assumption
that the abundant species are observed regardless of their exact abundance. We use here the
bias-corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. For an
exact formulation, see estimateR. Note that this index comes with an additional column with
standard error information.

• ’chao1’ This is a nonparametric estimator of species richness. It assumes that rare species
carry information about the (unknown) number of unobserved species. We use here the bias-
corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. This index
implicitly assumes that every taxa has equal probability of being observed. Note that it gives a
lower bound to species richness. The bias-corrected for an exact formulation, see estimateR.
This estimator uses only the singleton and doubleton counts, and hence it gives more weight
to the low abundance species. Note that this index comes with an additional column with
standard error information.

• ’hill’ Effective species richness aka Hill index (see e.g. Chao et al. 2016). Currently only the
case 1D is implemented. This corresponds to the exponent of Shannon diversity. Intuitively,
the effective richness indicates the number of species whose even distribution would lead to
the same diversity than the observed community, where the species abundances are unevenly
distributed.

• ’observed’ The observed richness gives the number of species that is detected above a given
detection threshold in the observed sample (default 0). This is conceptually the simplest
richness index. The corresponding index in the vegan package is "richness".

Value

x with additional colData named *name*

Author(s)

Leo Lahti. Contact: microbiome.github.io

microbiome.github.io

estimateRichness 31

References

Chao A. (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat.
11:265–270.

Chao A, Chun-Huo C, Jost L (2016). Phylogenetic Diversity Measures and Their Decomposition:
A Framework Based on Hill Numbers. Biodiversity Conservation and Phylogenetic Systematics,
Springer International Publishing, pp. 141–172, doi:10.1007/978-3-319-22461-9_8.

Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound
of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671-682.

O’Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a
pin? J. Anim. Ecol. 74, 375-386.

See Also

plotColData

• estimateR

Examples

data(esophagus)

Calculates all richness indices by default
esophagus <- estimateRichness(esophagus)

Shows all indices
colData(esophagus)

Shows Hill index
colData(esophagus)$hill

Deletes hill index
colData(esophagus)$hill <- NULL

Shows all indices, hill is deleted
colData(esophagus)

Delete the remaining indices
colData(esophagus)[, c("observed", "chao1", "ace")] <- NULL

Calculates observed richness index and saves them with specific names
esophagus <- estimateRichness(esophagus,

index = c("observed", "chao1", "ace", "hill"),
name = c("Observed", "Chao1", "ACE", "Hill"))

Show the new indices
colData(esophagus)

Deletes all colData (including the indices)
colData(esophagus) <- NULL

32 getAbundance

Calculate observed richness excluding singletons (detection limit 1)
esophagus <- estimateRichness(esophagus, index="observed", detection = 1)

Deletes all colData (including the indices)
colData(esophagus) <- NULL

Indices must be written correctly (all lowercase), otherwise an error
gets thrown
Not run: esophagus <- estimateRichness(esophagus, index="ace")

Calculates Chao1 and ACE indices only
esophagus <- estimateRichness(esophagus, index=c("chao1", "ace"),

name=c("Chao1", "ACE"))

Deletes all colData (including the indices)
colData(esophagus) <- NULL

Names of columns can be chosen arbitrarily, but the length of arguments
must match.
esophagus <- estimateRichness(esophagus,

index = c("ace", "chao1"),
name = c("index1", "index2"))

Shows all indices
colData(esophagus)

getAbundance Get abundance values by “SampleID” or “FeatureID”

Description

These are functions for extracting abundances present in assay(x). These functions are conve-
nience wrapper around subsetting columns or rows from assay(x,name).

Usage

getAbundanceSample(
x,
sample_id,
assay_name = abund_values,
abund_values = "counts"

)

S4 method for signature 'SummarizedExperiment'
getAbundanceSample(
x,
sample_id = NULL,
assay_name = abund_values,
abund_values = "counts"

getAbundance 33

)

getAbundanceFeature(
x,
feature_id,
assay_name = abund_values,
abund_values = "counts"

)

S4 method for signature 'SummarizedExperiment'
getAbundanceFeature(
x,
feature_id = NULL,
assay_name = abund_values,
abund_values = "counts"

)

Arguments

x A SummarizedExperiment object.

sample_id A “SampleID” from which user wants to extract the abundances of “FeatureID”.
This is essentially a column name in assay(x).

assay_name a character value to select an assayNames

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

feature_id A “FeatureID” for which user wants to extract the abundances from all of “Sam-
pleID” in assayNames. This is essentially a rowname in assay(x).

Details

getAbundanceSample returns abundance values for all “FeatureIDs” in a user specified “Sam-
pleID”.

getAbundanceFeature returns abundance values in all “SampleIDs” for user specified “FeatureID”.

Value

getAbundanceSample and getAbundanceFeature return a numeric matrix of the abundance values
for all “SampleIDs”/“FeatureIDs”

Author(s)

Sudarshan A. Shetty

Examples

getAbundanceSample
data(GlobalPatterns)

34 getExperimentCrossAssociation

getAbundanceSample(GlobalPatterns,
sample_id = 'CC1',
assay_name = 'counts')

getAbundanceFeature
getAbundanceFeature(GlobalPatterns,

feature_id = '522457',
assay_name = 'counts')

getExperimentCrossAssociation

Calculate correlations between features of two experiments.

Description

Calculate correlations between features of two experiments.

Usage

getExperimentCrossAssociation(x, ...)

S4 method for signature 'MultiAssayExperiment'
getExperimentCrossAssociation(
x,
experiment1 = 1,
experiment2 = 2,
assay_name1 = abund_values1,
abund_values1 = "counts",
assay_name2 = abund_values2,
abund_values2 = "counts",
altexp1 = NULL,
altexp2 = NULL,
colData_variable1 = NULL,
colData_variable2 = NULL,
MARGIN = 1,
method = c("kendall", "spearman", "categorical", "pearson"),
mode = "table",
p_adj_method = c("fdr", "BH", "bonferroni", "BY", "hochberg", "holm", "hommel", "none"),
p_adj_threshold = NULL,
cor_threshold = NULL,
sort = FALSE,
filter_self_correlations = FALSE,
verbose = TRUE,
test_significance = FALSE,
show_warnings = TRUE,
paired = FALSE,
...

)

getExperimentCrossAssociation 35

S4 method for signature 'SummarizedExperiment'
getExperimentCrossAssociation(x, experiment2 = x, ...)

testExperimentCrossAssociation(x, ...)

S4 method for signature 'ANY'
testExperimentCrossAssociation(x, ...)

testExperimentCrossCorrelation(x, ...)

S4 method for signature 'ANY'
testExperimentCrossCorrelation(x, ...)

getExperimentCrossCorrelation(x, ...)

S4 method for signature 'ANY'
getExperimentCrossCorrelation(x, ...)

Arguments

x A MultiAssayExperiment or SummarizedExperiment object.

... Additional arguments:

• symmetric A single boolean value for specifying if measure is symmet-
ric or not. When symmetric = TRUE, associations are calculated only for
unique variable-pairs, and they are assigned to corresponding variable-pair.
This decreases the number of calculations in 2-fold meaning faster execu-
tion. (By default: symmetric = FALSE)

• association_FUN A function that is used to calculate (dis-)similarity be-
tween features. Function must take matrix as an input and give numeric
values as an output. Adjust method and other parameters correspondingly.
Supported functions are, for example, stats::dist and vegan::vegdist.

experiment1 A single character or numeric value for selecting the experiment 1 from experiments(x)
of MultiassayExperiment object. (By default: experiment1 = 1)

experiment2 A single character or numeric value for selecting the experiment 2 fromexperiments(x)
of MultiAssayExperiment object or altExp(x) of TreeSummarizedExperiment
object. Alternatively, experiment2 can also be TreeSE object when x is TreeSE
object. (By default: experiment2 = 2 when x is MAE and experiment2 = x when
x is TreeSE)

assay_name1 A single character value for selecting the assay of experiment 1 to be trans-
formed. (By default: assay_name1 = "counts")

abund_values1 a single character value for specifying which assay of experiment 1 to use for
calculation. (Please use assay_name1 instead. At some point abund_values1
will be disabled.)

assay_name2 A single character value for selecting the assay of experiment 2 to be trans-
formed. (By default: assay_name2 = "counts")

36 getExperimentCrossAssociation

abund_values2 a single character value for specifying which assay of experiment 2 to use for
calculation. (Please use assay_name2 instead. At some point abund_values2
will be disabled.)

altexp1 A single numeric or character value specifying alternative experiment from the
altExp of experiment 1. If NULL, then the experiment is itself and altExp option
is disabled. (By default: altexp1 = NULL)

altexp2 A single numeric or character value specifying alternative experiment from the
altExp of experiment 2. If NULL, then the experiment is itself and altExp option
is disabled. (By default: altexp2 = NULL)

colData_variable1

A character value specifying column(s) from colData of experiment 1. If col-
Data_variable1 is used, assay_name1 is disabled. (By default: colData_variable1
= NULL)

colData_variable2

A character value specifying column(s) from colData of experiment 2. If col-
Data_variable2 is used, assay_name2 is disabled. (By default: colData_variable2
= NULL)

MARGIN A single numeric value for selecting if association are calculated row-wise / for
features (1) or column-wise / for samples (2). Must be 1 or 2. (By default:
MARGIN = 1)

method A single character value for selecting association method (’kendall’, pearson’,
or ’spearman’ for continuous/numeric; ’categorical’ for discrete) (By default:
method = "kendall")

mode A single character value for selecting output format Available formats are ’table’
and ’matrix’. (By default: mode = "table")

p_adj_method A single character value for selecting adjustment method of p-values. Passed to
p.adjust function. (By default: p_adj_method = "fdr")

p_adj_threshold

A single numeric value (from 0 to 1) for selecting adjusted p-value threshold for
filtering. (By default: p_adj_threshold = NULL)

cor_threshold A single numeric absolute value (from 0 to 1) for selecting correlation threshold
for filtering. (By default: cor_threshold = NULL)

sort A single boolean value for selecting whether to sort features or not in result
matrices. Used method is hierarchical clustering. (By default: sort = FALSE)

filter_self_correlations

A single boolean value for selecting whether to filter out correlations between
identical items. Applies only when correlation between experiment itself is
tested, i.e., when assays are identical. (By default: filter_self_correlations
= FALSE)

verbose A single boolean value for selecting whether to get messages about progress of
calculation.

test_significance

A single boolean value for selecting whether to test statistical significance of
associations.

getExperimentCrossAssociation 37

show_warnings A single boolean value for selecting whether to show warnings that might occur
when correlations and p-values are calculated.

paired A single boolean value for specifying if samples are paired or not. colnames
must match between twp experiments. paired is disabled when MARGIN = 1.
(By default: paired = FALSE)

Details

These functions calculates associations between features of two experiments. getExperimentCrossAssociation
calculates only associations by default. testExperimentCrossAssociation calculates also signif-
icance of associations.

We recommend the non-parametric Kendall’s tau as the default method for association analysis.
Kendall’s tau has desirable statistical properties and robustness at lower sample sizes. Spearman
rank correlation can provide faster solutions when running times are critical.

Value

These functions return associations in table or matrix format. In table format, returned value is
a data frame that includes features and associations (and p-values) in columns. In matrix format,
returned value is a one matrix when only associations are calculated. If also significances are tested,
then returned value is a list of matrices.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

Examples

data("HintikkaXOData")
mae <- HintikkaXOData

Subset so that less observations / quicker to run, just for example
mae[[1]] <- mae[[1]][1:20, 1:10]
mae[[2]] <- mae[[2]][1:20, 1:10]
Transform data
mae[[1]] <- transformSamples(mae[[1]], method = "rclr")

Calculate cross-correlations
result <- getExperimentCrossAssociation(mae, method = "pearson", assay_name2 = "nmr")
Show first 5 entries
head(result, 5)

Use altExp option to specify alternative experiment from the experiment
altExp(mae[[1]], "Phylum") <- agglomerateByRank(mae[[1]], rank = "Phylum")
Transform data
altExp(mae[[1]], "Phylum") <- transformSamples(altExp(mae[[1]], "Phylum"), method = "relabundance")
When mode = matrix, matrix is returned
result <- getExperimentCrossAssociation(mae, experiment2 = 2,

assay_name1 = "relabundance", assay_name2 = "nmr",
altexp1 = "Phylum",
method = "pearson", mode = "matrix")

microbiome.github.io

38 getExperimentCrossAssociation

Show first 5 entries
head(result, 5)

testExperimentCorrelation returns also significances
filter_self_correlations = TRUE filters self correlations
With p_adj_threshold it is possible to filter those features that do no have
any correlations that have p-value under threshold
result <- testExperimentCrossAssociation(mae[[1]], experiment2 = mae[[1]], method = "pearson",

filter_self_correlations = TRUE,
p_adj_threshold = 0.05)

Show first 5 entries
head(result, 5)

Also getExperimentCrossAssociation returns significances when
test_signicance = TRUE
Warnings can be suppressed by using show_warnings = FALSE
result <- getExperimentCrossAssociation(mae[[1]], experiment2 = mae[[2]], method = "pearson",

assay_name2 = "nmr",
mode = "matrix", test_significance = TRUE,
show_warnings = FALSE)

Returned value is a list of matrices
names(result)

Calculate Bray-Curtis dissimilarity between samples. If dataset includes
paired samples, you can use paired = TRUE.
result <- getExperimentCrossAssociation(mae[[1]], mae[[1]], MARGIN = 2, paired = FALSE,

association_FUN = vegan::vegdist, method = "bray")

If experiments are equal and measure is symmetric (e.g., taxa1 vs taxa2 == taxa2 vs taxa1),
it is possible to speed-up calculations by calculating association only for unique
variable-pairs. Use "symmetric" to choose whether to measure association for only
other half of of variable-pairs.
result <- getExperimentCrossAssociation(mae, experiment1 = "microbiota", experiment2 = "microbiota",

assay_name1 = "counts", assay_name2 = "counts",
symmetric = TRUE)

For big data sets, calculation might take long. To make calculations quicker, you can take
a random sample from data. In a complex biological problems, random sample
can describe the data enough. Here our random sample is 30 % of whole data.
sample_size <- 0.3
tse <- mae[[1]]
tse_sub <- tse[sample(seq_len(nrow(tse)), sample_size * nrow(tse)),]
result <- testExperimentCrossAssociation(tse_sub)

It is also possible to choose variables from colData and calculate association
between assay and sample metadata or between variables of sample metadata
mae[[1]] <- estimateDiversity(mae[[1]])
colData_variable works similarly to assay_name. Instead of fetching an assay
named assay_name from assay slot, it fetches a column named colData_variable
from colData.
result <- getExperimentCrossAssociation(mae[[1]], assay_name1 = "counts",

getPrevalence 39

colData_variable2 = c("shannon", "coverage"))

getPrevalence Calculation prevalence information for features across samples

Description

These functions calculate the population prevalence for taxonomic ranks in a SummarizedExperiment-class
object.

Usage

getPrevalence(x, ...)

S4 method for signature 'ANY'
getPrevalence(x, detection = 0, include_lowest = FALSE, sort = FALSE, ...)

S4 method for signature 'SummarizedExperiment'
getPrevalence(
x,
assay_name = abund_values,
abund_values = "counts",
as_relative = TRUE,
rank = NULL,
...

)

getPrevalentTaxa(x, ...)

S4 method for signature 'ANY'
getPrevalentTaxa(x, prevalence = 50/100, include_lowest = FALSE, ...)

S4 method for signature 'SummarizedExperiment'
getPrevalentTaxa(
x,
rank = NULL,
prevalence = 50/100,
include_lowest = FALSE,
...

)

getPrevalentFeatures(x, ...)

S4 method for signature 'ANY'
getPrevalentFeatures(x, ...)

40 getPrevalence

getRareTaxa(x, ...)

S4 method for signature 'ANY'
getRareTaxa(x, prevalence = 50/100, include_lowest = FALSE, ...)

S4 method for signature 'SummarizedExperiment'
getRareTaxa(x, rank = NULL, prevalence = 50/100, include_lowest = FALSE, ...)

getRareFeatures(x, ...)

S4 method for signature 'ANY'
getRareFeatures(x, ...)

subsetByPrevalentTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetByPrevalentTaxa(x, rank = NULL, ...)

subsetByPrevalentFeatures(x, ...)

S4 method for signature 'ANY'
subsetByPrevalentFeatures(x, ...)

subsetByRareTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetByRareTaxa(x, rank = NULL, ...)

subsetByRareFeatures(x, ...)

S4 method for signature 'ANY'
subsetByRareFeatures(x, ...)

getPrevalentAbundance(
x,
assay_name = abund_values,
abund_values = "relabundance",
...

)

S4 method for signature 'ANY'
getPrevalentAbundance(
x,
assay_name = abund_values,
abund_values = "relabundance",
...

)

getPrevalence 41

S4 method for signature 'SummarizedExperiment'
getPrevalentAbundance(
x,
assay_name = abund_values,
abund_values = "counts",
...

)

agglomerateByPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment'
agglomerateByPrevalence(
x,
rank = taxonomyRanks(x)[1L],
other_label = "Other",
...

)

Arguments

x a SummarizedExperiment object

detection Detection threshold for absence/presence. Either an absolute value compared
directly to the values of x or a relative value between 0 and 1, if as_relative =
TRUE.

include_lowest logical scalar: Should the lower boundary of the detection and prevalence cutoffs
be included? (default: FALSE)

sort logical scalar: Should the result be sorted by prevalence? (default: FALSE)

assay_name A single character value for selecting the assay to use for prevalence calcula-
tion.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

as_relative logical scalar: Should the detection threshold be applied on compositional (rel-
ative) abundances? (default: TRUE)

rank, ... additional arguments

• If !is.null(rank) arguments are passed on to agglomerateByRank. See
?agglomerateByRank for more details.

• for getPrevalentTaxa, getRareTaxa, subsetByPrevalentTaxa and subsetByRareTaxa
additional parameters passed to getPrevalence

• for getPrevalentAbundance additional parameters passed to getPrevalentTaxa

prevalence Prevalence threshold (in 0 to 1). The required prevalence is strictly greater by
default. To include the limit, set include_lowest to TRUE.

other_label A single character valued used as the label for the summary of non-prevalent
taxa. (default: other_label = "Other")

42 getPrevalence

Details

getPrevalence calculates the relative frequency of samples that exceed the detection threshold.
For SummarizedExperiment objects, the prevalence is calculated for the selected taxonomic rank,
otherwise for the rows. The absolute population prevalence can be obtained by multiplying the
prevalence by the number of samples (ncol(x)). If as_relative = TRUE the relative frequency
(between 0 and 1) is used to check against the detection threshold.

The core abundance index from getPrevalentAbundance gives the relative proportion of the core
species (in between 0 and 1). The core taxa are defined as those that exceed the given population
prevalence threshold at the given detection level as set for getPrevalentTaxa.

subsetPrevalentTaxa and subsetRareTaxa return a subset of x. The subset includes the most
prevalent or rare taxa that are calculated with getPrevalentTaxa or getRareTaxa respectively.

getPrevalentTaxa returns taxa that are more prevalent with the given detection threshold for the
selected taxonomic rank.

getRareTaxa returns complement of getPrevalentTaxa.

Value

subsetPrevalentTaxa and subsetRareTaxa return subset of x.

All other functions return a named vectors:

• getPrevalence returns a numeric vector with the names being set to either the row names of
x or the names after agglomeration.

• getPrevalentAbundance returns a numeric vector with the names corresponding to the col-
umn name of x and include the joint abundance of prevalent taxa.

• getPrevalentTaxa and getRareTaxa return a character vector with only the names ex-
ceeding the threshold set by prevalence, if the rownames of x is set. Otherwise an integer
vector is returned matching the rows in x.

Author(s)

Leo Lahti For getPrevalentAbundance: Leo Lahti and Tuomas Borman. Contact: microbiome.
github.io

References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health
status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the R package, see cita-
tion(’mia’)

See Also

agglomerateByRank, getTopTaxa

microbiome.github.io
microbiome.github.io

getPrevalence 43

Examples

data(GlobalPatterns)
tse <- GlobalPatterns
Get prevalence estimates for individual ASV/OTU
prevalence.frequency <- getPrevalence(tse,

detection = 0,
sort = TRUE,
as_relative = TRUE)

head(prevalence.frequency)

Get prevalence estimates for phylums
- the getPrevalence function itself always returns population frequencies
prevalence.frequency <- getPrevalence(tse,

rank = "Phylum",
detection = 0,
sort = TRUE,
as_relative = TRUE)

head(prevalence.frequency)

- to obtain population counts, multiply frequencies with the sample size,
which answers the question "In how many samples is this phylum detectable"
prevalence.count <- prevalence.frequency * ncol(tse)
head(prevalence.count)

Detection threshold 1 (strictly greater by default);
Note that the data (GlobalPatterns) is here in absolute counts
(and not compositional, relative abundances)
Prevalence threshold 50 percent (strictly greater by default)
prevalent <- getPrevalentTaxa(tse,

rank = "Phylum",
detection = 10,
prevalence = 50/100,
as_relative = FALSE)

head(prevalent)

Gets a subset of object that includes prevalent taxa
altExp(tse, "prevalent") <- subsetByPrevalentTaxa(tse,

rank = "Family",
detection = 0.001,
prevalence = 0.55,
as_relative = TRUE)

altExp(tse, "prevalent")

getRareTaxa returns the inverse
rare <- getRareTaxa(tse,

rank = "Phylum",
detection = 1/100,
prevalence = 50/100,
as_relative = TRUE)

head(rare)

Gets a subset of object that includes rare taxa

44 isContaminant

altExp(tse, "rare") <- subsetByRareTaxa(tse,
rank = "Class",
detection = 0.001,
prevalence = 0.001,
as_relative = TRUE)

altExp(tse, "rare")

Names of both experiments, prevalent and rare, can be found from slot altExpNames
tse

data(esophagus)
getPrevalentAbundance(esophagus, assay_name = "counts")

data can be aggregated based on prevalent taxonomic results
agglomerateByPrevalence(tse,

rank = "Phylum",
detection = 1/100,
prevalence = 50/100,
as_relative = TRUE)

isContaminant decontam functions

Description

The decontam functions isContaminant and isNotContaminant are made available for SummarizedExperiment
objects.

Usage

S4 method for signature 'SummarizedExperiment'
isContaminant(
seqtab,
assay_name = abund_values,
abund_values = "counts",
name = "isContaminant",
concentration = NULL,
control = NULL,
batch = NULL,
threshold = 0.1,
normalize = TRUE,
detailed = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
isNotContaminant(
seqtab,

isContaminant 45

assay_name = abund_values,
abund_values = "counts",
name = "isNotContaminant",
control = NULL,
threshold = 0.5,
normalize = TRUE,
detailed = FALSE,
...

)

addContaminantQC(x, name = "isContaminant", ...)

S4 method for signature 'SummarizedExperiment'
addContaminantQC(x, name = "isContaminant", ...)

addNotContaminantQC(x, name = "isNotContaminant", ...)

S4 method for signature 'SummarizedExperiment'
addNotContaminantQC(x, name = "isNotContaminant", ...)

Arguments

seqtab, x a SummarizedExperiment

assay_name A single character value for selecting the assay to use.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

name A name for the column of the colData in which the contaminant information
should be stored.

concentration NULL or a single character value. Defining a column with numeric values from
the colData to use as concentration information. (default: concentration =
NULL)

control NULL or a single character value. Defining a column with logical values from
the colData to define control and non-control samples. (default: control =
NULL)

batch NULL or a single character value. Defining a column with values interpretable
as a factor from the colData to use as batch information. (default: batch =
NULL)

threshold numeric scalar. See decontam:isContaminant or decontam:isNotContaminant
normalize, detailed

logical scalar. See decontam:isContaminant or decontam:isNotContaminant

... • for isContaminant/ isNotContaminant: arguments passed on to decontam:isContaminant
or decontam:isNotContaminant

• for addContaminantQC/addNotContaminantQC: arguments passed on to
isContaminant/ isNotContaminant

46 loadFromMetaphlan

Value

for isContaminant/ isNotContaminant a DataFrame or for addContaminantQC/addNotContaminantQC
a modified object of class(x)

See Also

decontam:isContaminant, decontam:isNotContaminant

Examples

data(esophagus)
setup of some mock data
colData(esophagus)$concentration <- c(1,2,3)
colData(esophagus)$control <- c(FALSE,FALSE,TRUE)

isContaminant(esophagus,
method = "frequency",
concentration = "concentration")

esophagus <- addContaminantQC(esophagus,
method = "frequency",
concentration = "concentration")

colData(esophagus)

isNotContaminant(esophagus, control = "control")
esophagus <- addNotContaminantQC(esophagus, control = "control")
colData(esophagus)

loadFromMetaphlan Import Metaphlan results to TreeSummarizedExperiment

Description

Import Metaphlan results to TreeSummarizedExperiment

Arguments

file a single character value defining the file path of the Metaphlan file. The file
must be in merged Metaphlan format.

sample_meta a single character value defining the file path of the sample metadata file. The
file must be in tsv format (default: sample_meta = NULL).

phy_tree a single character value defining the file path of the phylogenetic tree. (default:
phy_tree = NULL).

... additional arguments:

• assay_name: A single character value for naming assay (default: assay_name
= "counts")

loadFromMetaphlan 47

• abund_values: A single character value for specifying which assay to
use for calculation. (Please use assay_name instead. At some point abund_values
will be disabled.)

• removeTaxaPrefixes: TRUE or FALSE: Should taxonomic prefixes be re-
moved? (default: removeTaxaPrefixes = FALSE)

Details

Import Metaphlan results. Input must be in merged Metaphlan format. Data is imported so that data
at the lowest rank is imported as a TreeSummarizedExperiment object. Data at higher rank is im-
ported as a SummarizedExperiment objects which are stored to altExp of TreeSummarizedExperiment
object.

Value

A TreeSummarizedExperiment object

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi
P, Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C,
Franzosa EA, & Segata N (2021) Integrating taxonomic, functional, and strain-level profiling of
diverse microbial communities with bioBakery 3. Elife 10:e65088. doi: 10.7554/eLife.65088

See Also

makeTreeSEFromPhyloseq makeTreeSEFromBiom makeTreeSEFromDADA2 loadFromQIIME2 loadFromMothur

Examples

(Data is from tutorial
https://github.com/biobakery/biobakery/wiki/metaphlan3#merge-outputs)

File path
file_path <- system.file("extdata", "merged_abundance_table.txt", package = "mia")
Import data
tse <- loadFromMetaphlan(file_path)
Data at the lowest rank
tse
Data at higher rank is stored in altExp
altExps(tse)
Higher rank data is in SE format, for example, Phylum rank
altExp(tse, "Phylum")

microbiome.github.io

48 loadFromMothur

loadFromMothur Import Mothur results as a TreeSummarizedExperiment

Description

This method creates a TreeSummarizedExperiment object from Mothur files provided as input.

Usage

loadFromMothur(sharedFile, taxonomyFile = NULL, designFile = NULL)

Arguments

sharedFile a single character value defining the file path of the feature table to be im-
ported. The File has to be in shared file format as defined in Mothur docu-
mentation.

taxonomyFile a single character value defining the file path of the taxonomy table to be
imported. The File has to be in taxonomy file or constaxonomy file format
as defined in Mothur documentation. (default: taxonomyFile = NULL).

designFile a single character value defining the file path of the sample metadata to be
imported. The File has to be in desing file format as defined in Mothur docu-
mentation. (default: designFile = NULL).

Details

Results exported from Mothur can be imported as a SummarizedExperiment using loadFromMothur.
Except for the sharedFile, the other data types, taxonomyFile, and designFile, are optional, but
are highly encouraged to be provided.

Value

A TreeSummarizedExperiment object

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

https://mothur.org/ https://mothur.org/wiki/shared_file/ https://mothur.org/wiki/
taxonomy_file/ https://mothur.org/wiki/constaxonomy_file/ https://mothur.org/wiki/
design_file/

See Also

makeTreeSEFromPhyloseq makeTreeSEFromBiom makeTreeSEFromDADA2 loadFromQIIME2

microbiome.github.io
https://mothur.org/
https://mothur.org/wiki/shared_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/constaxonomy_file/
https://mothur.org/wiki/design_file/
https://mothur.org/wiki/design_file/

loadFromQIIME2 49

Examples

Abundance table
counts <- system.file("extdata", "mothur_example.shared", package = "mia")
Taxa table (in "cons.taxonomy" or "taxonomy" format)
taxa <- system.file("extdata", "mothur_example.cons.taxonomy", package = "mia")
#taxa <- system.file("extdata", "mothur_example.taxonomy", package = "mia")
Sample meta data
meta <- system.file("extdata", "mothur_example.design", package = "mia")

Creates se object from files
se <- loadFromMothur(counts, taxa, meta)
Convert SE to TreeSE
tse <- as(se, "TreeSummarizedExperiment")
tse

loadFromQIIME2 Import QIIME2 results to TreeSummarizedExperiment

Description

Results exported from QIMME2 can be imported as a TreeSummarizedExperiment using loadFromQIIME2.
Except for the featureTableFile, the other data types, taxonomyTableFile, refSeqFile and
phyTreeFile, are optional, but are highly encouraged to be provided.

Import the QIIME2 artifacts to R.

Usage

loadFromQIIME2(
featureTableFile,
taxonomyTableFile = NULL,
sampleMetaFile = NULL,
featureNamesAsRefSeq = TRUE,
refSeqFile = NULL,
phyTreeFile = NULL,
...

)

readQZA(file, temp = tempdir(), ...)

Arguments

featureTableFile

a single character value defining the file path of the feature table to be im-
ported.

taxonomyTableFile

a single character value defining the file path of the taxonomy table to be
imported. (default: taxonomyTableFile = NULL).

50 loadFromQIIME2

sampleMetaFile a single character value defining the file path of the sample metadata to be
imported. The file has to be in tsv format. (default: sampleMetaFile = NULL).

featureNamesAsRefSeq

TRUE or FALSE: Should the feature names of the feature table be regarded as ref-
erence sequences? This setting will be disregarded, if refSeqFile is not NULL.
If the feature names do not contain valid DNA characters only, the reference
sequences will not be set.

refSeqFile a single character value defining the file path of the reference sequences for
each feature. (default: refSeqFile = NULL).

phyTreeFile a single character value defining the file path of the phylogenetic tree. (default:
phyTreeFile = NULL).

... additional arguments:

• temp: the temporary directory used for decompressing the data. (default:
tempdir())

• removeTaxaPrefixes: TRUE or FALSE: Should taxonomic prefixes be re-
moved? (default: removeTaxaPrefixes = FALSE)

file character, path of the input qza file. Only files in format of BIOMV210DirFmt
(feature table), TSVTaxonomyDirectoryFormat (taxonomic table), NewickDirectoryFormat
(phylogenetic tree) and DNASequencesDirectoryFormat (representative se-
quences) are supported right now.

temp character, a temporary directory in which the qza file will be decompressed to,
default tempdir().

Details

Both arguments featureNamesAsRefSeq and refSeqFile can be used to define reference se-
quences of features. featureNamesAsRefSeq is only taken into account, if refSeqFile is NULL.
No reference sequences are tried to be created, if featureNameAsRefSeq is FALSE and refSeqFile
is NULL.

Value

A TreeSummarizedExperiment object

matrix object for feature table, DataFrame for taxonomic table, ape::phylo object for phyloge-
netic tree, Biostrings::DNAStringSet for representative sequences of taxa.

Author(s)

Yang Cao

References

Bolyen E et al. 2019: Reproducible, interactive, scalable and extensible microbiome data science
using QIIME 2. Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9

https://qiime2.org

https://doi.org/10.1038/s41587-019-0209-9
https://qiime2.org

makePhyloseqFromTreeSE 51

See Also

makeTreeSEFromPhyloseq makeTreeSEFromBiom makeTreeSEFromDADA2 loadFromMothur

Examples

featureTableFile <- system.file("extdata", "table.qza", package = "mia")
taxonomyTableFile <- system.file("extdata", "taxonomy.qza", package = "mia")
sampleMetaFile <- system.file("extdata", "sample-metadata.tsv", package = "mia")
phyTreeFile <- system.file("extdata", "tree.qza", package = "mia")
refSeqFile <- system.file("extdata", "refseq.qza", package = "mia")
tse <- loadFromQIIME2(

featureTableFile = featureTableFile,
taxonomyTableFile = taxonomyTableFile,
sampleMetaFile = sampleMetaFile,
refSeqFile = refSeqFile,
phyTreeFile = phyTreeFile

)

tse
Read individual files
featureTableFile <- system.file("extdata", "table.qza", package = "mia")
taxonomyTableFile <- system.file("extdata", "taxonomy.qza", package = "mia")
sampleMetaFile <- system.file("extdata", "sample-metadata.tsv", package = "mia")

assay <- readQZA(featureTableFile)
rowdata <- readQZA(taxonomyTableFile, removeTaxaPrefixes = TRUE)
coldata <- read.table(sampleMetaFile, header = TRUE, sep = "\t", comment.char = "")

Assign rownames
rownames(coldata) <- coldata[, 1]
coldata[, 1] <- NULL

Order coldata based on assay
coldata <- coldata[match(colnames(assay), rownames(coldata)),]

Create SE from individual files
se <- SummarizedExperiment(assays = list(assay), rowData = rowdata, colData = coldata)
se

makePhyloseqFromTreeSE

Create a phyloseq object from a TreeSummarizedExperiment object

Description

This function creates a phyloseq object from a TreeSummarizedExperiment object. By using
assay_name, it is possible to specify which table from assay is added to the phyloseq object.

52 makePhyloseqFromTreeSE

Usage

makePhyloseqFromTreeSE(x, ...)

S4 method for signature 'SummarizedExperiment'
makePhyloseqFromTreeSE(x, assay_name = abund_values, abund_values = "counts")

S4 method for signature 'TreeSummarizedExperiment'
makePhyloseqFromTreeSE(x, ...)

makePhyloseqFromTreeSummarizedExperiment(x, ...)

S4 method for signature 'ANY'
makePhyloseqFromTreeSummarizedExperiment(x, ...)

Arguments

x a TreeSummarizedExperiment object

... additional arguments

assay_name A single character value for selecting the assay to be included in the phyloseq
object that is created. By default, it is counts table.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

Details

makePhyloseqFromTreeSE is used for creating a phyloseq object from TreeSummarizedExperi-
ment object.

Value

An object of class Phyloseq object.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

Examples

Get tse object
data(GlobalPatterns)
tse <- GlobalPatterns

Create a phyloseq object from it
phy <- makePhyloseqFromTreeSE(tse)
phy

By default the chosen table is counts, but if there are other tables,
they can be chosen with assay_name.

microbiome.github.io

makeTreeSEFromBiom 53

Counts relative abundances table
tse <- transformCounts(tse, method = "relabundance")
phy2 <- makePhyloseqFromTreeSE(tse, assay_name = "relabundance")
phy2

makeTreeSEFromBiom Loading a biom file

Description

For convenience a few functions are available to convert data from a ‘biom’ file or object into a
TreeSummarizedExperiment

Usage

loadFromBiom(file, removeTaxaPrefixes = FALSE)

makeTreeSEFromBiom(obj, removeTaxaPrefixes = FALSE, ...)

makeTreeSummarizedExperimentFromBiom(obj, ...)

Arguments

file biom file location
removeTaxaPrefixes

TRUE or FALSE: Should taxonomic prefixes be removed? (default removeTaxaPrefixes
= FALSE)

obj object of type biom

... optional arguments (not used).

Value

An object of class TreeSummarizedExperiment

See Also

makeTreeSEFromPhyloseq makeTreeSEFromDADA2 loadFromQIIME2 loadFromMothur

Examples

if(requireNamespace("biomformat")) {
library(biomformat)
load from file
rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom",

package = "biomformat")
se <- loadFromBiom(rich_dense_file, removeTaxaPrefixes = TRUE)

54 makeTreeSEFromDADA2

load from object
x1 <- biomformat::read_biom(rich_dense_file)
se <- makeTreeSEFromBiom(x1)
Convert SE to TreeSE
tse <- as(se, "TreeSummarizedExperiment")
tse

}

makeTreeSEFromDADA2 Coerce ‘DADA2’ results to TreeSummarizedExperiment

Description

makeTreeSEFromDADA2 is a wrapper for the mergePairs function from the dada2 package.

Usage

makeTreeSEFromDADA2(...)

makeTreeSummarizedExperimentFromDADA2(...)

Arguments

... See mergePairs function for more details.

Details

A count matrix is constructed via makeSequenceTable(mergePairs(...)) and rownames are dy-
namically created as ASV(N) with N from 1 to nrow of the count tables. The colnames and rownames
from the output of makeSequenceTable are stored as colnames and in the referenceSeq slot of
the TreeSummarizedExperiment, respectively.

Value

An object of class TreeSummarizedExperiment

See Also

makeTreeSEFromPhyloseq makeTreeSEFromBiom loadFromQIIME2 loadFromMothur

Examples

if(requireNamespace("dada2")) {
fnF <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
fnR = system.file("extdata", "sam1R.fastq.gz", package="dada2")
dadaF <- dada2::dada(fnF, selfConsist=TRUE)
dadaR <- dada2::dada(fnR, selfConsist=TRUE)

tse <- makeTreeSEFromDADA2(dadaF, fnF, dadaR, fnR)
tse

}

makeTreeSEFromPhyloseq 55

makeTreeSEFromPhyloseq

Coerce a phyloseq object to a TreeSummarizedExperiment

Description

makeTreeSEFromPhyloseq converts phyloseq objects into TreeSummarizedExperiment objects.

Usage

makeTreeSEFromPhyloseq(obj)

makeTreeSummarizedExperimentFromPhyloseq(obj)

S4 method for signature 'ANY'
makeTreeSummarizedExperimentFromPhyloseq(obj)

Arguments

obj a phyloseq object

Details

All data stored in a phyloseq object is transfered.

Value

An object of class TreeSummarizedExperiment

See Also

makeTreeSEFromBiom makeTreeSEFromDADA2 loadFromQIIME2 loadFromMothur

Examples

if (requireNamespace("phyloseq")) {
data(GlobalPatterns, package="phyloseq")
makeTreeSEFromPhyloseq(GlobalPatterns)
data(enterotype, package="phyloseq")
makeTreeSEFromPhyloseq(enterotype)
data(esophagus, package="phyloseq")
makeTreeSEFromPhyloseq(esophagus)

}

56 meltAssay

meltAssay Converting a SummarizedExperiment object into a long data.frame

Description

meltAssay Converts a SummarizedExperiment object into a long data.frame which can be used
for tidyverse-tools.

Usage

meltAssay(
x,
assay_name = abund_values,
abund_values = "counts",
add_row_data = NULL,
add_col_data = NULL,
feature_name = "FeatureID",
sample_name = "SampleID",
...

)

S4 method for signature 'SummarizedExperiment'
meltAssay(
x,
assay_name = abund_values,
abund_values = "counts",
add_row_data = NULL,
add_col_data = NULL,
feature_name = "FeatureID",
sample_name = "SampleID",
...

)

Arguments

x A numeric matrix or a SummarizedExperiment

assay_name a character value to select an assayNames

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

add_row_data NULL, TRUE or a character vector to select information from the rowData to
add to the molten assay data. If add_row_data = NULL no data will be added, if
add_row_data = TRUE all data will be added and if add_row_data is a character
vector, it will be used to subset to given column names in rowData. (default:
add_row_data = NULL)

merge-methods 57

add_col_data NULL, TRUE or a character vector to select information from the colData to
add to the molten assay data. If add_col_data = NULL no data will be added, if
add_col_data = TRUE all data will be added and if add_col_data is a character
vector, it will be used to subset to given column names in colData. (default:
add_col_data = NULL)

feature_name a character scalar to use as the output’s name for the feature identifier. (default:
feature_name = "FeatureID")

sample_name a character scalar to use as the output’s name for the sample identifier. (de-
fault: sample_name = "SampleID")

... optional arguments:

• check_names A boolean value passed to data.frame function’s check.name
argument. Determines if sample names are checked that they are syntacti-
cally valid variable names and are not duplicated. If they are not, sample
names are modified. (default: check_names = TRUE)

Details

If the colData contains a column “SampleID” or the rowData contains a column “FeatureID”, they
will be renamed to “SampleID_col” and “FeatureID_row”, if row names or column names are set.

Value

A tibble with the molten data. The assay values are given in a column named like the selected
assay assay_name. In addition, a column “FeatureID” will contain the rownames, if set, and anal-
ogously a column “SampleID” with the colnames, if set

Author(s)

Sudarshan A. Shetty

Examples

data(GlobalPatterns)
molten_tse <- meltAssay(GlobalPatterns,

assay_name = "counts",
add_row_data = TRUE,
add_col_data = TRUE
)

molten_tse

merge-methods Merge a subset of the rows or columns of a SummarizedExperiment

Description

mergeRows/mergeCols merge data on rows or columns of a SummarizedExperiment as defined by
a factor alongside the chosen dimension. Metadata from the rowData or colData are retained as
defined by archetype.

58 merge-methods

Usage

mergeRows(x, f, archetype = 1L, ...)

mergeCols(x, f, archetype = 1L, ...)

S4 method for signature 'SummarizedExperiment'
mergeRows(x, f, archetype = 1L, ...)

S4 method for signature 'SummarizedExperiment'
mergeCols(x, f, archetype = 1L, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeRows(x, f, archetype = 1L, mergeTree = FALSE, mergeRefSeq = FALSE, ...)

S4 method for signature 'TreeSummarizedExperiment'
mergeCols(x, f, archetype = 1L, mergeTree = FALSE, ...)

Arguments

x a SummarizedExperiment or a TreeSummarizedExperiment

f A factor for merging. Must be the same length as nrow(x)/ncol(x). Rows/Cols
corresponding to the same level will be merged. If length(levels(f)) ==
nrow(x)/ncol(x), x will be returned unchanged.

archetype Of each level of f, which element should be regarded as the archetype and
metadata in the columns or rows kept, while merging? This can be single in-
teger value or an integer vector of the same length as levels(f). (Default:
archetype = 1L, which means the first element encountered per factor level will
be kept)

... optional arguments:

• passed onto sumCountsAcrossFeatures, except subset_row, subset_col

mergeTree TRUE or FALSE: should to rowTree() also be merged? (Default: mergeTree =
FALSE)

mergeRefSeq TRUE or FALSE: should a consensus sequence calculate? If set to FALSE, the result
from archetype is returned; If set to TRUE the result from DECIPHER::ConsensusSequence
is returned. (Default: mergeRefSeq = FALSE)

Details

assay are agglomerated, i.e.. summed up. Other than counts / absolute values might lead to mean-
ingless values.

These functions are similar to sumCountsAcrossFeatures. However, additional support for TreeSummarizedExperiment
was added and science field agnostic names were used. In addition the archetype argument lets
the user select how to preserve row or column data.

For merge data of assays the function from scuttle are used.

mergeSEs 59

Value

an object with the same class x with the specified entries merged into one entry in all relevant
components.

See Also

sumCountsAcrossFeatures

Examples

data(esophagus)
esophagus
plot(rowTree(esophagus))
get a factor for merging
f <- factor(regmatches(rownames(esophagus),

regexpr("^[0-9]*_[0-9]*",rownames(esophagus))))
merged <- mergeRows(esophagus,f, mergeTree = TRUE)
plot(rowTree(merged))
#
data(GlobalPatterns)
GlobalPatterns
merged <- mergeCols(GlobalPatterns,colData(GlobalPatterns)$SampleType)
merged

mergeSEs Merge SE objects into single SE object.

Description

Merge SE objects into single SE object.

Usage

mergeSEs(x, ...)

S4 method for signature 'SimpleList'
mergeSEs(
x,
assay_name = "counts",
join = "full",
missing_values = NA,
collapse_samples = FALSE,
verbose = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
mergeSEs(x, y = NULL, ...)

60 mergeSEs

S4 method for signature 'list'
mergeSEs(x, ...)

full_join(x, ...)

S4 method for signature 'ANY'
full_join(x, ...)

inner_join(x, ...)

S4 method for signature 'ANY'
inner_join(x, ...)

left_join(x, ...)

S4 method for signature 'ANY'
left_join(x, ...)

right_join(x, ...)

S4 method for signature 'ANY'
right_join(x, ...)

Arguments

x a SummarizedExperiment object or a list of SummarizedExperiment objects.

... optional arguments (not used).

assay_name A single character value for selecting the assay to be merged. (By default:
assay_name = "counts")

join A single character value for selecting the joining method. Must be ’full’, ’inner’,
’left’, or ’right’. ’left’ and ’right’ are disabled when more than two objects are
being merged. (By default: join = "full")

missing_values NA, 0, or a single character values specifying the notation of missing values.
(By default: missing_values = NA)

collapse_samples

A boolean value for selecting whether to collapse identically named samples to
one. (By default: collapse_samples = FALSE)

verbose A single boolean value to choose whether to show messages. (By default:
verbose = TRUE)

y a SummarizedExperiment object when x is a SummarizedExperiment object.
Disabled when x is a list.

Details

This function merges multiple SummarizedExperiment objects. It combines rowData, assays, and
colData so that the output includes each unique row and column ones. The merging is done based

mergeSEs 61

on rownames and colnames. rowTree and colTree are preserved if linkage between rows/cols and
the tree is found.

Equally named rows are interpreted as equal. Further matching based on rowData is not done. For
samples, collapsing is disabled by default meaning that equally named samples that are stored in
different objects are interpreted as unique. Collapsing can be enabled with collapse_samples =
TRUE when equally named samples describe the same sample.

If, for example, all rows are not shared with individual objects, there are missing values in assays.
The notation of missing can be specified with the missing_values argument. If input consists of
TreeSummarizedExperiment objects, also rowTree, colTree, and referenceSeq are preserved if
possible. The data is preserved if all the rows or columns can be found from it.

Compared to cbind and rbind mergeSEs allows more freely merging since cbind and rbind expect
that rows and columns are matching, respectively.

You can choose joining methods from 'full', 'inner', 'left', and 'right'. In all the methods,
all the samples are included in the result object. However, with different methods, it is possible to
choose which rows are included.

• full – all unique features

• inner – all shared features

• left – all the features of the first object

• right – all the features of the second object

You can also doe e.g., a full join by using a function full_join which is an alias for mergeSEs.
Also other joining methods have dplyr-like aliases.

The output depends on the input. If the input contains SummarizedExperiment object, then the out-
put will be SummarizedExperiment. When all the input objects belong to TreeSummarizedExperiment,
the output will be TreeSummarizedExperiment.

Value

A single SummarizedExperiment object.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also

• TreeSummarizedExperiment::cbind

• TreeSummarizedExperiment::rbind

• full_join

• inner_join

• left_join

• right_join

microbiome.github.io

62 mia-datasets

Examples

data(GlobalPatterns)
data(esophagus)
data(enterotype)

Take only subsets so that it wont take so long
tse1 <- GlobalPatterns[1:100,]
tse2 <- esophagus
tse3 <- enterotype[1:100,]

Merge two TreeSEs
tse <- mergeSEs(tse1, tse2)

Merge a list of TreeSEs
list <- SimpleList(tse1, tse2, tse3)
tse <- mergeSEs(list, assay_name = "counts", missing_values = 0)
tse

With 'join', it is possible to specify the merging method. Subsets are used
here just to show the functionality
tse_temp <- mergeSEs(tse[1:10, 1:10], tse[5:100, 11:20], join = "left")
tse_temp

You can also do a left_join by using alias "left_join"
tse_temp <- left_join(tse[1:10, 1:10], tse[5:100, 11:20])

If your objects contain samples that describe one and same sample,
you can collapse equally named samples to one by specifying 'collapse_samples'
tse_temp <- inner_join(list(tse[1:10, 1], tse[1:20, 1], tse[1:5, 1]),

collapse_samples = TRUE)
tse_temp

mia-datasets mia datasets

Description

These datasets are conversions of the phyloseq datasets GlobalPatterns, enterotype, and esophagus
into the TreeSummarizedExperiment data container.

dmn_se contains an example SummarizedExperiment derived from data in the DirichletMultino-
mial package. See ?calculateDMN for more details.

Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011)

This work compared the microbial communities from 25 environmental samples and three known
“mock communities” at a an averag depth of 3.1 million reads per sample. Authors reproduced
diversity patterns seen in many other published studies, while invesitigating technical issues/bias by
applying the same techniques to simulated microbial communities of known composition. Many

mia-datasets 63

thanks to J. Gregory Caporaso for providing the OTU-clustered data files for inclusion in the phy-
loseq package, from which this data TreeSummarizedExperiment version was then converted.

The enterotype data of the human gut microbiome (Arumugam et al. 2011) includes taxonomic
profiling for 280 fecal samples from 22 subjects based on shotgun DNA sequencing. The authors
claimed that the data naturally clumps into three community-level clusters, or “enterotypes”, that
are not immediately explained by sequencing technology or demographic features of the subjects.
A later addendum (2014) the authors stated that enterotypes "should not be seen as discrete clusters,
but as a way of stratifying samples to reduce complexity."

The esophagus data set from Pei et al. (2004) includes 3 samples from 3 human adults based on
biopsies analysed with 16S rDNA PCR. The 16S rRNA sequence processing has been provided in
the mothur wiki at the link below.

This data set from Turnbaugh et al. (2009) was used to introduce Dirichlet Multinomial Mixtures
(DMM) for microbiota stratification by Holmes et al. (2012).

PeerJ data by Potbhare et al. (2022) includes skin microbial profiles of 58 volunteers with multi-
ple factors. 16S r-RNA sequencing of V3-V4 regions was done to generate millions of read using
illumina platform. A standard bioinformatic and statistical analysis done to explore skin bacte-
rial diversity and its association with age, diet, geographical locations. The authors investigated
significant association of skin microbiota with individual’s geographical location.

The HintikkaXO dataset contains high-throughput profiling data from 40 rat samples, including 39
biomarkers, 38 metabolites (NMR), and 12706 OTUs from 318 species, measured from Cecum.
This is diet comparison study with High/Low fat diet and xylo-oligosaccaride supplementation.
Column metadata is common for all experiments (microbiota, metabolites, biomarkers) and in-
cludes the following fields:

Usage

data(GlobalPatterns)

data(enterotype)

data(esophagus)

data(dmn_se)

data(peerj13075)

data(HintikkaXOData)

Format

An object of class TreeSummarizedExperiment with 19216 rows and 26 columns.

An object of class TreeSummarizedExperiment with 553 rows and 280 columns.

An object of class TreeSummarizedExperiment with 58 rows and 3 columns.

An object of class SummarizedExperiment with 130 rows and 278 columns.

An object of class TreeSummarizedExperiment with 674 rows and 58 columns.

An object of class MultiAssayExperiment of length 3.

64 mia-datasets

Details

• Sample: Sample ID (character)

• Rat: Rat ID (factor)

• Site: Site of measurement ("Cecum"); single value

• Diet: Diet group (factor; combination of the Fat and XOS fields)

• Fat: Fat in Diet (factor; Low/High)

• XOS: XOS Diet Supplement (numeric; 0/1)

Row metadata of the microbiota data contains taxonomic information on the Phylum, Class, Order,
Family, Genus, Species, and OTU levels.

Biomarker data contains 39 biomarkers.

Metabolite data contains 38 NMR metabolites.

Author(s)

Caporaso, J. G., et al.

Arumugam, M., Raes, J., et al.

Pei et al. <zhiheng.pei@med.nyu.edu>.

Turnbaugh, PJ et al.

Potbhare, R., et al.

Leo Lahti et al.

References

Caporaso, J. G., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of
sequences per sample. PNAS, 108, 4516-4522. http://www.pnas.org/content/108/suppl.1/
4516.short

Arumugam, M., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-
180. http://www.nature.com/doifinder/10.1038/nature09944 Supplemental information in-
cludes subject data. OTU-clustered data was initially downloaded from the publicly-accessible:
http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html

Arumugam, M., et al. (2014). Addendum: Enterotypes of the human gut microbiome. Nature 506,
516 (2014). https://doi.org/10.1038/nature13075

Pei, Z., Bini, E. J., Yang, L., Zhou, M., Francois, F., & Blaser, M. J. (2004). Bacterial biota in the
human distal esophagus. Proceedings of the National Academy of Sciences of the United States of
America, 101(12), 4250-4255. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384727

McMurdie, J. & Holmes, S. (2013) phyloseq: An R Package for reproducible interactive analysis
and graphics of microbiome census data. PLoS ONE. 8(4):e61217. https://doi.org/10.1371/
journal.pone.0061217

Mothur-processed files and the sequence data can be downloaded at: http://www.mothur.org/
wiki/Esophageal_community_analysis

Holmes I, Harris K, Quince C (2012). Dirichlet Multinomial Mixtures: Generative Models for
Microbial Metagenomics. PLoS ONE 7(2): e30126. https://doi.org/10.1371/journal.pone.
0030126

http://www.pnas.org/content/108/suppl.1/4516.short
http://www.pnas.org/content/108/suppl.1/4516.short
http://www.nature.com/doifinder/10.1038/nature09944
http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html
https://doi.org/10.1038/nature13075
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384727
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217
http://www.mothur.org/wiki/Esophageal_community_analysis
http://www.mothur.org/wiki/Esophageal_community_analysis
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1371/journal.pone.0030126

perSampleDominantTaxa 65

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009). A core gut micro-
biome in obese and lean twins. Nature 457: 480–484. https://doi.org/10.1038/nature07540

Potbhare, R., RaviKumar, A., Munukka, E., Lahti, L., & Ashma, R. (2022). Skin microbiota
diversity among genetically unrelated individuals of Indian origin. PeerJ, 10, e13075. https:
//peerj.com/articles/13075/ Supplemental information includes OTU table and taxonomy
table and publicly-accessible from: DOI:10.7717/peerj.13075/supp-1 DOI:10.7717/peerj.
13075/supp-2

Hintikka L et al. (2021): Xylo-oligosaccharides in prevention of hepatic steatosis and adipose
tissue inflammation: associating taxonomic and metabolomic patterns in fecal microbiotas with bi-
clustering. International Journal of Environmental Research and Public Health 18(8):4049 https:
//doi.org/10.3390/ijerph18084049

perSampleDominantTaxa Get dominant taxa

Description

These functions return information about the most dominant taxa in a SummarizedExperiment
object.

Usage

perSampleDominantTaxa(
x,
assay_name = abund_values,
abund_values = "counts",
rank = NULL,
...

)

S4 method for signature 'SummarizedExperiment'
perSampleDominantTaxa(
x,
assay_name = abund_values,
abund_values = "counts",
rank = NULL,
...

)

perSampleDominantFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
perSampleDominantFeatures(x, ...)

addPerSampleDominantTaxa(x, name = "dominant_taxa", ...)

https://doi.org/10.1038/nature07540
https://peerj.com/articles/13075/
https://peerj.com/articles/13075/
DOI:10.7717/peerj.13075/supp-1
DOI:10.7717/peerj.13075/supp-2
DOI:10.7717/peerj.13075/supp-2
https://doi.org/10.3390/ijerph18084049
https://doi.org/10.3390/ijerph18084049

66 perSampleDominantTaxa

S4 method for signature 'SummarizedExperiment'
addPerSampleDominantTaxa(x, name = "dominant_taxa", ...)

addPerSampleDominantFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
addPerSampleDominantFeatures(x, ...)

Arguments

x A SummarizedExperiment object.

assay_name A single character value for selecting the assay to use for identifying dominant
taxa.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

rank A single character defining a taxonomic rank. Must be a value of the output of
taxonomyRanks().

... Additional arguments passed on to agglomerateByRank() when rank is speci-
fied.

name A name for the column of the colData where the dominant taxa will be stored
in when using addPerSampleDominantTaxa.

Details

addPerSampleDominantTaxa extracts the most abundant taxa in a SummarizedExperiment object,
and stores the information in the colData. It is a wrapper for perSampleDominantTaxa.

With rank parameter, it is possible to agglomerate taxa based on taxonomic ranks. E.g. if ’Genus’
rank is used, all abundances of same Genus are added together, and those families are returned. See
agglomerateByRank() for additional arguments to deal with missing values or special characters.

Value

perSampleDominantTaxa returns a named character vector x while addPerSampleDominantTaxa
returns SummarizedExperiment with additional column in colData named *name*.

Author(s)

Leo Lahti, Tuomas Borman and Sudarshan A. Shetty.

Examples

data(GlobalPatterns)
x <- GlobalPatterns

Finds the dominant taxa.
sim.dom <- perSampleDominantTaxa(x, rank="Genus")

relabundance 67

Add information to colData
x <- addPerSampleDominantTaxa(x, rank = "Genus", name="dominant_genera")
colData(x)

relabundance Getter / setter for relative abundance data

Description

relabundance is a getter/setter for relative abundance stored in the assay slot ‘relabundance’ of a
TreeSummarizedExperiment object. This is a shortcut function for assay(x,"relabundance").

Usage

relabundance(x, ...)

relabundance(x) <- value

S4 method for signature 'SummarizedExperiment'
relabundance(x)

S4 replacement method for signature 'SummarizedExperiment'
relabundance(x) <- value

Arguments

x a TreeSummarizedExperiment object

... optional arguments not used currently.

value a matrix to store as the the ‘relabundance’ assay

Value

For relabundance the matrix stored with the name “relabundance”.

Examples

data(GlobalPatterns)
Calculates relative abundances
GlobalPatterns <- relAbundanceCounts(GlobalPatterns)
Fetches calculated relative abundances
head(relabundance(GlobalPatterns))

68 runCCA

runCCA Canonical Correspondence Analysis

Description

These functions perform Canonical Correspondence Analysis on data stored in a SummarizedExperiment.

Usage

calculateCCA(x, ...)

runCCA(x, ...)

calculateRDA(x, ...)

runRDA(x, ...)

S4 method for signature 'ANY'
calculateCCA(x, formula, variables, scale = TRUE, ...)

S4 method for signature 'SummarizedExperiment'
calculateCCA(
x,
formula,
variables,
...,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts"

)

S4 method for signature 'SingleCellExperiment'
runCCA(x, ..., altexp = NULL, name = "CCA")

S4 method for signature 'ANY'
calculateRDA(x, formula, variables, ...)

S4 method for signature 'SummarizedExperiment'
calculateRDA(
x,
formula,
variables,
...,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts"

)

runCCA 69

S4 method for signature 'SingleCellExperiment'
runRDA(x, ..., altexp = NULL, name = "RDA")

Arguments

x For calculate* a SummarizedExperiment or a numeric matrix with columns
as samples
For run* a SingleCellExperiment or a derived object.

... additional arguments passed to vegan::cca or vegan::dbrda

formula If x is a SummarizedExperiment a formula can be supplied. Based on the right-
hand side of the given formula colData is subset to variables.
variables and formula can be missing, which turns the CCA analysis into a
CA analysis and dbRDA into PCoA/MDS.

variables When x is a SummarizedExperiment, variables can be used to specify vari-
ables from colData.
When x is a matrix, variables is a data.frame or an object coercible to one
containing the variables to use.
All variables are used. Please subset, if you want to consider only some of them.
variables and formula can be missing, which turns the CCA analysis into a
CA analysis and dbRDA into PCoA/MDS.

scale a logical scalar, should the expression values be standardized? scale is dis-
abled when using *RDA functions. Please scale before performing RDA (Check
examples.)

assay_name a single character value for specifying which assay to use for calculation.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

exprs_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead.)

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

*CCA functions utilize vegan:cca and *RDA functions vegan:dbRDA. By default dbRDA is done
with euclidean distances which equals to RDA.

Value

For calculateCCA a matrix with samples as rows and CCA dimensions as columns

For runCCA a modified x with the results stored in reducedDim as the given name

70 runDPCoA

See Also

For more details on the actual implementation see cca and dbrda

Examples

library(scater)
data(GlobalPatterns)
GlobalPatterns <- runCCA(GlobalPatterns, data ~ SampleType)
plotReducedDim(GlobalPatterns,"CCA", colour_by = "SampleType")

GlobalPatterns <- runRDA(GlobalPatterns, data ~ SampleType)
plotReducedDim(GlobalPatterns,"CCA", colour_by = "SampleType")

To scale values when using *RDA functions, use transformFeatures
tse <- GlobalPatterns
tse <- transformFeatures(tse, method = "z")
Data might include taxa that do not vary. Remove those because after z-transform
their value is NA
tse <- tse[rowSums(is.na(assay(tse, "z"))) == 0,]
Calculate RDA
tse <- runRDA(tse, formula = data ~ SampleType,

assay_name = "z", name = "rda_scaled", na.action = na.omit)
Plot
plotReducedDim(tse,"rda_scaled", colour_by = "SampleType")

runDPCoA Calculation of Double Principal Correspondance analysis

Description

Double Principal Correspondance analysis is made available via the ade4 package in typical fash-
ion. Results are stored in the reducedDims and are available for all the expected functions.

Usage

calculateDPCoA(x, y, ...)

S4 method for signature 'ANY,ANY'
calculateDPCoA(
x,
y,
ncomponents = 2,
ntop = NULL,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
...

)

runDPCoA 71

S4 method for signature 'TreeSummarizedExperiment,missing'
calculateDPCoA(
x,
...,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
tree_name = "phylo"

)

runDPCoA(x, ..., altexp = NULL, name = "DPCoA")

Arguments

x For calculateDPCoA, a numeric matrix of expression values where rows are
features and columns are cells. Alternatively, a TreeSummarizedExperiment
containing such a matrix.
For runDPCoA a TreeSummarizedExperiment containing the expression values
as well as a rowTree to calculate y using cophenetic.phylo.

y a dist or a symmetric matrix compatible with ade4:dpcoa

... Currently not used.

ncomponents Numeric scalar indicating the number of DPCoA dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction. Alternatively NULL, if all features should be
used. (default: ntop = NULL)

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

assay_name a single character value for specifying which assay to use for calculation.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

exprs_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead.)

tree_name a single character value for specifying which rowTree will be used in calcula-
tion. (By default: tree_name = "phylo")

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

72 runNMDS

Details

In addition to the reduced dimension on the features, the reduced dimension for samples are returned
as well as sample_red attribute. eig, feature_weights and sample_weights are returned as
attributes as well.

Value

For calculateDPCoA a matrix with samples as rows and CCA dimensions as columns

For runDPCoA a modified x with the results stored in reducedDim as the given name

See Also

plotReducedDim reducedDims

Examples

data(esophagus)
dpcoa <- calculateDPCoA(esophagus)
head(dpcoa)

esophagus <- runDPCoA(esophagus)
reducedDims(esophagus)

library(scater)
plotReducedDim(esophagus, "DPCoA")

runNMDS Perform non-metric MDS on sample-level data

Description

Perform non-metric multi-dimensional scaling (nMDS) on samples, based on the data in a SingleCellExperiment
object.

Usage

calculateNMDS(x, ...)

S4 method for signature 'ANY'
calculateNMDS(
x,
FUN = vegdist,
nmdsFUN = c("isoMDS", "monoMDS"),
ncomponents = 2,
ntop = 500,
subset_row = NULL,
scale = FALSE,

runNMDS 73

transposed = FALSE,
keep_dist = FALSE,
...

)

S4 method for signature 'SummarizedExperiment'
calculateNMDS(
x,
...,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
FUN = vegdist

)

S4 method for signature 'SingleCellExperiment'
calculateNMDS(
x,
...,
assay_name = abund_values,
abund_values = exprs_values,
exprs_values = "counts",
dimred = NULL,
n_dimred = NULL,
FUN = vegdist

)

runNMDS(x, ..., altexp = NULL, name = "NMDS")

plotNMDS(x, ..., ncomponents = 2)

Arguments

x For calculateNMDS, a numeric matrix of expression values where rows are fea-
tures and columns are cells. Alternatively, a TreeSummarizedExperiment con-
taining such a matrix.
For runNMDS a SingleCellExperiment

... additional arguments to pass to FUN and nmdsFUN.

FUN a function or character value with a function name returning a dist object

nmdsFUN a character value to choose the scaling implementation, either “isoMDS” for
MASS::isoMDS or “monoMDS” for vegan::monoMDS

ncomponents Numeric scalar indicating the number of NMDS dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction.

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

74 runNMDS

scale Logical scalar, should the expression values be standardized?

transposed Logical scalar, is x transposed with cells in rows?

keep_dist Logical scalar indicating whether the dist object calculated by FUN should
be stored as ‘dist’ attribute of the matrix returned/stored by calculateNMDS/
runNMDS.

assay_name a single character value for specifying which assay to use for calculation.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

exprs_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead.)

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

Either MASS::isoMDS or vegan::monoMDS are used internally to compute the NMDS components.
If you supply a custom FUN, make sure that the arguments of FUN and nmdsFUN do not collide.

Value

For calculateNMDS, a matrix is returned containing the MDS coordinates for each sample (row)
and dimension (column).

Author(s)

Felix Ernst

See Also

MASS::isoMDS, vegan::monoMDS for NMDS component calculation.

plotMDS, to quickly visualize the results.

Examples

generate some example data
mat <- matrix(1:60, nrow = 6)
df <- DataFrame(n = c(1:6))
tse <- TreeSummarizedExperiment(assays = list(counts = mat),

rowData = df)
#
calculateNMDS(tse)

splitByRanks 75

#
data(esophagus)
esophagus <- runNMDS(esophagus, FUN = vegan::vegdist, name = "BC")
esophagus <- runNMDS(esophagus, FUN = vegan::vegdist, name = "euclidean",

method = "euclidean")
reducedDims(esophagus)

splitByRanks Split/Unsplit a SingleCellExperiment by taxonomic ranks

Description

splitByRanks takes a SummarizedExperiment, splits it along the taxonomic ranks, aggregates the
data per rank, converts the input to a SingleCellExperiment objects and stores the aggregated
data as alternative experiments.

Usage

splitByRanks(x, ...)

S4 method for signature 'SummarizedExperiment'
splitByRanks(x, ranks = taxonomyRanks(x), na.rm = TRUE, ...)

S4 method for signature 'SingleCellExperiment'
splitByRanks(x, ranks = taxonomyRanks(x), na.rm = TRUE, ...)

S4 method for signature 'TreeSummarizedExperiment'
splitByRanks(x, ranks = taxonomyRanks(x), na.rm = TRUE, ...)

unsplitByRanks(x, ...)

S4 method for signature 'SingleCellExperiment'
unsplitByRanks(x, ranks = taxonomyRanks(x), keep_reducedDims = FALSE, ...)

S4 method for signature 'TreeSummarizedExperiment'
unsplitByRanks(x, ranks = taxonomyRanks(x), keep_reducedDims = FALSE, ...)

Arguments

x a SummarizedExperiment object
... arguments passed to agglomerateByRank function for SummarizedExperiment

objects and other functions. See agglomerateByRank for more details.
ranks a character vector defining taxonomic ranks. Must all be values of taxonomyRanks()

function.
na.rm TRUE or FALSE: Should taxa with an empty rank be removed? Use it with cau-

tion, since results with NA on the selected rank will be dropped. This setting can
be tweaked by defining empty.fields to your needs. (default: na.rm = TRUE)

76 splitByRanks

keep_reducedDims

TRUE or FALSE: Should the reducedDims(x) be transferred to the result? Please
note, that this breaks the link between the data used to calculate the reduced
dims. (default: keep_reducedDims = FALSE)

Details

unsplitByRanks takes these alternative experiments and flattens them again into a single SummarizedExperiment.

splitByRanks will use by default all available taxonomic ranks, but this can be controlled by
setting ranks manually. NA values are removed by default, since they would not make sense, if the
result should be used for unsplitByRanks at some point. The input data remains unchanged in the
returned SingleCellExperiment objects.

unsplitByRanks will remove any NA value on each taxonomic rank so that no ambiguous data is
created. In additional, a column taxonomicLevel is created or overwritten in the rowData to spec-
ify from which alternative experiment this originates from. This can also be used for splitAltExps
to split the result along the same factor again. The input data from the base objects is not returned,
only the data from the altExp(). Be aware that changes to rowData of the base object are not
returned, whereas only the colData of the base object is kept.

Value

For splitByRanks: SummarizedExperiment objects in a SimpleList.

For unsplitByRanks: x, with rowData and assay data replaced by the unsplit data. colData of x
is kept as well and any existing rowTree is dropped as well, since existing rowLinks are not valid
anymore.

See Also

splitOn unsplitOn mergeRows, sumCountsAcrossFeatures, agglomerateByRank, altExps, splitAltExps

Examples

data(GlobalPatterns)
print the available taxonomic ranks
taxonomyRanks(GlobalPatterns)

splitByRanks
altExps(GlobalPatterns) <- splitByRanks(GlobalPatterns)
altExps(GlobalPatterns)
altExp(GlobalPatterns,"Kingdom")
altExp(GlobalPatterns,"Species")

unsplitByRanks
x <- unsplitByRanks(GlobalPatterns)
x

splitOn 77

splitOn Split TreeSummarizedExperiment column-wise or row-wise based on
grouping variable

Description

Split TreeSummarizedExperiment column-wise or row-wise based on grouping variable

Usage

splitOn(x, ...)

S4 method for signature 'SummarizedExperiment'
splitOn(x, f = NULL, ...)

S4 method for signature 'SingleCellExperiment'
splitOn(x, f = NULL, ...)

S4 method for signature 'TreeSummarizedExperiment'
splitOn(x, f = NULL, update_rowTree = FALSE, ...)

unsplitOn(x, ...)

S4 method for signature 'list'
unsplitOn(x, update_rowTree = FALSE, ...)

S4 method for signature 'SimpleList'
unsplitOn(x, update_rowTree = FALSE, ...)

S4 method for signature 'SingleCellExperiment'
unsplitOn(x, altExpNames = names(altExps(x)), keep_reducedDims = FALSE, ...)

Arguments

x A SummarizedExperiment object or a list of SummarizedExperiment objects.

... Arguments passed to mergeRows/mergeCols function for SummarizedExperiment
objects and other functions. See mergeRows for more details.

• use_names A single boolean value to select whether to name elements of
list by their group names.

f A single character value for selecting the grouping variable from rowData or
colData or a factor or vector with the same length as one of the dimensions.
If f matches with both dimensions, MARGIN must be specified. Split by cols is
not encouraged, since this is not compatible with storing the results in altExps.

update_rowTree TRUE or FALSE: Should the rowTree be updated based on splitted data? Option
is enabled when x is a TreeSummarizedExperiment object or a list of such
objects. (By default: update_rowTree = FALSE)

78 splitOn

altExpNames a character vector specifying the alternative experiments to be unsplit. (By
default: altExpNames = names(altExps(x)))

keep_reducedDims

TRUE or FALSE: Should the reducedDims(x) be transferred to the result? Please
note, that this breaks the link between the data used to calculate the reduced
dims. (By default: keep_reducedDims = FALSE)

Details

splitOn split data based on grouping variable. Splitting can be done column-wise or row-wise.
The returned value is a list of SummarizedExperiment objects; each element containing members
of each group.

Value

For splitOn: SummarizedExperiment objects in a SimpleList.

For unsplitOn: x, with rowData and assay data replaced by the unsplit data. colData of x is
kept as well and any existing rowTree is dropped as well, since existing rowLinks are not valid
anymore.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also

splitByRanks unsplitByRanks mergeRows, sumCountsAcrossFeatures, agglomerateByRank,
altExps, splitAltExps

Examples

data(GlobalPatterns)
tse <- GlobalPatterns
Split data based on SampleType.
se_list <- splitOn(tse, f = "SampleType")

List of SE objects is returned.
se_list

Create arbitrary groups
rowData(tse)$group <- sample(1:10, nrow(tse), replace = TRUE)
colData(tse)$group <- sample(1:10, ncol(tse), replace = TRUE)

Split based on rows
Each element is named based on their group name. If you don't want to name
elements, use use_name = FALSE. Since "group" can be found from rowdata and colData
you must use MARGIN.
se_list <- splitOn(tse, f = "group", use_names = FALSE, MARGIN = 1)

When column names are shared between elements, you can store the list to altExps
altExps(tse) <- se_list

microbiome.github.io

subsampleCounts 79

altExps(tse)

If you want to split on columns and update rowTree, you can do
se_list <- splitOn(tse, f = colData(tse)$group, update_rowTree = TRUE)

If you want to combine groups back together, you can use unsplitBy
unsplitOn(se_list)

subsampleCounts Subsample Counts

Description

subsampleCounts will randomly subsample counts in SummarizedExperiment and return the a
modified object in which each sample has same number of total observations/counts/reads.

Usage

subsampleCounts(
x,
assay_name = abund_values,
abund_values = "counts",
min_size = min(colSums2(assay(x))),
seed = runif(1, 0, .Machine$integer.max),
replace = TRUE,
name = "subsampled",
verbose = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
subsampleCounts(
x,
assay_name = abund_values,
abund_values = "counts",
min_size = min(colSums2(assay(x))),
seed = runif(1, 0, .Machine$integer.max),
replace = TRUE,
name = "subsampled",
verbose = TRUE,
...

)

80 subsampleCounts

Arguments

x A SummarizedExperiment object.

assay_name A single character value for selecting the SummarizedExperiment assay used
for random subsampling. Only counts are useful and other transformed data as
input will give meaningless output.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

min_size A single integer value equal to the number of counts being simulated this can
equal to lowest number of total counts found in a sample or a user specified
number.

seed A random number seed for reproducibility of sampling.

replace Logical Default is TRUE. The default is with replacement (replace=TRUE). See
phyloseq::rarefy_even_depth for details on implications of this parameter.

name A single character value specifying the name of transformed abundance table.

verbose Logical Default is TRUE. When TRUE an additional message about the random
number used is printed.

... additional arguments not used

Details

Although the subsampling approach is highly debated in microbiome research, we include the
subsampleCounts function because there may be some instances where it can be useful. Note
that the output of subsampleCounts is not the equivalent as the input and any result have to be
verified with the original dataset.

Value

subsampleCounts return x with subsampled data.

Author(s)

Sudarshan A. Shetty and Felix G.M. Ernst

References

McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible.
PLoS computational biology. 2014 Apr 3;10(4):e1003531.

Gloor GB, Macklaim JM, Pawlowsky-Glahn V & Egozcue JJ (2017) Microbiome Datasets Are
Compositional: And This Is Not Optional. Frontiers in Microbiology 8: 2224. doi: 10.3389/fmicb.2017.02224

Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-
Baeza Y, Birmingham A, Hyde ER. Normalization and microbial differential abundance strategies
depend upon data characteristics. Microbiome. 2017 Dec;5(1):1-8.

subsetSamples 81

Examples

When samples in TreeSE are less than specified min_size, they will be removed.
If after subsampling features are not present in any of the samples,
they will be removed.
data("GlobalPatterns")
tse <- GlobalPatterns
tse.subsampled <- subsampleCounts(tse,

min_size = 60000,
name = "subsampled",
seed = 123)

tse.subsampled
dim(tse)
dim(tse.subsampled)

subsetSamples Subset functions

Description

To make a transition from phyloseq easier, the subsetSamples and subsetFeatures functions
are implemented. To avoid name clashes they are named differently.

Usage

subsetSamples(x, ...)

subsetFeatures(x, ...)

subsetTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetSamples(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
subsetTaxa(x, ...)

Arguments

x a SummarizedExperiment object

... See subset. drop is not supported.

82 summaries

Details

However, the use of these functions is discouraged since subsetting using [works on both dimen-
sion at the same time, is more flexible and is used throughout R to subset data with two or more
dimension. Therefore, these functions will be removed in Bioconductor release 3.15 (April, 2022).

Value

A subset of x

Examples

data(GlobalPatterns)
subsetSamples(GlobalPatterns, colData(GlobalPatterns)$SampleType == "Soil")
Vector that is used to specify subset must not include NAs
subsetFeatures(GlobalPatterns, rowData(GlobalPatterns)$Phylum == "Actinobacteria" &

!is.na(rowData(GlobalPatterns)$Phylum))

summaries Summarizing microbiome data

Description

To query a SummarizedExperiment for interesting features, several functions are available.

Usage

getTopTaxa(
x,
top = 5L,
method = c("mean", "sum", "median"),
assay_name = abund_values,
abund_values = "counts",
na.rm = TRUE,
...

)

S4 method for signature 'SummarizedExperiment'
getTopTaxa(
x,
top = 5L,
method = c("mean", "sum", "median", "prevalence"),
assay_name = abund_values,
abund_values = "counts",
na.rm = TRUE,
...

)

summaries 83

getTopFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
getTopFeatures(x, ...)

getUniqueTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'
getUniqueTaxa(x, rank = NULL, ...)

getUniqueFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
getUniqueFeatures(x, ...)

countDominantTaxa(x, group = NULL, ...)

S4 method for signature 'SummarizedExperiment'
countDominantTaxa(x, group = NULL, ...)

countDominantFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
countDominantFeatures(x, ...)

S4 method for signature 'SummarizedExperiment'
summary(object, assay_name = abund_values, abund_values = "counts")

Arguments

x A SummarizedExperiment object.

top Numeric value, how many top taxa to return. Default return top five taxa.

method Specify the method to determine top taxa. Either sum, mean, median or preva-
lence. Default is ’mean’.

assay_name a character value to select an assayNames By default it expects count data.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

na.rm For getTopTaxa logical argument for calculation method specified to argument
method. Default is TRUE.

... Additional arguments passed on to agglomerateByRank() when rank is speci-
fied for countDominantTaxa.

rank A single character defining a taxonomic rank. Must be a value of the output of
taxonomyRanks().

group With group, it is possible to group the observations in an overview. Must be one
of the column names of colData.

84 summaries

object A SummarizedExperiment object.

Details

The getTopTaxa extracts the most top abundant “FeatureID”s in a SummarizedExperiment object.

The getUniqueTaxa is a basic function to access different taxa at a particular taxonomic rank.

countDominantTaxa returns information about most dominant taxa in a tibble. Information in-
cludes their absolute and relative abundances in whole data set.

The summary will return a summary of counts for all samples and features in SummarizedExperiment
object.

Value

The getTopTaxa returns a vector of the most top abundant “FeatureID”s

The getUniqueTaxa returns a vector of unique taxa present at a particular rank

The countDominantTaxa returns an overview in a tibble. It contains dominant taxa in a column
named *name* and its abundance in the data set.

The summary returns a list with two tibbles

Author(s)

Leo Lahti, Tuomas Borman and Sudarshan A. Shetty

See Also

getPrevalentTaxa

perCellQCMetrics, perFeatureQCMetrics, addPerCellQC, addPerFeatureQC, quickPerCellQC

Examples

data(GlobalPatterns)
top_taxa <- getTopTaxa(GlobalPatterns,

method = "mean",
top = 5,
assay_name = "counts")

top_taxa

Use 'detection' to select detection threshold when using prevalence method
top_taxa <- getTopTaxa(GlobalPatterns,

method = "prevalence",
top = 5,
abund_values = "counts",
detection = 100)

top_taxa

Top taxa os specific rank
getTopTaxa(agglomerateByRank(GlobalPatterns,

rank = "Genus",
na.rm = TRUE))

taxonomy-methods 85

Gets the overview of dominant taxa
dominant_taxa <- countDominantTaxa(GlobalPatterns,

rank = "Genus")
dominant_taxa

With group, it is possible to group observations based on specified groups
Gets the overview of dominant taxa
dominant_taxa <- countDominantTaxa(GlobalPatterns,

rank = "Genus",
group = "SampleType",
na.rm = TRUE)

dominant_taxa

Get an overview of sample and taxa counts
summary(GlobalPatterns)

Get unique taxa at a particular taxonomic rank
sort = TRUE means that output is sorted in alphabetical order
With na.rm = TRUE, it is possible to remove NAs
sort and na.rm can also be used in function getTopTaxa
getUniqueTaxa(GlobalPatterns, "Phylum", sort = TRUE)

taxonomy-methods Functions for accessing taxonomic data stored in rowData.

Description

These function work on data present in rowData and define a way to represent taxonomic data
alongside the features of a SummarizedExperiment.

Usage

TAXONOMY_RANKS

taxonomyRanks(x)

S4 method for signature 'SummarizedExperiment'
taxonomyRanks(x)

taxonomyRankEmpty(
x,
rank = taxonomyRanks(x)[1L],
empty.fields = c(NA, "", " ", "\t", "-", "_")

)

S4 method for signature 'SummarizedExperiment'

86 taxonomy-methods

taxonomyRankEmpty(
x,
rank = taxonomyRanks(x)[1],
empty.fields = c(NA, "", " ", "\t", "-", "_")

)

checkTaxonomy(x, ...)

S4 method for signature 'SummarizedExperiment'
checkTaxonomy(x)

getTaxonomyLabels(x, ...)

S4 method for signature 'SummarizedExperiment'
getTaxonomyLabels(
x,
empty.fields = c(NA, "", " ", "\t", "-", "_"),
with_rank = FALSE,
make_unique = TRUE,
resolve_loops = FALSE,
...

)

taxonomyTree(x, ...)

S4 method for signature 'SummarizedExperiment'
taxonomyTree(x)

addTaxonomyTree(x, ...)

S4 method for signature 'SummarizedExperiment'
addTaxonomyTree(x)

mapTaxonomy(x, ...)

S4 method for signature 'SummarizedExperiment'
mapTaxonomy(x, taxa = NULL, from = NULL, to = NULL, use_grepl = FALSE)

IdTaxaToDataFrame(from)

Arguments

x a SummarizedExperiment object

rank a single character defining a taxonomic rank. Must be a value of taxonomyRanks()
function.

empty.fields a character value defining, which values should be regarded as empty. (De-
fault: c(NA, "", " ", "\t")). They will be removed if na.rm = TRUE before
agglomeration.

taxonomy-methods 87

... optional arguments not used currently.
with_rank TRUE or FALSE: Should the level be add as a suffix? For example: "Phylum:Crenarchaeota"

(default: with_rank = FALSE)
make_unique TRUE or FALSE: Should the labels be made unique, if there are any duplicates?

(default: make_unique = TRUE)
resolve_loops TRUE or FALSE: Should resolveLoops be applied to the taxonomic data? Please

note that has only an effect, if the data is unique. (default: resolve_loops =
TRUE)

taxa a character vector, which is used for subsetting the taxonomic information. If
no information is found,NULL is returned for the individual element. (default:
NULL)

from • For mapTaxonomy: a scalar character value, which must be a valid taxo-
nomic rank. (default: NULL)

• otherwise a Taxa object as returned by IdTaxa

to a scalar character value, which must be a valid taxonomic rank. (default:
NULL)

use_grepl TRUE or FALSE: should pattern matching via grepl be used? Otherwise literal
matching is used. (default: FALSE)

Format

a character vector of length 8 containing the taxonomy ranks recognized. In functions this is used
as case insensitive.

Details

taxonomyRanks returns, which columns of rowData(x) are regarded as columns containing taxo-
nomic information.

taxonomyRankEmpty checks, if a selected rank is empty of information.

checkTaxonomy checks, if taxonomy information is valid and whether it contains any problems.
This is a soft test, which reports some diagnostic and might mature into a data validator used upon
object creation.

getTaxonomyLabels generates a character vector per row consisting of the lowest taxonomic infor-
mation possible. If data from different levels, is to be mixed, the taxonomic level is prepended by
default.

taxonomyTree generates a phylo tree object from the available taxonomic information. Internally
it uses toTree and resolveLoop to sanitize data if needed.

IdTaxaToDataFrame extracts taxonomic results from results of IdTaxa.

mapTaxonomy maps the given features (taxonomic groups; taxa) to the specified taxonomic level
(to argument) in rowData of the SummarizedExperiment data object (i.e. rowData(x)[,taxonomyRanks(x)]).
If the argument to is not provided, then all matching taxonomy rows in rowData will be returned.
This function allows handy conversions between different

Taxonomic information from the IdTaxa function of DECIPHER package are returned as a special
class. With as(taxa,"DataFrame") the information can be easily converted to a DataFrame com-
patible with storing the taxonomic information a rowData. Please note that the assigned confidence
information are returned as metatdata and can be accessed using metadata(df)$confidence.

88 transformCounts

Value

• taxonomyRanks: a character vector with all the taxonomic ranks found in colnames(rowData(x))

• taxonomyRankEmpty: a logical value

• mapTaxonomy: a list per element of taxa. Each element is either a DataFrame, a character
or NULL. If all character results have the length of one, a single character vector is returned.

See Also

agglomerateByRank, toTree, resolveLoop

Examples

data(GlobalPatterns)
GlobalPatterns
taxonomyRanks(GlobalPatterns)

checkTaxonomy(GlobalPatterns)

table(taxonomyRankEmpty(GlobalPatterns,"Kingdom"))
table(taxonomyRankEmpty(GlobalPatterns,"Species"))

getTaxonomyLabels(GlobalPatterns[1:20,])

mapTaxonomy
returns the unique taxonomic information
mapTaxonomy(GlobalPatterns)
returns specific unique taxonomic information
mapTaxonomy(GlobalPatterns, taxa = "Escherichia")
returns information on a single output
mapTaxonomy(GlobalPatterns, taxa = "Escherichia",to="Family")

adding a rowTree() based on the available taxonomic information. Please
note that any tree already stored in rowTree() will be overwritten.
x <- GlobalPatterns
x <- addTaxonomyTree(x)
x

transformCounts Transform Counts

Description

Variety of transformations for abundance data, stored in assay. See details for options.

transformCounts 89

Usage

transformSamples(
x,
assay_name = abund_values,
abund_values = "counts",
method = c("clr", "rclr", "hellinger", "log10", "pa", "rank", "relabundance"),
name = method,
pseudocount = NULL,
threshold = 0

)

S4 method for signature 'SummarizedExperiment'
transformSamples(
x,
assay_name = abund_values,
abund_values = "counts",
method = c("clr", "rclr", "hellinger", "log10", "pa", "rank", "relabundance"),
name = method,
pseudocount = NULL,
threshold = 0

)

transformCounts(
x,
assay_name = abund_values,
abund_values = "counts",
method = c("clr", "rclr", "hellinger", "log10", "pa", "rank", "relabundance"),
name = method,
pseudocount = NULL,
threshold = 0

)

S4 method for signature 'SummarizedExperiment'
transformCounts(
x,
assay_name = abund_values,
abund_values = "counts",
method = c("clr", "rclr", "hellinger", "log10", "pa", "rank", "relabundance"),
name = method,
pseudocount = NULL,
threshold = 0

)

transformFeatures(
x,
assay_name = abund_values,
abund_values = "counts",
method = c("log10", "pa", "z"),

90 transformCounts

name = method,
pseudocount = NULL,
threshold = 0

)

S4 method for signature 'SummarizedExperiment'
transformFeatures(
x,
assay_name = abund_values,
abund_values = "counts",
method = c("log10", "pa", "z"),
name = method,
pseudocount = NULL,
threshold = 0

)

ZTransform(x, ...)

S4 method for signature 'SummarizedExperiment'
ZTransform(x, ...)

relAbundanceCounts(x, ...)

S4 method for signature 'SummarizedExperiment'
relAbundanceCounts(x, ...)

Arguments

x A SummarizedExperiment object.

assay_name A single character value for selecting the assay to be transformed.

abund_values a single character value for specifying which assay to use for calculation.
(Please use assay_name instead. At some point abund_values will be dis-
abled.)

method A single character value for selecting the transformation method.

name A single character value specifying the name of transformed abundance table.

pseudocount NULL or numeric value deciding whether pseudocount is added. The numeric
value specifies the value of pseudocount.

threshold A numeric value for setting threshold for pa transformation. By default it is 0.
(Only used for method = "pa")

... additional arguments

Details

These functions provide a variety of options for transforming abundance data. The transformed data
is calculated and stored in a new assay.

Available wrapper functions include:

transformCounts 91

• transformSamples sample-wise (column-wise) transformation. Alias for transformCounts.

• transformFeatures feature-wise (row-wise) transformation.

• ZTransform Shortcut for Z-transformation.

• relAbundanceCounts Shortcut for fetching relative abundance table.

Altogether, transformCounts or transformSamples and transformFeatures apply transforma-
tions to the abundance table (assay). The available transformation methods include:

• ’clr’ Centered log ratio (clr) transformation aims to remove compositionality effect; it is also
used to skewness and to center data.
If the data contains zeros, pseudocount (commonly the smallest positive value of the data)
must be added since clr is a logarithmic transformation that only allows positive values. (See
e.g. Gloor et al. 2017.)

clr = log10
xg(x)

=
log10x− log10µ

where x is a single value, g(x) is geometric mean of sample-wise values, and µ is an arithmetic
mean of sample-wise values.

• ’rclr’ rclr or robust clr is similar to regular clr. Problem of regular clr is that logarithmic
transformations lead to undefined values when zeros are present in the data. In rclr, values are
divided by geometric mean of observed taxa and zero values are not taken into account. Zero
values will stay as zeroes. Because of high-dimensionality of data, rclr’s geometric mean of
observed taxa is a good approximation to the true geometric mean. (For details, see Martino
et al. 2019.).

• ’hellinger’ Hellinger transformation can be used to reduce the impact of extreme data points.
It can be utilize for clustering or ordination analysis. (See e.g. Legendre & Gallagher 2001.)

hellinger =

√
x

xtot

where x is a single value and xtot is the sum of all values

• ’log10’ log10 transformation can be used for reducing the skewness of the data.

log10 = log10 x

where x is a single value of data.

• ’pa’ Transforms table to presence/absence table. All abundances higher than ε are transformed
to 1 (present), otherwise 0 (absent). By default, threshold is 0.

• ’rank’ Rank returns ranks of taxa. For each sample, the least abundant taxa get lower value
and more abundant taxa bigger value. The implementation is based on the colRanks function
with ties.method="first".

• ’relabundance’ Transforms abundances to relative. Generally, all microbiome data are compo-
sitional. That is, e.g., because all measuring instruments have their capacity limits. To make
results comparable with other results, values must be relative. (See e.g. Gloor et al. 2017.)

relabundance =
x

xtot

where x is a single value and xtot is the sum of all values.

92 transformCounts

• ’z’ Z-transformation, Z score transformation, or Z-standardization normalizes the data by
shifting (to mean µ) and scaling (to standard deviation σ). Z-transformation can be done
with function ZTransform. It is done per rows (features / taxa), unlike most other transforma-
tions. This is often preceded by log10p or clr transformation. In other words, single value is
standardized with respect of feature’s values.

z =
x− µ

σ

where x is a single value, µ is the mean of the feature, and σ is the standard deviation of the
feature.

Value

transformCounts, transformSamples, transformFeatures, relAbundanceCounts, and ZTransform
return x with additional, transformed abundance table named name in the assay.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Gloor GB, Macklaim JM, Pawlowsky-Glahn V & Egozcue JJ (2017) Microbiome Datasets Are
Compositional: And This Is Not Optional. Frontiers in Microbiology 8: 2224. doi: 10.3389/fmicb.2017.02224

Legendre P & Gallagher ED (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280.

Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R & Zengler K (2019) A
Novel Sparse Compositional Technique Reveals Microbial Perturbations. mSystems 4: 1. doi:
10.1128/mSystems.00016-19

Examples

data(esophagus)
x <- esophagus

By specifying 'method', it is possible to apply different transformations,
e.g. compositional transformation.
x <- transformSamples(x, method = "relabundance")

The target of transformation can be specified with "assay_name"
Pseudocount can be added by specifying 'pseudocount'.

Get pseudocount; here smallest positive value
mat <- assay(x, "relabundance")
pseudonumber <- min(mat[mat>0])
Perform CLR
x <- transformSamples(x, assay_name = "relabundance", method = "clr",

pseudocount = pseudonumber
)

microbiome.github.io

transformCounts 93

head(assay(x, "clr"))

Name of the stored table can be specified.
x <- transformSamples(x, method="hellinger", name="test")
head(assay(x, "test"))

pa returns presence absence table. With 'threshold', it is possible to set the
threshold to a desired level. By default, it is 0.
x <- transformSamples(x, method = "pa", threshold = 35)
head(assay(x, "pa"))

rank returns ranks of taxa. It is calculated column-wise, i.e., per sample
and using the ties.method="first" from the colRanks function
x <- transformSamples(x, method = "rank")
head(assay(x, "rank"))

transformCounts is an alias for transformSamples
x <- transformCounts(x, method = "relabundance", name = "test2")
head(assay(x, "test2"))

In order to use other ranking variants, modify the chosen assay directly:
assay(x, "rank_average", withDimnames = FALSE) <- colRanks(assay(x, "counts"),

ties.method="average",
preserveShape = TRUE)

If you want to do the transformation for features, you can do that by using
x <- transformFeatures(x, method = "log10", name = "log10_features", pseudocount = 1)
head(assay(x, "log10_features"))

Z-transform can be done for features by using shortcut function
x <- ZTransform(x)
head(assay(x, "z"))

For visualization purposes it is sometimes done by applying CLR for samples,
followed by Z transform for taxa
x <- ZTransform(transformCounts(x, method="clr", assay_name = "counts", pseudocount = 1))

Relative abundances can be also calculated with the dedicated
relAbundanceCounts function.
x <- relAbundanceCounts(x)
head(assay(x, "relabundance"))

Index

∗ datasets
taxonomy-methods, 85

∗ data
mia-datasets, 62

?agglomerateByRank, 41
[, 82

addContaminantQC (isContaminant), 44
addContaminantQC,SummarizedExperiment-method

(isContaminant), 44
addNotContaminantQC (isContaminant), 44
addNotContaminantQC,SummarizedExperiment-method

(isContaminant), 44
addPerCellQC, 84
addPerFeatureQC, 84
addPerSampleDominantFeatures

(perSampleDominantTaxa), 65
addPerSampleDominantFeatures,SummarizedExperiment-method

(perSampleDominantTaxa), 65
addPerSampleDominantTaxa

(perSampleDominantTaxa), 65
addPerSampleDominantTaxa,SummarizedExperiment-method

(perSampleDominantTaxa), 65
addTaxonomyTree (taxonomy-methods), 85
addTaxonomyTree,SummarizedExperiment-method

(taxonomy-methods), 85
agglomerate-methods, 3
agglomerateByPrevalence

(getPrevalence), 39
agglomerateByPrevalence,SummarizedExperiment-method

(getPrevalence), 39
agglomerateByRank, 41, 42, 75, 76, 78, 88
agglomerateByRank

(agglomerate-methods), 3
agglomerateByRank,SingleCellExperiment-method

(agglomerate-methods), 3
agglomerateByRank,SummarizedExperiment-method

(agglomerate-methods), 3
agglomerateByRank,TreeSummarizedExperiment-method

(agglomerate-methods), 3

altExps, 76, 78
ape::phylo, 50
assay, 11, 23, 27, 35, 41, 45, 46, 52, 58, 60,

66, 90, 92
assayNames, 33, 56, 83

bestDMNFit (calculateDMN), 6
bestDMNFit,SummarizedExperiment-method

(calculateDMN), 6
BiocParallelParam, 8, 10, 14, 19, 23, 27, 29
biom, 53
Biostrings::DNAStringSet, 50

calculateCCA (runCCA), 68
calculateCCA,ANY-method (runCCA), 68
calculateCCA,SummarizedExperiment-method

(runCCA), 68
calculateDMN, 5
calculateDMN,ANY-method (calculateDMN),

6
calculateDMN,SummarizedExperiment-method

(calculateDMN), 6
calculateDMNgroup (calculateDMN), 6
calculateDMNgroup,ANY-method

(calculateDMN), 6
calculateDMNgroup,SummarizedExperiment-method

(calculateDMN), 6
calculateDPCoA (runDPCoA), 70
calculateDPCoA,ANY,ANY-method

(runDPCoA), 70
calculateDPCoA,TreeSummarizedExperiment,missing-method

(runDPCoA), 70
calculateJSD, 9, 12
calculateJSD,ANY-method (calculateJSD),

9
calculateJSD,SummarizedExperiment-method

(calculateJSD), 9
calculateNMDS (runNMDS), 72
calculateNMDS,ANY-method (runNMDS), 72

94

INDEX 95

calculateNMDS,SingleCellExperiment-method
(runNMDS), 72

calculateNMDS,SummarizedExperiment-method
(runNMDS), 72

calculateOverlap, 11
calculateOverlap,SummarizedExperiment-method

(calculateOverlap), 11
calculateRDA (runCCA), 68
calculateRDA,ANY-method (runCCA), 68
calculateRDA,SummarizedExperiment-method

(runCCA), 68
calculateUnifrac, 12, 12
calculateUnifrac,ANY,phylo-method

(calculateUnifrac), 12
calculateUnifrac,TreeSummarizedExperiment,missing-method

(calculateUnifrac), 12
cca, 70
checkTaxonomy (taxonomy-methods), 85
checkTaxonomy,SummarizedExperiment-method

(taxonomy-methods), 85
colData, 16, 20, 25, 27, 30, 66
cophenetic.phylo, 71
countDominantFeatures (summaries), 82
countDominantFeatures,SummarizedExperiment-method

(summaries), 82
countDominantTaxa (summaries), 82
countDominantTaxa,SummarizedExperiment-method

(summaries), 82

dbrda, 70
DECIPHER::ConsensusSequence, 58
decontam:isContaminant, 45, 46
decontam:isNotContaminant, 45, 46
detectLoop, 4
DirichletMultinomial, 6
dist, 13, 73
diversity, 21
dmn, 8
dmn_se (mia-datasets), 62
dmn_se, (mia-datasets), 62
DMNGroup, 8
dmngroup, 8

enterotype (mia-datasets), 62
esophagus (mia-datasets), 62
estimateDivergence, 15
estimateDivergence,SummarizedExperiment-method

(estimateDivergence), 15
estimateDiversity, 17, 25, 28

estimateDiversity,SummarizedExperiment-method
(estimateDiversity), 17

estimateDiversity,TreeSummarizedExperiment-method
(estimateDiversity), 17

estimateDominance, 16, 21, 22, 28
estimateDominance,SummarizedExperiment-method

(estimateDominance), 22
estimateEvenness, 16, 21, 25, 26
estimateEvenness,SummarizedExperiment-method

(estimateEvenness), 26
estimateFaith (estimateDiversity), 17
estimateFaith,SummarizedExperiment,phylo-method

(estimateDiversity), 17
estimateFaith,TreeSummarizedExperiment,missing-method

(estimateDiversity), 17
estimateR, 21, 30, 31
estimateRichness, 16, 21, 25, 28, 29
estimateRichness,SummarizedExperiment-method

(estimateRichness), 29

full_join, 61
full_join (mergeSEs), 59
full_join,ANY-method (mergeSEs), 59

getAbundance, 32
getAbundanceFeature (getAbundance), 32
getAbundanceFeature,SummarizedExperiment-method

(getAbundance), 32
getAbundanceSample (getAbundance), 32
getAbundanceSample,SummarizedExperiment-method

(getAbundance), 32
getBestDMNFit (calculateDMN), 6
getBestDMNFit,SummarizedExperiment-method

(calculateDMN), 6
getDMN (calculateDMN), 6
getDMN,SummarizedExperiment-method

(calculateDMN), 6
getExperimentCrossAssociation, 34
getExperimentCrossAssociation,MultiAssayExperiment-method

(getExperimentCrossAssociation),
34

getExperimentCrossAssociation,SummarizedExperiment-method
(getExperimentCrossAssociation),
34

getExperimentCrossCorrelation
(getExperimentCrossAssociation),
34

getExperimentCrossCorrelation,ANY-method
(getExperimentCrossAssociation),

96 INDEX

34
getPrevalence, 39
getPrevalence,ANY-method

(getPrevalence), 39
getPrevalence,SummarizedExperiment-method

(getPrevalence), 39
getPrevalentAbundance (getPrevalence),

39
getPrevalentAbundance,ANY-method

(getPrevalence), 39
getPrevalentAbundance,SummarizedExperiment-method

(getPrevalence), 39
getPrevalentFeatures (getPrevalence), 39
getPrevalentFeatures,ANY-method

(getPrevalence), 39
getPrevalentTaxa, 84
getPrevalentTaxa (getPrevalence), 39
getPrevalentTaxa,ANY-method

(getPrevalence), 39
getPrevalentTaxa,SummarizedExperiment-method

(getPrevalence), 39
getRareFeatures (getPrevalence), 39
getRareFeatures,ANY-method

(getPrevalence), 39
getRarePrevalentFeatures

(getPrevalence), 39
getRareTaxa (getPrevalence), 39
getRareTaxa,ANY-method (getPrevalence),

39
getRareTaxa,SummarizedExperiment-method

(getPrevalence), 39
getTaxonomyLabels (taxonomy-methods), 85
getTaxonomyLabels,SummarizedExperiment-method

(taxonomy-methods), 85
getTopFeatures (summaries), 82
getTopFeatures,SummarizedExperiment-method

(summaries), 82
getTopTaxa, 42
getTopTaxa (summaries), 82
getTopTaxa,SummarizedExperiment-method

(summaries), 82
getUniqueFeatures (summaries), 82
getUniqueFeatures,SummarizedExperiment-method

(summaries), 82
getUniqueTaxa (summaries), 82
getUniqueTaxa,SummarizedExperiment-method

(summaries), 82
GlobalPatterns (mia-datasets), 62

HintikkaXOData (mia-datasets), 62

IdTaxa, 87
IdTaxaToDataFrame (taxonomy-methods), 85
inner_join, 61
inner_join (mergeSEs), 59
inner_join,ANY-method (mergeSEs), 59
isContaminant, 44
isContaminant,SummarizedExperiment-method

(isContaminant), 44
isNotContaminant,SummarizedExperiment-method

(isContaminant), 44

left_join, 61
left_join (mergeSEs), 59
left_join,ANY-method (mergeSEs), 59
loadFromBiom (makeTreeSEFromBiom), 53
loadFromMetaphlan, 46
loadFromMothur, 47, 48, 51, 53–55
loadFromQIIME2, 47, 48, 49, 53–55

makePhyloseqFromTreeSE, 51
makePhyloseqFromTreeSE,SummarizedExperiment-method

(makePhyloseqFromTreeSE), 51
makePhyloseqFromTreeSE,TreeSummarizedExperiment-method

(makePhyloseqFromTreeSE), 51
makePhyloseqFromTreeSummarizedExperiment

(makePhyloseqFromTreeSE), 51
makePhyloseqFromTreeSummarizedExperiment,ANY-method

(makePhyloseqFromTreeSE), 51
makeTreeSEFromBiom, 47, 48, 51, 53, 54, 55
makeTreeSEFromDADA2, 47, 48, 51, 53, 54, 55
makeTreeSEFromPhyloseq, 47, 48, 51, 53, 54,

55
makeTreeSummarizedExperimentFromBiom

(makeTreeSEFromBiom), 53
makeTreeSummarizedExperimentFromDADA2

(makeTreeSEFromDADA2), 54
makeTreeSummarizedExperimentFromPhyloseq

(makeTreeSEFromPhyloseq), 55
makeTreeSummarizedExperimentFromPhyloseq,ANY-method

(makeTreeSEFromPhyloseq), 55
mapTaxonomy (taxonomy-methods), 85
mapTaxonomy,SummarizedExperiment-method

(taxonomy-methods), 85
MASS::isoMDS, 73, 74
meltAssay, 56
meltAssay,SummarizedExperiment-method

(meltAssay), 56

INDEX 97

merge-methods, 57
mergeCols (merge-methods), 57
mergeCols,SummarizedExperiment-method

(merge-methods), 57
mergeCols,TreeSummarizedExperiment-method

(merge-methods), 57
mergeRows, 4, 76–78
mergeRows (merge-methods), 57
mergeRows,SummarizedExperiment-method

(merge-methods), 57
mergeRows,TreeSummarizedExperiment-method

(merge-methods), 57
mergeSEs, 59
mergeSEs,list-method (mergeSEs), 59
mergeSEs,SimpleList-method (mergeSEs),

59
mergeSEs,SummarizedExperiment-method

(mergeSEs), 59
metadata, 8
mia-datasets, 62
mia-package, 3
MultiAssayExperiment, 35

name, 30

peerj13075 (mia-datasets), 62
perCellQCMetrics, 84
perFeatureQCMetrics, 84
performDMNgroupCV (calculateDMN), 6
performDMNgroupCV,ANY-method

(calculateDMN), 6
performDMNgroupCV,SummarizedExperiment-method

(calculateDMN), 6
perSampleDominantFeatures

(perSampleDominantTaxa), 65
perSampleDominantFeatures,SummarizedExperiment-method

(perSampleDominantTaxa), 65
perSampleDominantTaxa, 65
perSampleDominantTaxa,SummarizedExperiment-method

(perSampleDominantTaxa), 65
phylo, 13
phyloseq::rarefy_even_depth, 80
plotColData, 16, 21, 28, 31
plotMDS, 74
plotNMDS (runNMDS), 72
plotReducedDim, 72

quickPerCellQC, 84

rarifyCounts (subsampleCounts), 79

readQZA (loadFromQIIME2), 49
reducedDims, 72
relabundance, 67
relabundance,SummarizedExperiment-method

(relabundance), 67
relabundance<- (relabundance), 67
relabundance<-,SummarizedExperiment-method

(relabundance), 67
relAbundanceCounts (transformCounts), 88
relAbundanceCounts,SummarizedExperiment-method

(transformCounts), 88
resolveLoop, 87, 88
right_join, 61
right_join (mergeSEs), 59
right_join,ANY-method (mergeSEs), 59
runCCA, 68
runCCA,SingleCellExperiment-method

(runCCA), 68
runDMN (calculateDMN), 6
runDPCoA, 70
runJSD (calculateJSD), 9
runNMDS, 72
runOverlap (calculateOverlap), 11
runOverlap,SummarizedExperiment-method

(calculateOverlap), 11
runRDA (runCCA), 68
runRDA,SingleCellExperiment-method

(runCCA), 68
runUnifrac (calculateUnifrac), 12

SingleCellExperiment, 69, 73
splitAltExps, 76, 78
splitByRanks, 75, 78
splitByRanks,SingleCellExperiment-method

(splitByRanks), 75
splitByRanks,SummarizedExperiment-method

(splitByRanks), 75
splitByRanks,TreeSummarizedExperiment-method

(splitByRanks), 75
splitOn, 76, 77
splitOn,SingleCellExperiment-method

(splitOn), 77
splitOn,SummarizedExperiment-method

(splitOn), 77
splitOn,TreeSummarizedExperiment-method

(splitOn), 77
subsampleCounts, 79
subsampleCounts,SummarizedExperiment-method

(subsampleCounts), 79

98 INDEX

subset, 81
subsetByPrevalentFeatures

(getPrevalence), 39
subsetByPrevalentFeatures,ANY-method

(getPrevalence), 39
subsetByPrevalentTaxa (getPrevalence),

39
subsetByPrevalentTaxa,SummarizedExperiment-method

(getPrevalence), 39
subsetByRareFeatures (getPrevalence), 39
subsetByRareFeatures,ANY-method

(getPrevalence), 39
subsetByRareTaxa (getPrevalence), 39
subsetByRareTaxa,SummarizedExperiment-method

(getPrevalence), 39
subsetFeatures (subsetSamples), 81
subsetFeatures,SummarizedExperiment-method

(subsetSamples), 81
subsetSamples, 81
subsetSamples,SummarizedExperiment-method

(subsetSamples), 81
subsetTaxa (subsetSamples), 81
subsetTaxa,SummarizedExperiment-method

(subsetSamples), 81
sumCountsAcrossFeatures, 4, 58, 59, 76, 78
summaries, 82
SummarizedExperiment, 4, 7, 9, 11, 16, 19,

23, 27, 29, 33, 35, 41, 44, 45, 56, 58,
60, 65, 66, 69, 75, 77, 81, 83, 84, 86,
90

summary,SummarizedExperiment-method
(summaries), 82

taxonomy-methods, 85
TAXONOMY_RANKS (taxonomy-methods), 85
taxonomyRankEmpty (taxonomy-methods), 85
taxonomyRankEmpty,SummarizedExperiment-method

(taxonomy-methods), 85
taxonomyRanks, 3
taxonomyRanks (taxonomy-methods), 85
taxonomyRanks,SummarizedExperiment-method

(taxonomy-methods), 85
taxonomyTree (taxonomy-methods), 85
taxonomyTree,SummarizedExperiment-method

(taxonomy-methods), 85
testExperimentCrossAssociation

(getExperimentCrossAssociation),
34

testExperimentCrossAssociation,ANY-method
(getExperimentCrossAssociation),
34

testExperimentCrossCorrelation
(getExperimentCrossAssociation),
34

testExperimentCrossCorrelation,ANY-method
(getExperimentCrossAssociation),
34

toTree, 87, 88
transformCounts, 88
transformCounts,SummarizedExperiment-method

(transformCounts), 88
transformFeatures (transformCounts), 88
transformFeatures,SummarizedExperiment-method

(transformCounts), 88
transformSamples (transformCounts), 88
transformSamples,SummarizedExperiment-method

(transformCounts), 88
TreeSummarizedExperiment, 3, 12, 13, 19,

47, 48, 50, 53, 58, 62, 67, 71
twins (mia-datasets), 62

unsplitByRanks, 78
unsplitByRanks (splitByRanks), 75
unsplitByRanks,SingleCellExperiment-method

(splitByRanks), 75
unsplitByRanks,TreeSummarizedExperiment-method

(splitByRanks), 75
unsplitOn, 76
unsplitOn (splitOn), 77
unsplitOn,list-method (splitOn), 77
unsplitOn,SimpleList-method (splitOn),

77
unsplitOn,SingleCellExperiment-method

(splitOn), 77

vegan::diversity, 20
vegan::fisher.alpha, 20
vegan::monoMDS, 73, 74

ZTransform (transformCounts), 88
ZTransform,SummarizedExperiment-method

(transformCounts), 88

	mia-package
	agglomerate-methods
	calculateDMN
	calculateJSD
	calculateOverlap
	calculateUnifrac
	estimateDivergence
	estimateDiversity
	estimateDominance
	estimateEvenness
	estimateRichness
	getAbundance
	getExperimentCrossAssociation
	getPrevalence
	isContaminant
	loadFromMetaphlan
	loadFromMothur
	loadFromQIIME2
	makePhyloseqFromTreeSE
	makeTreeSEFromBiom
	makeTreeSEFromDADA2
	makeTreeSEFromPhyloseq
	meltAssay
	merge-methods
	mergeSEs
	mia-datasets
	perSampleDominantTaxa
	relabundance
	runCCA
	runDPCoA
	runNMDS
	splitByRanks
	splitOn
	subsampleCounts
	subsetSamples
	summaries
	taxonomy-methods
	transformCounts
	Index

