Package 'ggspavis'

April 10, 2023

Version 1.4.0

- Title Visualization functions for spatially resolved transcriptomics data
- **Description** Visualization functions for spatially resolved transcriptomics datasets stored in SpatialExperiment format. Includes functions to create several types of plots for data from from spot-based (e.g. 10x Genomics Visium) and molecule-based (e.g. seqFISH) technological platforms.

URL https://github.com/lmweber/ggspavis

BugReports https://github.com/lmweber/ggspavis/issues

License MIT + file LICENSE

Encoding UTF-8

biocViews SingleCell, Transcriptomics, Spatial

Depends ggplot2

Imports SpatialExperiment, SingleCellExperiment, SummarizedExperiment, ggside, grid, methods, stats

VignetteBuilder knitr

Suggests BiocStyle, rmarkdown, knitr, STexampleData, BumpyMatrix, scater, scran, uwot, testthat (>= 3.0.0)

RoxygenNote 7.2.1

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/ggspavis

git_branch RELEASE_3_16

git_last_commit 70de5e6

git_last_commit_date 2022-11-01

Date/Publication 2023-04-10

Author Lukas M. Weber [aut, cre] (<https://orcid.org/0000-0002-3282-1730>), Helena L. Crowell [aut] (<https://orcid.org/0000-0002-4801-1767>)

Maintainer Lukas M. Weber <lukas.weber.edu@gmail.com>

R topics documented:

plotDimRed	
plotMolecules	
plotQC	
plotSpots	
plotVisium	
	11

plotDimRed

plotDimRed

Description

Plotting functions for spatially resolved transcriptomics data.

Usage

Index

```
plotDimRed(
   spe,
   type = c("UMAP", "PCA"),
   x_axis = NULL,
   y_axis = NULL,
   annotate = NULL,
   palette = "libd_layer_colors",
   size = 0.3
)
```

Arguments

spe	(SpatialExperiment) Input data, assumed to be a SpatialExperiment object.
type	(character) Type of reduced dimension plot. Options are "UMAP" or "PCA". Default = "UMAP".
x_axis	(character) Name of column in reducedDim containing x-coordinates. Default = "UMAP1" or "PC1", depending on plot type.
y_axis	(character) Name of column in reducedDim containing y-coordinates. Default = "UMAP2" or "PC2", depending on plot type.
annotate	(character) Name of column in colData containing values to annotate spots with colors, e.g. cluster labels (discrete values) or total UMI counts (continuous values).
palette	(character) Color palette for annotation. Options for discrete labels are "libd_layer_colors", "Okabe-Ito", or a vector of color names or hex values. For continuous values, provide a vector of length 2 for the low and high range, e.g. c("gray90", "navy"). Default = "libd_layer_colors".
size	(numeric) Point size for geom_point(). Default = 0.3.

plotDimRed

Details

Function to plot spot-based spatially resolved transcriptomics data stored in a SpatialExperiment object.

This function generates a plot in reduced dimension coordinates (PCA or UMAP), along with annotation such as cluster labels or total UMI counts.

Value

Returns a ggplot object. Additional plot elements can be added as ggplot elements (e.g. title, labels, formatting, etc).

Examples

```
library(STexampleData)
spe <- Visium_humanDLPFC()</pre>
# use small subset of data for this example
# for longer examples see our online book OSTA
spe <- spe[, colData(spe)$in_tissue == 1]</pre>
set.seed(100)
n <- 200
spe <- spe[, sample(seq_len(ncol(spe)), n)]</pre>
# calculate log-transformed normalized counts
library(scran)
set.seed(100)
qclus <- quickCluster(spe)</pre>
spe <- computeSumFactors(spe, cluster = qclus)</pre>
spe <- logNormCounts(spe)</pre>
# identify top highly variable genes (HVGs)
is_mito <- grepl("(^MT-)|(^mt-)", rowData(spe)$gene_name)</pre>
spe <- spe[!is_mito, ]</pre>
dec <- modelGeneVar(spe)</pre>
top_hvgs <- getTopHVGs(dec, prop = 0.1)</pre>
# run dimensionality reduction
library(scater)
set.seed(100)
spe <- runPCA(spe, subset_row = top_hvgs)</pre>
set.seed(100)
spe <- runUMAP(spe, dimred = "PCA")</pre>
colnames(reducedDim(spe, "UMAP")) <- paste0("UMAP", 1:2)</pre>
# generate plot
```

```
plotDimRed(spe, type = "UMAP", annotate = "ground_truth")
```

plotMolecules plotMolecules

Description

Plotting functions for spatially resolved transcriptomics data.

Usage

```
plotMolecules(
   spe,
   molecule = NULL,
   x_coord = NULL,
   y_coord = NULL,
   sample_id = "sample_id",
   palette = c("gray90", "navy"),
   size = 0.3
)
```

Arguments

spe	(SpatialExperiment) Input data, assumed to be a SpatialExperiment object.
molecule	(character) Name of mRNA molecule to plot (assumed to match one of the row names of rowData).
x_coord	(character) Name of column in spatialCoords containing x-coordinates of the cell centroids. Default = NULL, which selects the first column.
y_coord	(character) Name of column in spatialCoords containing y-coordinates of the cell centroids. Default = NULL, which selects the second column.
sample_id	(character) Name of column in colData containing sample IDs. For datasets with multiple samples, this is used to plot multiple panels (one per sample) using facetting.
palette	(character) Color palette, provided as a vector of length 2 for the low and high range. Default = $c("gray90", "navy")$.
size	(numeric) Point size for geom_point(). Default = 0.3.

Details

Function to plot molecule-based spatially resolved transcriptomics data stored in a SpatialExperiment object.

This function generates a plot in spatial coordinates (e.g. x-y coordinates on a tissue slide), for a selected molecule.

Value

Returns a ggplot object. Additional plot elements can be added as ggplot elements (e.g. title, labels, formatting, etc).

plotQC

Examples

```
library(STexampleData)
spe <- seqFISH_mouseEmbryo()
plotMolecules(spe, molecule = "Sox2")</pre>
```

plotQC

plotQC

Description

Quality control (QC) plots for spatially resolved transcriptomics data.

Usage

```
plotQC(
  spe,
  type = c("bar", "scatter", "spots"),
  x_coord = NULL,
 y_coord = NULL,
  in_tissue = "in_tissue",
 metric_x = "cell_count",
 metric_y = "sum",
 discard = "discard",
 highlight_zeros = TRUE,
  threshold_x = NULL,
  threshold_y = NULL,
  trend = TRUE,
 marginal = TRUE,
 y_reverse = TRUE
)
```

Arguments

spe	(SpatialExperiment) Input data, assumed to be a SpatialExperiment object.
type	(character) Type of QC plot. Options are "bar", "scatter", and "spots". See details in description.
x_coord	(character) Name of column in spatialCoords containing x-coordinates. De- fault = NULL, which selects the first column. Used for spot-based plots.
y_coord	(character) Name of column in spatialCoords containing y-coordinates. De- fault = NULL, which selects the second column. Used for spot-based plots.
in_tissue	(character) Name of column in colData identifying spots over tissue, e.g. "in_tissue" for 10x Genomics Visium data. If this argument is provided, only spots over tissue will be shown. Alternatively, set to NULL to display all spots. Default = "in tissue".

<pre>metric_x</pre>	(character) Name of column in colData containing QC metric to plot on x- axis (e.g. "cell_count" for number of cells per spot). Default = "cell_count". Required for barplots and scatterplots.
<pre>metric_y</pre>	(character) Name of column in colData containing QC metric to plot on y-axis (e.g. "sum" for number of detected transcripts, or "detected" for number of detected genes). Default = "sum". Required for scatterplots.
discard	(character) Name of column in colData identifying discarded spots that do not meet filtering thresholds, which will be highlighted on a spot-based plot. Default = "discard". Optional for spot-based plots.
highlight_zero	S
	(logical) Whether to highlight bar for $x = 0$ (e.g. zero cells per spot). Default = TRUE. Optional for barplots.
threshold_x	(numeric) Filtering threshold for QC metric on x-axis, which will be highlighted with a vertical bar. Default = NULL. Optional for scatterplots.
threshold_y	(numeric) Filtering threshold for QC metric on y-axis, which will be highlighted with a horizontal bar. Default = NULL. Optional for scatterplots.
trend	(logical) Whether to display a smoothed trend (loess) for scatterplots. Default = TRUE. Optional for scatterplots.
marginal	(logical) Whether to display marginal histograms for scatterplots. Default = TRUE. Optional for scatterplots.
y_reverse	(logical) Whether to reverse y coordinates, which is often required for 10x Genomics Visium data. Default = TRUE.

Details

Function to generate plots for quality control (QC) purposes for spatially resolved transcriptomics data.

The following types of QC plots are available:

- Barplot (type = "bar") for a single QC metric, e.g. number of cells per spot. For number of cells per spot, the barplot highlights spots with zero cells. - Scatterplot (type = "scatter") comparing two QC metrics, e.g. number of detected features vs. number of cells per spot, with optional vertical and horizontal lines highlighting QC filtering thresholds. - Spots (type = "spots") i.e. spots in spatial (x-y) coordinates, highlighting discarded spots that do not meet filtering thresholds.

Value

Returns a ggplot object. Additional plot elements can be added as ggplot elements (e.g. title, labels, formatting, etc).

Examples

```
library(STexampleData)
spe <- Visium_humanDLPFC()
plotQC(spe, type = "bar", metric_x = "cell_count")
colData(spe)$sum <- colSums(counts(spe))
plotQC(spe, type = "scatter", metric_x = "cell_count", metric_y = "sum")</pre>
```

plotSpots

plotSpots

Description

Plotting functions for spatially resolved transcriptomics data.

Usage

```
plotSpots(
   spe,
   x_coord = NULL,
   y_coord = NULL,
   sample_id = "sample_id",
   in_tissue = "in_tissue",
   annotate = NULL,
   palette = "libd_layer_colors",
   y_reverse = TRUE,
   size = 0.3
)
```

Arguments

spe	(SpatialExperiment) Input data, assumed to be a SpatialExperiment object.
x_coord	(character) Name of column in spatialCoords containing x-coordinates. De- fault = NULL, which selects the first column.
y_coord	(character) Name of column in spatialCoords containing y-coordinates. De- fault = NULL, which selects the second column.
sample_id	(character) Name of column in colData containing sample IDs. For datasets with multiple samples, this is used to plot multiple panels (one per sample) using facetting.
in_tissue	(character) Name of column in colData identifying spots over tissue, e.g. "in_tissue" for 10x Genomics Visium data. If this argument is provided, only spots over tissue will be shown. Alternatively, set to NULL to display all spots. Default = "in_tissue".
annotate	(character) Name of column in colData containing values to annotate spots with colors, e.g. cluster labels (discrete values) or total UMI counts (continuous values).
palette	(character) Color palette for annotation. Options for discrete labels (e.g. clus- ter labels) are "libd_layer_colors", "Okabe-Ito", or a vector of color names or hex values. For continuous values (e.g. total UMI counts), provide a vector of length 2 for the low and high range, e.g. c("gray90", "navy"). Default = "libd_layer_colors".
y_reverse	(logical) Whether to reverse y coordinates, which is often required for 10x Genomics Visium data. Default = TRUE.
size	(numeric) Point size for geom_point(). Default = 0.3.

Details

Function to plot spot-based spatially resolved transcriptomics data stored in a SpatialExperiment object.

This function generates a plot in spatial coordinates (e.g. x-y coordinates on a tissue slide), along with annotation such as cluster labels or total UMI counts.

Value

Returns a ggplot object. Additional plot elements can be added as ggplot elements (e.g. title, labels, formatting, etc).

Examples

```
library(STexampleData)
spe <- Visium_humanDLPFC()
plotSpots(spe, annotate = "ground_truth")</pre>
```

plotVisium

plotVisium

Description

Plots for spatially resolved transcriptomics data from the 10x Genomics Visium platform

Usage

```
plotVisium(
  spe,
  spots = TRUE,
  fill = NULL,
  highlight = NULL,
  facets = "sample_id",
  image = TRUE,
  assay = "logcounts",
  trans = "identity",
  x_coord = NULL,
 y_{coord} = NULL,
 y_reverse = TRUE,
  sample_ids = NULL,
  image_ids = NULL,
  palette = NULL
)
```

plotVisium

Arguments

-	
spe	(SpatialExperiment) Input data object.
spots	(logical) Whether to display spots (spatial barcodes) as points. Default = TRUE.
fill	(character) Column in colData to use to fill points by color. If fill contains a numeric column (e.g. total UMI counts), a continuous color scale will be used. If fill contains a factor (e.g. cluster labels), a discrete color scale will be used. Default = NULL.
highlight	(character) Column in colData to use to highlight points by outlining them. For example, in_tissue will highlight spots overlapping with tissue. Default = NULL.
facets	(character) Column in colData to use to facet plots, i.e. show multiple panels of plots. Default = "sample_id". Set to NULL to disable.
image	(logical) Whether to show histology image as background. Default = TRUE.
assay	(character) Name of assay data to use when fill is in rownames(spe). Should be one of assayNames(spe).
trans	Transformation to apply for continuous scales. Ignored unless fill is numeric, e.g. feature expression. (See ggplot2{continuous_scale} for valid options.)
x_coord	(character) Column in spatialCoords containing x-coordinates. Default = NULL, which selects the first column.
y_coord	(character) Column in spatialCoords containing y-coordinates. Default = NULL, which selects the second column.
y_reverse	(logical) Whether to reverse y coordinates, which is often required for Visium data, depending on the orientation of the raw data. Default = TRUE.
sample_ids	(character) Samples to show, if multiple samples are available. Default = NULL (show all samples).
image_ids	(character) Images to show, if multiple images are available. Default = NULL (show all images).
palette	(character) Color palette for points. Options for discrete labels are "libd_layer_colors", "Okabe-Ito", or a custom vector of hex color codes. Options for continuous values are "viridis", a single color name (e.g. "red", "navy", etc), or a vec- tor of length two containing color names for each end of the scale. Default = "libd_layer_colors" for discrete data, and "viridis" for continuous data.

Details

Function to generate plots for spatially resolved transcriptomics datasets from the 10x Genomics Visium spatially platform.

This function generates a plot for spot-based spatially resolved transcriptomics data from the 10x Genomics Visium platform, with several options available to adjust the plot type and style.

Value

Returns a ggplot object. Additional plot elements can be added as ggplot elements (e.g. title, customized formatting, etc).

Author(s)

Helena L. Crowell with modifications by Lukas M. Weber

Examples

```
library(STexampleData)
```

```
spe <- Visium_mouseCoronal()</pre>
```

color by x coordinate, highlight in-tissue spots
plotVisium(spe, fill = "pxl_col_in_fullres", highlight = "in_tissue")

```
# subset in-tissue spots
sub <- spe[, as.logical(colData(spe)$in_tissue)]</pre>
```

```
# color by feature counts, don't include image
rownames(sub) <- make.names(rowData(sub)$gene_name)
plotVisium(sub, fill = "Gad2", assay = "counts")
```

Index

ggplot2, <mark>9</mark>

plotDimRed, 2
plotMolecules, 4
plotQC, 5
plotSpots, 7
plotVisium, 8