
Package ‘extraChIPs’
April 10, 2023

Version 1.2.4

Title Additional functions for working with ChIP-Seq data

Description This package builds on existing tools and adds some simple but
extremely useful capabilities for working with ChIP-Seq data. The focus is
on detecting differential binding windows/regions.
One set of functions focusses on set-operations retaining mcols for GRanges
objects, whilst another group of functions are to aid visualisation of
results.
Coercion to tibble objects is also included.

License GPL-3

Encoding UTF-8

URL https://github.com/steveped/extraChIPs

BugReports https://github.com/steveped/extraChIPs/issues

Depends BiocParallel, R (>= 4.2.0), GenomicRanges, ggplot2 (>= 3.4.0),
SummarizedExperiment, tibble

Imports BiocIO, broom, ComplexUpset, csaw, dplyr, edgeR,
EnrichedHeatmap, forcats, GenomeInfoDb, GenomicInteractions,
ggforce, ggrepel, ggside, glue, grDevices, grid, Gviz,
InteractionSet, IRanges, limma, methods, patchwork,
RColorBrewer, rlang, Rsamtools, rtracklayer, S4Vectors, scales,
stats, stringr, tidyr, tidyselect, utils, vctrs, VennDiagram

Suggests BiocStyle, covr, knitr, plyranges, rmarkdown, testthat (>=
3.0.0), tidyverse

biocViews ChIPSeq, HiC, Sequencing, Coverage

BiocType Software

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.2

Config/testthat/edition 3

1

https://github.com/steveped/extraChIPs
https://github.com/steveped/extraChIPs/issues

2 R topics documented:

Collate 'allGenerics.R' 'asTibble.R' 'bestOverlap.R' 'chopMC.R'
'colToRanges.R' 'collapseGenes.R' 'data.R' 'distinctMC.R'
'dualFilter.R' 'extraChIPs.R' 'getProfileData.R' 'grlToSE.R'
'importPeaks.R' 'makeConsensus.R' 'mapByFeature.R'
'mergeByCol.R' 'mergeBySig.R' 'partitionRanges.R'
'plotAssayDensities.R' 'plotAssayPCA.R' 'plotAssayRle.R'
'plotHFGC.R' 'plotOverlaps.R' 'plotPie.R'
'plotProfileHeatmap.R' 'plotSplitDonut.R' 'propOverlaps.R'
'reduceMC.R' 'setoptsMC.R' 'stitchRanges.R'
'voomWeightsFromCPM.R'

git_url https://git.bioconductor.org/packages/extraChIPs

git_branch RELEASE_3_16

git_last_commit 52e1f70

git_last_commit_date 2023-01-31

Date/Publication 2023-04-10

Author Stephen Pederson [aut, cre] (<https://orcid.org/0000-0001-8197-3303>)

Maintainer Stephen Pederson <stephen.pederson.au@gmail.com>

R topics documented:
extraChIPs-package . 3
as_tibble . 4
bestOverlap . 6
chopMC . 7
collapseGenes . 8
colToRanges . 9
cytobands . 10
distinctMC . 11
dualFilter . 12
ex_datasets . 14
getProfileData . 15
grlToSE . 17
importPeaks . 18
makeConsensus . 19
mapByFeature . 20
mergeByCol . 23
mergeBySig . 25
partitionRanges . 27
plotAssayDensities . 28
plotAssayPCA . 29
plotAssayRle . 31
plotHFGC . 32
plotOverlaps . 38
plotPie . 40
plotProfileHeatmap . 42
plotSplitDonut . 45

https://orcid.org/0000-0001-8197-3303

extraChIPs-package 3

propOverlap . 48
reduceMC . 49
setoptsMC . 50
stitchRanges . 51
voomWeightsFromCPM . 52

Index 54

extraChIPs-package extraChIPs: A package for enabling and extending ChIP-Seq analysis

Description

The package provides three categories of important functions: Range-based, Visualisation and Con-
venience functions, with most centred around GenomicRanges objects

Range-based Functions

Many of the range-based functions included in this package have a focus on retaining the mcols in-
formation whilst manipulating the ranges, such as reduceMC() which not only reduces the Ranges,
but collapses the mcols into vectors or IRanges::CompressedList objects. Key function from this
group are:

• reduceMC(), setdiffMC(), intersectMC(), unionMC(), distinctMC() and chopMC()

• bestOverlap() and propOverlap() provide simple output easily able to be added as a col-
umn within the mcols element

• as_tibble() coerces a GRanges object to a tibble::tibble.

• colToRanges() enables parsing of a single column to a GRanges object, setting all other
columns as the mcols element.

• stitchRanges() merges nearby ranges setting barrier ranges which cannot be crossed when
merging

• partitionRanges() break apart one set of ranges by another

• dualFilter() filters ranges from sliding windows using a guide set of reference ranges where
signal is confidently expected

• mergeByCol() merges overlapping ranges, as produced by sliding windows

• mapByFeature() is able to map a set of GRanges to the most appropriate gene, using any
optional combination of promoters, enhancers and HiC interactions

• grlToSE() takes selected columns from a GRangesList and sets them as assays within a Sum-
marizedExperiment::RangedSummarizedExperiment object. Used for combining peak inten-
sities or results across multiple ChIP targets.

4 as_tibble

Visualisation Functions

• plotHFGC() is a wrapper to Gviz plotting functions, able to take any combination of HiC,
Features, Genes and Coverage (i.e. BigWig) and plot a specified range.

• plotProfileHeatmap() plots the average signal around a set of ranges, as prepared by getProfileData()

• plotPie() emables simple comparison across multuple annotation columns within a GRanges
object.

• plotAssayDensities(), plotAssayPCA() and plotAssayRle() provide simple interfaces
to plotting key values from a SummarizedExperiment::RangedSummarizedExperiment.

Convenience Functions

• collapseGenes() prints a vector of genes for an rmarkdown document, using italics.

• importPeaks() imports large numbers of broadPeak or narrowPeak files

• voomWeightsFromCPM() allows creation of an limma::EList object as would be created from
counts by limma::voom(), but using edgeR::cpm() values as input.

Author(s)

Stephen Pederson

as_tibble Convert to a tibble

Description

Convert multiple Genomic objects to tibbles

Usage

S3 method for class 'DataFrame'
as_tibble(x, rangeAsChar = TRUE, ...)

S3 method for class 'GenomicRanges'
as_tibble(x, rangeAsChar = TRUE, name = "range", ...)

S3 method for class 'Seqinfo'
as_tibble(x, ...)

S3 method for class 'GInteractions'
as_tibble(x, rangeAsChar = TRUE, suffix = c(".x", ".y"), ...)

as_tibble 5

Arguments

x A Genomic Ranges or DataFrame object

rangeAsChar Convert any GRanges element to a character vector

... Passed to tibble::as_tibble()

name Name of column to use for ranges. Ignored if rangeAsChar = FALSE

suffix Suffix appended to column names for anchor1 and anchor2 of a GInteractions
object. Only used if specifying rangeAsChar = FALSE

Details

Quick and dirty conversion into a tibble.

By default, GenomicRanges will be returned with the range as a character column called range and
all mcols parsed as the remaining columns. Seqinfo information will be lost during coercion.

Given that names for ranges are considered as rownames in the mcols element, these can be simply
parsed by setting rownames = "id" in the call to as_tibble()

When coercing a DataFrame, any Compressed/SimpleList columns will be coerced to S3 list columns.
Any GRanges columns will be returned as a character column, losing any additional mcols from
these secondary ranges

Defined as an S3 method for consistency with existing tidy methods

Value

A tibble

Examples

gr <- GRanges("chr1:1-10")
gr$p_value <- runif(1)
names(gr) <- "range1"
gr
as_tibble(gr)
as_tibble(gr, rownames = "id")
as_tibble(mcols(gr))
as_tibble(seqinfo(gr))

hic <- InteractionSet::GInteractions(gr, GRanges("chr1:201-210"))
hic$id <- "interaction1"
as_tibble(hic)

6 bestOverlap

bestOverlap Find the best overlap between GRanges

Description

Find the best overlap between ranges

Usage

bestOverlap(x, y, ...)

S4 method for signature 'GRanges,GRanges'
bestOverlap(
x,
y,
var = NULL,
ignore.strand = FALSE,
missing = NA_character_,
min_prop = 0.01,
...

)

S4 method for signature 'GRanges,GRangesList'
bestOverlap(
x,
y,
ignore.strand = FALSE,
missing = NA_character_,
min_prop = 0.01,
...

)

Arguments

x a GRanges object

y a named GRangesList or GRanges object with mcol as reference category

... Not used

var The variable to use as the category. Not required if y is a GRangesList

ignore.strand logical(1) Passed to findOverlaps

missing Value to assign to ranges with no overlap

min_prop Threshold below which overlaps are discarded

chopMC 7

Details

This finds the category in the subject GRanges (y) which has the best overlap with the query
GRanges (x). The aim is to produce a character vector for best classifying the query GRanges using
an external set of features (e.g. promoters, enhancers etc). If the subject (y) is a GRanges object,
the values in the specified column will be used as the category. If the subject (y) is a GRangesList,
the names of the list will be used to provide the best match

Value

Character vector the same length as the supplied GRanges object

Examples

gr <- GRanges("chr1:1-10")
gr_cat <- GRanges(c("chr1:2-10", "chr1:5-10"))
gr_cat$category <- c("a", "b")
propOverlap(gr, gr_cat)
bestOverlap(gr, gr_cat, var = "category")

grl <- splitAsList(gr_cat, gr_cat$category)
lapply(grl, function(x) propOverlap(gr, x))
bestOverlap(gr, grl)

chopMC Keep unique ranges and collapse mcols

Description

Keep unique ranges by ’chopping’ mcols

Usage

chopMC(x, simplify = TRUE)

Arguments

x A GenomicRanges object

simplify logical(1)

Details

This function finds unique ranges and chops all mcols in a manner similar to chop. Chopped
columns will be returned as CompressedList columns, unless simplify = TRUE (the default). In
this case, columns will be returned as vectors where possible.

Value

A GRanges object

8 collapseGenes

Examples

gr <- GRanges(rep(c("chr1:1-10"), 2))
gr$id <- paste0("range", seq_along(gr))
gr$gene <- "gene1"
gr
chopMC(gr)

collapseGenes Collapse a vector of gene names

Description

Collapse a vector of gene names

Usage

collapseGenes(
x,
sort = TRUE,
dedup = TRUE,
format = "_",
sep = ", ",
last = " and ",
numeric = TRUE,
width = Inf,
...

)

Arguments

x character vector representing gene names

sort logical(1) Should the names be sorted alphabetically

dedup logical(1) Should duplicate names be removed

format character string for markdown formatting of each element

sep separator between vector elements

last character string to place before the last element

numeric logical(1) sort digits numerically, instead of as strings

width The maximum width of the string before truncating to ...

... passed to str_sort

Details

Convenience function to collapse a vector of gene names into a character/glue object of length 1.
By default, symbols are deduplicated, sorted alpha-numerically and italicised with an underscore.

colToRanges 9

Value

a glue object

Examples

genes <- c("FOXP3", "BRCA1", "TP53")
collapseGenes(genes)

colToRanges Coerce a column to a GRanges object

Description

Coerce a column to a GRanges object from a rectangular object

Usage

colToRanges(x, ...)

S4 method for signature 'DataFrame'
colToRanges(x, var, seqinfo = NULL, ...)

S4 method for signature 'GRanges'
colToRanges(x, var, ...)

S4 method for signature 'data.frame'
colToRanges(x, var, seqinfo = NULL, ...)

Arguments

x A data-frame or GRanges object containing the column to coerce

... Used to pass arguments to lower-level functions

var The name of the column to coerce

seqinfo A seqinfo object to be applied to the new GRanges object. Ignored if the column
is already a GRanges object

Details

Take a data.frame-like object and coerce one column to a GRanges object, setting the remainder as
the mcols. A particularly useful application of this is when you have a GRanges object with one
mcol being a secondary GRanges object.

Alternatively, if you have a data.frame with GRanges represented as a character column, this pro-
vides a simple method of coercion. In this case, no Seqinfo element will be applied to the GRanges
element.

10 cytobands

Value

A GenomicRanges object

Examples

set.seed(73)
x <- GRanges(c("chr1:1-10", "chr1:6-15", "chr1:51-60"))
seqinfo(x) <- Seqinfo("chr1", 60, FALSE, "Example")
df <- data.frame(logFC = rnorm(3), logCPM = rnorm(3,8), p = 10^-rexp(3))
mcols(x) <- df
gr <- mergeByCol(x, col = "logCPM", pval = "p")
colToRanges(gr, "keyval_range")

cytobands Cytogenetic bands

Description

Cytogenetic bands for GRCh37/hg19 and GRCh38/hg38

Usage

data(grch37.cytobands)

data(grch38.cytobands)

Format

Cytogenetic bands for standard chromosomes from GRCh37,in the format required by Ideogram-
Track. A data.frame with 5 columns:

chrom Chromosome

chromStart Starting position for each cytogenetic band

chromEnd End position for each cytogenetic band

name Name for each band, e.g. p.36.33

gieStain Staining pattern

An object of class data.frame with 862 rows and 5 columns.

Source

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz

distinctMC 11

Examples

data(grch37.cytobands)
head(grch37.cytobands)

data(grch38.cytobands)
head(grch38.cytobands)

distinctMC Keep distinct ranges and mcols

Description

Keep distinct ranges by including mcols

Usage

distinctMC(x, ..., .keep_all = FALSE)

Arguments

x A GenomicRanges object
... <data-masking> Passed to distinct

.keep_all If TRUE, keep all columns in x

Details

Wrapper to distinct for GRanges objects. Finds unique ranges and mcols in combination and retains
only the distinct combinations, in keeping with the dplyr function.

Will default to unique(granges(x)) if no columns are provided

Value

A GRanges object

Examples

gr <- GRanges(rep(c("chr1:1-10"), 2))
gr$id <- paste0("range", seq_along(gr))
gr$gene <- "gene1"
gr
distinctMC(gr)
distinctMC(gr, gene)
distinctMC(gr, gene, .keep_all = TRUE)

12 dualFilter

dualFilter Apply two filters to sliding windows

Description

Apply two filters to counts generated using sliding windows

Usage

dualFilter(
x,
bg,
ref,
q = 0.5,
logCPM = TRUE,
keep.totals = TRUE,
BPPARAM = bpparam()

)

Arguments

x RangedSummarizedExperiment containing sample counts
bg RangedSummarizedExperiment containing background/input counts
ref GRanges object containing ranges where signal is expected
q The upper percentile of the reference ranges expected to be returned when tuning

the filtering criteria
logCPM logical(1) Add a logCPM assay to the returned data
keep.totals logical(1) Keep the original library sizes or replace using only the retained win-

dows
BPPARAM Settings for running in parallel

Details

This function will take sliding (or tiling) windows for it’s input as a RangedSummarizedExperiment
object. The dual strategy of applying filterWindowsControl and filterWindowsProportion will then
be applied. A set of reference ranges for which signal is expected is used to refine the filtering
criteria.

Cutoff values are found for both signal relative to input and overall signal, such that the 100*q% of
the (sliding) windows which overlap a reference range will be returned, along with any others which
match the dual filtering criteria. In general, higher values of q will return more windows as those
with weak signal and a marginal overlap with a reference range will be returned. Lower values will
ensure that fewer windows, generally with the strongest signal, are retained. Cutoff values for both
criteria are added to the metadata element of the returned object.

Please note that the any .bam files referred to in the supplied objects must be accessible to this
function. It will not run on a separate machine or file structure to that which the original sliding
windows were prepared. Please see the example/vignette for runnable conde.

dualFilter 13

Value

A RangedSummarizedExperiment which is a filtered subset of the original object. If requested the
assay "logCPM" will be added (TRUE by default)

Examples

Taken from the differential_binding vignette
library(tidyverse)
library(Rsamtools)
library(csaw)
library(BiocParallel)
library(rtracklayer)
For this function we need a set of counts using sliding windows and the
original BamFiles from which they were taken
First we'll set up the bam file list
bfl <- system.file(

"extdata", "bam", c("ex1.bam", "ex2.bam", "input.bam"), package = "extraChIPs"
) %>%
BamFileList() %>%
setNames(c("ex1", "ex2", "input"))

Then define the readParam settings for csaw::readParam()
rp <- readParam(

pe = "none",
dedup = TRUE,
restrict = "chr10"

)

Now we can form our sliding window object with the counts.
wincounts <- windowCounts(

bam.files = bfl,
spacing = 60,
width = 180,
ext = 200,
filter = 1,
param = rp

)
As this is a subset of reads, add the initial library sizes for accuracy
Note that this step is not normally required
wincounts$totals <- c(964076L, 989543L, 1172179L)

We should also update the metadata for our counts
wincounts$sample <- colnames(wincounts)
wincounts$treat <- as.factor(c("ctrl", "treat", NA))
colData(wincounts)

The function dualFilter requires a set of peaks which will guide the
filtering step. This indicate where genuine signal is likely to be found
and will perform the filtering based on a) signal above the input, and
b) The overall signal level, using the guide set of peaks to inform the
cutoff values for inclusion
peaks <- import.bed(

14 ex_datasets

system.file("extdata", "peaks.bed.gz", package = "extraChIPs")
)
filtcounts <- dualFilter(

x = wincounts[, !is.na(wincounts$treat)],
bg = wincounts[, is.na(wincounts$treat)],
ref = peaks,
q = 0.8 # Better to use q = 0.5 on real data

)

ex_datasets Datasets for an example region

Description

Various example datasets for demonstrating visualisation strategies. Generation of all datasets is
documented in system.file("script/ex_datasets.md", package = "extraChIPs")

ex_genes Simple GRanges object with complete ranges for each gene
ex_trans Exon & transcript level information prepared for plotting with Gviz or plotHFGC()
ex_prom Regions defined as promoters
ex_hic Example HiC interactions

Usage

data(ex_trans)

data(ex_genes)

data(ex_prom)

data(ex_hic)

Format

GRanges and GInteractions objects

All annotations are from GRCh37

An object of class GRanges of length 4.

An object of class GRanges of length 9.

An object of class GInteractions of length 1.

Examples

data(ex_trans)
ex_trans

getProfileData 15

getProfileData Get Profile Data surrounding specified ranges

Description

Get coverage Profile Data surrounding specified ranges

Usage

getProfileData(x, gr, ...)

S4 method for signature 'BigWigFile,GenomicRanges'
getProfileData(
x,
gr,
upstream = 2500,
downstream = upstream,
bins = 100,
mean_mode = "w0",
log = TRUE,
offset = 1,
...

)

S4 method for signature 'BigWigFileList,GenomicRanges'
getProfileData(
x,
gr,
upstream = 2500,
downstream = upstream,
bins = 100,
mean_mode = "w0",
log = TRUE,
offset = 1,
BPPARAM = SerialParam(),
...

)

S4 method for signature 'character,GenomicRanges'
getProfileData(
x,
gr,
upstream = 2500,
downstream = upstream,
bins = 100,
mean_mode = "w0",
log = TRUE,

16 getProfileData

offset = 1,
...

)

Arguments

x A BigWigFile or BigWiFileList

gr A GRanges object

... Passed to normalizeToMatrix

upstream The distance to extend upstream from the centre of each range within gr

downstream The distance to extend downstream from the centre of each range within gr

bins The total number of bins to break the extended ranges into

mean_mode The method used for calculating the score for each bin. See normalizeToMatrix
for details

log logical(1) Should the returned values be log2-transformed

offset Value added to data if log-transforming. Ignored otherwise

BPPARAM Passed internally to bplapply

Details

This will take all provided ranges and set as identical width ranges, extending by the specified
amount both up and downstream of the centre of the provided ranges. By default, the ranges exten-
sions are symmetrical and only the upstream range needs to be specified, however this parameteri-
sation allows for non-symmetrical ranges to be generated.

These uniform width ranges will then be used to extract the value contained in the score field from
one or more BigWigFiles. Uniform width ranges are then broken into bins of equal width and the
average score found within each bin.

The binned profiles are returned as a DataFrameList called profile_data as a column within the
resized GRanges object. Column names in each DataFrame are score, position and bp.

If passing a BigWigFileList, profiles will be obtained in series by default. To run in parallel pass a
MulticoreParam object to the BPPARAM argument.

Value

GRanges or GrangesList with column profile_data, as described above

Examples

bw <- system.file("tests", "test.bw", package = "rtracklayer")
gr <- GRanges("chr2:1000")
pd <- getProfileData(bw, gr, upstream = 500, bins = 10)
pd
pd$profile_data

grlToSE 17

grlToSE Set columns from a GRangesList as Assays in a SummarizedExperi-
ment

Description

Move one or more columns from a GRangesList elements into assays in a RangesSummarizedE-
periment

Usage

grlToSE(x, ...)

S4 method for signature 'GRangesList'
grlToSE(
x,
assayCols = c(),
metaCols = c(),
keyvals = c(),
by = c("min", "max"),
...,
ignore.strand = FALSE

)

Arguments

x A GrangesList

... Passed to reduce

assayCols Columns to move to separate assays

metaCols Columns to move to mcols within the rowRanges element

keyvals The value to use when choosing representative values

by How to choose by keyvals

ignore.strand logical(1). Whether the strand of the input ranges should be ignored or not.

Details

Given a GRangesList which would commonly represent multiple samples, reduce any overlapping
ranges into a consensus range, setting any metadata columns to be retained as separate assays. These
columns may contain values such as coverage, p-values etc.

Additional columns can also be placed as rowData columns where the original values are better
suited to information about the consensus range rather than the sample (or GRangesList element).

Only one value for each range will be retained, and these are chosen using the value provided as the
keyvals, taking either the min or max value in this column as the representative range.

18 importPeaks

Value

A RangedSummarizedExperiment

Examples

a <- GRanges("chr1:1-10")
a$feature <- "Gene"
a$p <- 0.1
b <- GRanges(c("chr1:6-15", "chr1:15"))
b$feature <- c("Gene", "Promoter")
b$p <- c(0.5, 0.01)
grl <- GRangesList(a = a, b = b)
grl
se <- grlToSE(

grl, assayCols = "p", metaCols = "feature", keyvals = "p", by = "min"
)
assay(se, "p")
rowRanges(se)

importPeaks Import peaks

Description

Import peaks in narrowPeak or broadPeak format

Usage

importPeaks(
x,
type = c("narrow", "broad"),
blacklist,
seqinfo,
pruning.mode = c("coarse", "error"),
sort = TRUE,
setNames = TRUE,
...

)

Arguments

x One or more files to be imported. All files must be of the same type, i.e. narrow
or broad

type The type of peaks to be imported

blacklist A set of ranges to be excluded

seqinfo A seqinfo object to be applied to the GRanges objects

makeConsensus 19

pruning.mode How to handle conflicts if supplying a seqinfo object. Defaults to pruning.mode
= "coarse". Only "coarse" and "error" are implemented. See seqinfo.

sort logical. Should the ranges be sorted during import

setNames logical Set basename(x) as the name

... passed to sort

Details

Peaks are imported from either narrowPeak or broadPeak format as GenomicRanges objects.

Value

A GRangesList

Examples

fl <- system.file(
c("extdata/ER_1.narrowPeak", "extdata/ER_2.narrowPeak"),
package = "extraChIPs"

)
peaks <- importPeaks(fl)
peaks

makeConsensus Make a set of consensus peaks

Description

Make a set of consensus peaks based on umber of replicates

Usage

makeConsensus(
x,
p = 0,
var = NULL,
ignore.strand = TRUE,
simplify = FALSE,
...

)

20 mapByFeature

Arguments

x A GRangesList

p The minimum proportion of samples (i.e. elements of x) required for a peak to
be retained in the output. By default all merged peaks will be returned

var Additional columns in the mcols element to retain
ignore.strand, simplify, ...

Passed to reduceMC()

Details

This takes a list of GRanges objects and forms a set of consensus peaks using the minimum propor-
tion of replicates specified

Value

GRanges object with mcols containing a logical vector for every element of x, along with the column
n which adds all logical columns.

If any additional columns have been requested using var, these will be returned as CompressedList
objects as produced by reduceMC().

See Also

reduceMC

Examples

a <- GRanges("chr1:11-20")
a$score <- 1
b <- GRanges(c("chr1:18-22", "chr1:1-5"))
b$score <- c(0.6, 0.3)
grl <- GRangesList(a = a, b = b)
makeConsensus(grl)
makeConsensus(grl, p = 1)
makeConsensus(grl, p = 1, var = "score")

mapByFeature Map Genomic Ranges to genes using defined features

Description

Map Genomic Ranges to genes using defined regulatory features

mapByFeature 21

Usage

mapByFeature(
gr,
genes,
prom,
enh,
gi,
cols = c("gene_id", "gene_name", "symbol"),
gr2prom = 0,
gr2enh = 0,
gr2gi = 0,
gr2gene = 1e+05,
prom2gene = 0,
enh2gene = 1e+05,
gi2gene = 0,
...

)

Arguments

gr GRanges object with query ranges to be mapped to genes

genes GRanges object containing genes (or any other nominal feature) to be assigned

prom GRanges object defining promoters

enh GRanges object defining Enhancers

gi GInteractions object defining interactions. Mappings from interactions to genes
should be performed as a separate prior step.

cols Column names to be assigned as mcols in the output. Columns must be mini-
mally present in genes. If all requested columns are found in any of prom, enh
or gi, these pre-existing mappings will be preferentially used. Any columns not
found in utilised reference objects will be ignored.

gr2prom The maximum permissible distance between a query range and any ranges de-
fined as promoters

gr2enh The maximum permissible distance between a query range and any ranges de-
fined as enhancers

gr2gi The maximum permissible distance between a query range and any ranges de-
fined as GInteraction anchors

gr2gene The maximum permissible distance between a query range and genes (for ranges
not otherwise mapped)

prom2gene The maximum permissible distance between a range provided in prom and a
gene

enh2gene The maximum permissible distance between a range provided in enh and a gene

gi2gene The maximum permissible distance between a GInteractions anchor (provided
in gi) and a gene

... Passed to findOverlaps nad overlapsAny internally

22 mapByFeature

Details

This function is able to utilise feature-level information and long-range interactions to enable better
mapping of regions to genes. If provided, this essentially maps from ranges to genes using the
regulatory features as a framework. The following sequential strategy is used:

1. Ranges overlapping a promoter are assigned to that gene

2. Ranges overlapping an enhancer are assigned to all genes within a specified distance

3. Ranges overlapping a long-range interaction are assigned to all genes connected by the inter-
action

4. Ranges with no gene assignment from the previous steps are assigned to all overlapping genes
or the nearest gene within a specified distance

If information is missing for one of these steps, the algorithm will simply proceed to the next step.
If no promoter, enhancer or interaction data is provided, all ranges will be simply mapped by step
4. Ranges can be mapped by any or all of the first three steps, but step 4 is mutually exclusive with
the first 3 steps.

Distances between each set of features and the query range can be individually specified by modi-
fying the gr2prom, gr2enh, gr2gi or gr2gene parameters. Distances between features and genes
can also be set using the parameters prom2gene, enh2gene and gi2gene.

Additionally, if previously defined mappings are included with any of the prom, enh or gi objects,
this will be used in preference to any obtained from the genes object.

Value

A GRanges object with added mcols as specified

Examples

Define some genes
genes <- GRanges(c("chr1:2-10:*", "chr1:25-30:-", "chr1:31-40:+"))
genes$gene_id <- paste0("gene", seq_along(genes))
genes
Add a promoter for each gene
prom <- promoters(genes, upstream = 1, downstream = 1)
prom
Some ranges to map
gr <- GRanges(paste0("chr1:", seq(0, 60, by = 15)))
gr

Map so that any gene within 25bp of the range is assigned
mapByFeature(gr, genes, gr2gene = 25)

Now use promoters to be more accurate in the gene assignment
Given that the first range overlaps the promoter of gene1, this is a
more targetted approach. Similarly for the third range
mapByFeature(gr, genes, prom, gr2gene = 25)

mergeByCol 23

mergeByCol Merge sliding windows using a specified column

Description

Merge sliding windows using a specified column

Usage

mergeByCol(x, ...)

S4 method for signature 'GenomicRanges'
mergeByCol(
x,
df = NULL,
col,
by = c("max", "median", "mean", "min"),
logfc = "logFC",
pval = "P",
inc_cols,
p_adj_method = "fdr",
merge_within = 1L,
ignore_strand = TRUE,
...

)

S4 method for signature 'RangedSummarizedExperiment'
mergeByCol(
x,
df = NULL,
col,
by = c("max", "median", "mean", "min"),
logfc = "logFC",
pval = "P",
inc_cols,
p_adj_method = "fdr",
merge_within = 1L,
ignore_strand = FALSE,
...

)

Arguments

x A GenomicRanges or SummarizedExperiment object

... Not used

df A data.frame-like object containing the columns of interest. If not provided, any
columns in the mcols() slot will be used.

24 mergeByCol

col The column to select as representative of the merged ranges

by The method for selecting representative values

logfc Column containing logFC values

pval Column containing p-values

inc_cols Any additional columns to return. Output will always include columns specified
in the arguments col, logfc and pval. Note that values from any additional
columns will correspond to the selected range returned in keyval_range

p_adj_method Any of p.adjust.methods

merge_within Merge any ranges within this distance

ignore_strand Passed internally to reduce and findOverlaps

Details

This merges sliding windows using the values in a given column to select representative values
for the subsequent merged windows. Values can be chosen from the specified column using any
of min(), max(), mean() or median(), although max() is strongly recommended when specifying
values like logCPM. Once a representative range is selected using the specified column, values
from columns specified using inc_cols are also returned. In addition to these columns, the range
from the representative window is returned in the mcols element as a GRanges object in the column
keyval_range.

Merging windows using either the logFC or p-value columns is not implemented.

If adjusted p-values are requested an additional column names the same as the initial p-value, but
tagged with the adjustment method, will be added. In addition, using the p-value from the selected
window, the number of windows with lower p-values are counted by direction and returned in the
final object. The selected window will always be counted as up/down regardless of significance as
the p-value for this column is taken as the threshold. This is a not dissimilar approach to cluster-
direction.

If called on a SummarizedExperiment object, the function will be applied to the rowRanges element.

Value

A Genomic Ranges object

Examples

x <- GRanges(c("chr1:1-10", "chr1:6-15", "chr1:51-60"))
set.seed(1001)
df <- DataFrame(logFC = rnorm(3), logCPM = rnorm(3,8), p = rexp(3, 10))
mergeByCol(x, df, col = "logCPM", pval = "p")
mcols(x) <- df
x
mergeByCol(x, col = "logCPM", pval = "p")

mergeBySig 25

mergeBySig Merge overlapping ranges based on p-values

Description

Merge overlapping windows using p-values from significance testing

Usage

mergeBySig(x, ...)

S4 method for signature 'GenomicRanges'
mergeBySig(
x,
df = NULL,
logfc = "logFC",
pval = "P",
cpm = "logCPM",
inc_cols,
p_adj_method = "fdr",
alpha = 0.05,
method = c("combine", "best", "minimal"),
merge_within = 1L,
ignore_strand = TRUE,
...

)

S4 method for signature 'RangedSummarizedExperiment'
mergeBySig(
x,
df = NULL,
logfc = "logFC",
pval = "P",
cpm = "logCPM",
inc_cols,
p_adj_method = "fdr",
alpha = 0.05,
method = c("combine", "best", "minimal"),
merge_within = 1L,
ignore_strand = TRUE,
...

)

Arguments

x GenomicRanges object

... Passed to all csaw functions being wrapped

26 mergeBySig

df data.frame with results of differential binding analysis performed using a sliding
window strategy. If not provided, the columns in the mcols() element of x will
be used

logfc, pval, cpm

Column names for the values holding window specific estimates of change in
binding (logfc), overall signal intensity (cpm) and the significance from statisti-
cal testing (pval)

inc_cols (Optional) Character vector of any additional columns in df to return

p_adj_method One of p.adjust.methods

alpha Significance threshold to apply during internal calculations

method Shorthand versions for which csaw strategy to use for merging windows. Choose
from ’combine’ (combineTests), ’best’ (getBestTest) or ’minimal’ (minimal-
Tests).

merge_within Merge any non-overlapping windows within this distance

ignore_strand Passed internally to reduce and findOverlaps

Details

When using sliding windows to test for differential signal, overlapping windows can be merged
based on the significance of results. mergeBySig() is a wrapper to the functions combineTests,
getBestTest and minimalTests, using each function’s approach to finding a representative window.
The returned object differs from those returned by the original functions in that the description of
windows as ’up’, ’down’ or mixed is omitted and the genomic range corresponding to the represen-
tative window is also returned. Column names also correspond to those in the original object.

An additional column with adjusted p-values is returned. This column retains the same name as
the original but with the suffix ’_*’ added where the p-value adjustment method is added after the
underscore.

Value

A GenomicRanges object with overlapping ranges from the original object merged and representa-
tive values returned. The range corresponding to the representative values is also returned

Examples

x <- GRanges(c("chr1:1-10", "chr1:6-15", "chr1:51-60"))
set.seed(1001)
df <- DataFrame(logFC = rnorm(3), logCPM = rnorm(3,8), p = rexp(3, 10))
mcols(x) <- df
mergeBySig(x, pval = "p", method = "combine")
mergeBySig(x, pval = "p", method = "best")
mergeBySig(x, pval = "p", method = "min")

partitionRanges 27

partitionRanges Partition a set of Genomic Ranges

Description

Partition a set of Genomic Ranges by another

Usage

partitionRanges(x, y, ...)

S4 method for signature 'GRanges,GRanges'
partitionRanges(
x,
y,
y_as_both = TRUE,
ignore.strand = FALSE,
simplify = TRUE,
suffix = c(".x", ".y"),
...

)

Arguments

x, y GenomicRanges objects

... Not used

y_as_both logical(1) If there are any unstranded regions in y, should these be assigned
to both strands. If TRUE unstranded regions can be used to partition stranded
regions

ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.

simplify Pass to chopMC and simplify mcols in the output

suffix Added to any shared column names in the provided objects

Details

The query set of ranges can be broken in regions which strictly overlap a second set of ranges. The
complete set of mcols from both initial objects will included in the set of partitioned ranges

Value

A GRanges object

28 plotAssayDensities

Examples

x <- GRanges(c("chr1:1-10", "chr1:6-15"))
x$id <- paste0("range", seq_along(x))
x
y <- GRanges(c("chr1:2-5", "chr1:6-12"))
y$id <- paste0("range", seq_along(y))
y
partitionRanges(x, y)

plotAssayDensities Plot Densities for any assay within a SummarizedExperiment

Description

Plot Densities for any assay within a SummarizedExperiment

Usage

plotAssayDensities(x, ...)

S4 method for signature 'SummarizedExperiment'
plotAssayDensities(
x,
assay = "counts",
colour = NULL,
linetype = NULL,
group,
trans = NULL,
n_max = Inf,
...

)

Arguments

x A SummarizedExperiment object

... Passed to density

assay An assay within x

colour The column in colData to colour lines by. To remove any colours, set this argu-
ment to NULL

linetype Any optional column in colData used to determine linetype

group Used by geom_line. Defaults to the sample names but setting to NULL will
over-write this and only groups specified by colour or linetype will be drawn

trans character(1). Any transformative function to be applied to the data before cal-
culating the density, e.g. trans = "log2"

n_max Maximum number of points to use when calculating densities

plotAssayPCA 29

Details

Uses ggplot2 to create a density plot for all samples within the selected assay

Value

A ggplot2 object. Scales and labels can be added using conventional ggplot2 syntax.

Examples

nrows <- 200; ncols <- 4
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
colnames(counts) <- paste0("Sample_", seq_len(ncols))
df <- DataFrame(treat = c("A", "A", "B", "B"))
se <- SummarizedExperiment(

assays = SimpleList(counts = counts),
colData = df

)
plotAssayDensities(se, colour = "treat")
plotAssayDensities(se, colour = "treat", group = NULL)

plotAssayPCA Plot PCA For any assay within a SummarizedExperiment

Description

Plot PCA for any assay within a SummarizedExperiment object

Usage

plotAssayPCA(x, ...)

S4 method for signature 'SummarizedExperiment'
plotAssayPCA(
x,
assay = "counts",
colour = NULL,
shape = NULL,
label = NULL,
show_points = TRUE,
pc_x = 1,
pc_y = 2,
trans = NULL,
n_max = Inf,
...

)

30 plotAssayPCA

Arguments

x An object containing an assay slot

... Passed to geom_text

assay The assay to perform PCA on

colour The column name to be used for colours

shape The column name to be used for determining the shape of points

label The column name to be used for labels

show_points logical(1). Display the points. If TRUE any labels will repel. If FALSE, labels will
appear at the exact points

pc_x numeric(1) The PC to plot on the x-axis

pc_y numeric(1) The PC to plot on the y-axis

trans character(1). Any transformative function to be applied to the data before per-
forming the PCA, e.g. trans = "log2"

n_max Subsample the data to this many points before performing PCA

Details

Uses ggplot2 to create a PCA plot for the selected assay. Any numerical transformation prior to
performing the PCA can be specified using the trans argument

Value

A ggplot2 object

Examples

nrows <- 200; ncols <- 4
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
df <- DataFrame(treat = c("A", "A", "B", "B"), sample = seq_len(4))
se <- SummarizedExperiment(

assays = SimpleList(counts = counts),
colData = df

)
plotAssayPCA(se, "counts", colour = "treat", label = "sample")
plotAssayPCA(

se, "counts", colour = "treat", label = "sample",
inherit.aes = FALSE, size = 5

)

plotAssayRle 31

plotAssayRle Plot RLE for a given assay within a SummarizedExperiment

Description

Plot RLE for a given assay within a SummarizedExperiment

Usage

plotAssayRle(x, ...)

S4 method for signature 'SummarizedExperiment'
plotAssayRle(
x,
assay = "counts",
colour = NULL,
fill = NULL,
rle_group = NULL,
by_x = NULL,
n_max = Inf,
trans = NULL,
...

)

Arguments

x A SummarizedExperiment object

... Passed to geom_boxplot

assay The assay to plot

colour Column from colData(x) to outline the boxplots

fill Column from colData(x) to fill the boxplots

rle_group Column from colData(x) to calculate RLE within groups Commonly an alter-
native sample label.

by_x Boxplots will be drawn by this grouping variable from colData(x). If not spec-
ified, the default values will be colnames(x)

n_max Maximum number of points to plot

trans character(1). Numerical transformation to apply to the data prior to RLE calcu-
lation

Details

Uses ggplot2 to create an RLE plot for the selected assay. Any numerical transformation prior to
performing the RLE can be specified using the trans argument

32 plotHFGC

Value

A ggplot2 object

Examples

nrows <- 200; ncols <- 4
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
df <- DataFrame(treat = c("A", "A", "B", "B"))
se <- SummarizedExperiment(

assays = SimpleList(counts = counts),
colData = df

)
plotAssayRle(se, "counts", fill = "treat")
plotAssayRle(se, "counts", fill = "treat", by_x = "treat")

plotHFGC Plot a Genomic Region showing HiC, Features, Genes and Coverage

Description

Plot a region with showing HiC, Features, Genes and Coverage

Usage

plotHFGC(
gr,
hic,
features,
genes,
coverage,
annotation,
zoom = 1,
shift = 0,
max = 1e+07,
axistrack = TRUE,
cytobands,
covtype = c("l", "heatmap"),
linecol = c(),
gradient = hcl.colors(101, "viridis"),
hiccol = list(anchors = "lightblue", interactions = "red"),
featcol,
genecol,
annotcol,
highlight = "blue",
hicsize = 1,
featsize = 1,

plotHFGC 33

genesize = 1,
covsize = 4,
annotsize = 0.5,
hicname = "HiC",
featname = "Features",
featstack = c("full", "hide", "dense", "squish", "pack"),
collapseTranscripts = "auto",
maxTrans = 12,
ylim = NULL,
...,
fontsize = 12,
cex.title = 0.8,
rotation.title = 0,
col.title = "white",
background.title = "lightgray",
title.width = 1.5

)

Arguments

gr The range(s) of interest. Must be on a single chromosome

hic Any HiC interactions to be included as a GenomicInteractions object. If not
supplied, no HiC track will be drawn.

features A named GRangesList or list of GRangesList objects. Each GRangesList should
contain features in each element which will drawn on the same track. If provid-
ing a list, each GRangesList within the list will drawn on a separate track. If
this argument is not specified, no feature track will be drawn. Features will be
drawn with colours provided in featcol.

genes A GRanges object with exon structure for each transcript/gene. If not included,
no track will be drawn for gene/transcript structure

coverage A named list of BigWigFileList objects containing the primary tracks to show
coverage for. Each list element will be drawn on a separate track, with elements
within each BigWigFileList shown on the same track. List names will become
track names. Alternatively, a single BigWigFileList will plot all individual files
on separate tracks. If not included, no coverage tracks will be drawn.

annotation Annotations for the coverage track(s). A single GRangesList if coverage is a
BigWigListList. If coverage is supplied as a list of BigWigFileLists, a named
list of GRangesList objects for each coverage track being annotatated. Names
must match those given for coverage.

zoom Multiplicative factor for zooming in and out

shift Shift the plot. Applied after zooming

max The maximum width of the plotting region. Given that the width of the final
plotting window will be determined by any HiC interactions, this argument ex-
cludes any interactions beyond this distance. Plotting can be somewhat slow
if any long range interactions are included. Ignored if no HiC interactions are
supplied.

34 plotHFGC

axistrack logical. Add an AxisTrack()

cytobands Cytogenetic bands to be displayed on each chromosome

covtype The plot type for coverage. Currently only lines ("l") and heatmaps ("heatmap")
are supported

linecol If passing a BigWigFileList to coverage, a vector of colours. If passing a list of
BigWigFileList objects to coverage, a list of colours with structure that matches
the object being passed to coverage, i.e. a named list of the same length, with
elements who’s length matches each BigWigFileList. Only used if covtype =
"l".

gradient Colour gradient for heatmaps

hiccol list with names "anchors" and "interactions". Colours are passed to these
elements

featcol Named vector (or list) of colours for each feature. Must be provided if drawing
features

genecol Named vector (or list) of colours for each gene category

annotcol Colours matching the coverage annotations

highlight Outline colour for the highlight track. Setting this to NULL will remove the high-
light

hicsize, featsize, genesize, covsize, annotsize

Relative sizes for each track (hic, features, genes, coverage & annotation)
hicname, featname

Names displayed in the LHS panel

featstack Stacking for the fature track
collapseTranscripts

Passed to GeneRegionTrack for the genes track. Defaults to "auto" for au-
tomatic setting. If the number of transcripts to be plotted is > maxtrans, the
argument will be automatically set to "meta", otherwise this will be passed as
FALSE which will show all transcripts.

maxTrans Only used if collapseTranscripts is set to "auto".

ylim If a numeric vector, this will be passed to all coverage tracks. Alternatively, a
named list of y-limits for each coverage track with names that match those in
each element of the coverage list.

... Passed to DataTrack for the coverage tracks only. Useful arguments may be
things like legend

fontsize Applied across all tracks

cex.title Passed to all tracks

rotation.title Passed to all tracks

col.title Passed to all tracks
background.title

Passed to all tracks

title.width Expansion factor passed to plotTracks, and used to widen the panels on the LHS
of all tracks. Can have unpredictable effects on the font size of y-axis limits due
to the algorithm applied by plotTracks

plotHFGC 35

Details

Convenience function for plotting a common set of tracks. All tracks are optional. For more fine
control, users are advised to simply use Gviz directly.

The primary tracks defined in this function are H (HiC), F (features), G (genes), and C (coverage).
Axis and Ideogram tracks are an additional part of this visualisation

Use all tracks specific to this dataset to generate a simple visualisation. In descending order the
tracks displayed will be:

1. HiC Interactions (if supplied)

2. Regulatory features

3. Genes/genes

4. Coverage tracks as supplied

All tracks are optional and will simply be omitted if no data is supplied. See individual sections
below for a more detailed explanation of each track

If wanting a single track of genes, simply pass a GRanges object in the format specified for a
GeneRegionTrack. Passing a GRangesList with the same format will yield an individual track for
each list element, with each track shown by default as a separate colour. This can be used for
showing Up/Down-regulated genes, or Detected/Undetected genes.

If passing a BigWigFileList for the coverage track, each file within the object will be drawn on
a separate track. If specified, the same y-limits will be applied to each track If passing a list of
BigWigFileList objects, each list element will be drawn as a single track with the individual files
within each BigWigFileList overlaid within each track.

Cytogenetic band information must be in the structure required by IdeogramTrack, with data for
both GRCh37 and GRCh38 provided in this package (grch37.cytobands, grch38.cytobands).

A highlight overlay over the GRanges provided as the gr argument will be added if a colour is
provided. If set to NULL, no highlight will be added.

Value

A Gviz object

Displaying HiC Interactions

The available arguments for displaying HiC Interactions are defined below. If hic is supplied, a
single InteractionTrack will be added displaying all interactions with an anchor within the range
specified by gr. Only interactions with an anchor explicitly overlapping gr will be shown. If no
interactions are found within gr, the track will not be displayed. The plotting range will expand to
incorporate these interactions, with the paramater max providing an upper limit on the displayed
range.

hic This is the GInteractions object required for inclusion of a HiC track in the final output. Will
be ignored if not supplied

hiccol Determines the colours used for display of anchors and interactions

hicsize Relative size of the track compared to others

hicname The name to display on the LHS panel

36 plotHFGC

max The maximum width of the plotted region. If multiple long-range interactions are identified,
this provides an upper limit for the display. This defaults to 10Mb.

Displaying Features

If wanting to add an AnnotationTrack with regions defined as ’features’, the following arguments
are highly relevant. All are ignored if features is not provided.

features A named GRangesList. Each element will be considered as a separate feature and drawn
as a block in a distinct colour. Any mcols data will be ignored.

featcol A named vector (or list) providing a colour for each element of features

featname The name to display on the LHS panel

featstack Stacking to be applied to all supplied features

featsize Relative size of the track compared to others

Displaying Genes And Transcripts

To display genes or transcripts, simply provide a single GRanges object if you wish to display all
genes on a single track. The mcols element of this object should contain the columns feature,
gene, exon, transcript and symbol as seen on the GeneRegionTrack help page.

Alternatively, a GRangesList can be provided to display genes on separate tracks based on their
category. This can be useful for separating and colouring Up/Down regulated genes in a precise
way. All elements should be as described above. Again, all parameters associated with this track-
set will be ignored of no object is supplied to this argument.

genes A GRanges or GRangesList object as described above

genecol A single colour if supplying a GRanges object, or a named vector/list of colours matching
the GRangesList

genesize Relative size of the track compared to others

collapseTranscripts Passed to all tracks. See the GeneRegionTrack section in settings for detail
regarding possible arguments. If genes is a GRangesList, can be a named vector/list with
names matching the names of the genes object.

Displaying Coverage Tracks

This section contains the most flexibility and can take two types of input. The first option is a
BigWigFileList, which will lead to each BigWig file being plotted on it’s own track. An alternative
is a list of BigWigFileList objects. In this case, each list element will be plotted as a separate track,
with all individual BigWig files within each list element overlaid within the relevant track.

In addition to the coverage tracks, annotations can be added to each BigWigFileList in the form of
coloured ranges, indicating anything of the users choice. Common usage may be to indicate regions
with binding of a ChIP target is found to be detected, unchanged, gained or lost.

coverage A BigWigFileList or list of BigWigFileList objects. A single BigWigFileList will
be displayed with each individual file on a separate track with independent y-axes. Each ele-
ment of the BigWigFileList must be named and these names will be displayed on the LHS

plotHFGC 37

panels A list of BigWigFileList objects will be displayed with each list element as a sepa-
rate track, with any BigWig files overlaid using the same y-axis. The list must be named with
these names displayed on the LHS panel. Each internal BigWig within a BigWigFileList
must also be named.

covtype Currently only lines (covtype = "l") and heatmaps (covtype = "heatmap") are supported.
Colours can be specified using the arguments below

linecol Can be a single colour applied to all tracks, or a named vector (or list) of colours. If
coverage is a single BigWigFileList, these names should match the names of this object
exactly. If coverage is a list of BigWigFileList objects, linecol should be a list with
matching names. Each element of this list should also be a named vector with names that
exactly match those of each corresponding BigWigFileList.

gradient A colour gradient applied to all heatmap tracks. No specific structure is required beyond
a vector of colours.

covsize Relative size of the tracks compared to others

ylim Can be a vector of length 2 applied to all coverage tracks. Alternatively, if passing a list
of BigWigFlieList objects to the coverage argument, this can be a named list of numeric
vectors with names matching coverage

annotation Each BigWigFileList needs annotations to be passed to this argument as a named
GRangesList, with names being used to associate unique colours with that set of ranges.
If coverage is a BigWigFileList a simple GRangesList would be supplied and a single
’annotation’ track will appear at the top of the set of coverage tracks. If coverage is a list,
then a named list of GRangesList objects should be supplied, with each being displayed
above the corresponding track from the coverage object.

annotcol A vector of colours corresponding to all names within all GRangesList elements supplied
as annotation. It is assumed that the same colour scheme will be applied to all annotation
tracks and, as such, the colours should not be provided as a list which matches the coverage
tracks. Instead, every named element anywhere in the annotation GRanges, across all of the
tracks must be included as a colour

annotsize Relative size of the tracks compared to others

Examples

library(rtracklayer)
Make sure we have the cytobands active
data(grch37.cytobands)

Prepare the HiC, promoter & transcript information
data(ex_hic, ex_trans, ex_prom)
ex_features <- GRangesList(Promoter = ex_prom)
featcol <- c(Promoter = "red")

Prepare the coverage
fl <- system.file(
"extdata", "bigwig", c("ex1.bw", "ex2.bw"), package = "extraChIPs"
)
bwfl <- BigWigFileList(fl)
names(bwfl) <- c("ex1", "ex2")
bw_col <- c(ex1 = "#4B0055", ex2 = "#007094")

38 plotOverlaps

Define the plotting range
gr <- GRanges("chr10:103862000-103900000")

Now create the basic plot
plotHFGC(

gr,
hic = ex_hic, features = ex_features, genes = ex_trans, coverage = bwfl,
featcol = featcol, linecol = bw_col, cytobands = grch37.cytobands

)

plotHFGC(
gr,
hic = ex_hic, features = ex_features, genes = ex_trans, coverage = bwfl,
featcol = featcol, linecol = bw_col, cytobands = grch37.cytobands,
maxTrans = 1

)

plotOverlaps Plot Overlaps Between List Elements

Description

Plot Overlaps between list elements as an upset or Venn diagram

Usage

plotOverlaps(x, ...)

S4 method for signature 'GRangesList'
plotOverlaps(
x,
type = c("auto", "venn", "upset"),
var = NULL,
f = c("mean", "median", "max", "min", "sd"),
set_col = NULL,
...,
.sort_sets = "ascending",
min.gapwidth = 1L,
ignore.strand = TRUE

)

S4 method for signature 'list'
plotOverlaps(
x,
type = c("auto", "venn", "upset"),

plotOverlaps 39

set_col = NULL,
...,
.sort_sets = "ascending"

)

Arguments

x GRangesList of S3 list able to be coerced to character vectors

... Passed to draw.pairwise.venn (or draw.single/triple.venn) for Venn Dia-
grams, and to upset for UpSet plots

type The type of plot to be produced

var Column to summarised as a boxplot in an upper panel (UpSet plot only)

f Summarisation function. Must return a single value from any numeric vector

set_col Colours to be assigned to each set

.sort_sets passed to sort_sets in upset
min.gapwidth, ignore.strand

Passed to reduce

Details

This function should give the capability to show overlaps for any number of replicates or groups, or
a list of items such as gene names. For n = 2, a scaled Venn Diagram will be produced, however no
scaling is implemented for n = 3

UpSet plots are possible for any lists with length > 1, and are the only implemented possibility for
lists > 3.

If the input is a GRangesList an additional boxplot can be requested using any numeric column
within the existing mcols() element. Values will be summarised across all elements using the
requested function and the boxplot will be included as an upper panel above the intersections

Value

Either a VennDiagram (i.e. grid) object, or a ComplexUpset plot

Examples

Examples using a list of character vectors
ex <- list(

x = letters[1:5], y = letters[c(6:15, 26)], z = letters[c(2, 10:25)]
)
plotOverlaps(ex, type = "upset")
plotOverlaps(ex, type = "venn", set_col = 1:3, alpha = 0.3)
plotOverlaps(ex, type = "upset", set_col = 1:3, labeller = stringr::str_to_title)
plotOverlaps(ex[1:2])

GRangesList object will produce a boxplot of summarised values in the
upper panel
set.seed(100)
grl <- GRangesList(

40 plotPie

a = GRanges(c("chr1:1-10", "chr1:21-30", "chr1:31-40")),
b = GRanges(c("chr1:12-15", "chr1:21-30", "chr1:46-50"))

)
grlascore <- rnorm(3)
grlbscore <- rnorm(3)
plotOverlaps(grl, type = 'upset', var = 'score')

plotPie Draw Pie Graphs based on one or more columns

Description

Draw Pie Graphs based one or more data.frame columns

Usage

plotPie(object, ...)

S4 method for signature 'GRanges'
plotPie(object, scale_by = c("n", "width"), ...)

S4 method for signature 'DataFrame'
plotPie(object, ...)

S4 method for signature 'data.frame'
plotPie(
object,
fill,
x,
y,
scale_by,
width = 0.8,
show_total = TRUE,
label_fill = "white",
label_alpha = 1,
label_size = 3,
min_p = 0.01,
show_category = TRUE,
category_size = 3,
category_colour = "black",
category_width = 15,
...

)

plotPie 41

Arguments

object An object (data.frame)

... Not used

scale_by Scale the counts by this column. In this case of a GRanges object this defaults
to the count (scale_by = "n") but can also be specified as being width of each
range (scale_by = "width"). If choosing width, width will be displayed in Kb

fill The category/column used to fill the slices of the pie charts

x The second (optional) category/column to place along the x-axis

y The final (optional) category/column to plce along the y-axis

width Scale the width of all pies

show_total logical(1) Show labels on each pie chart with the tally for that complete chart

label_fill The background colour for tally labels

label_alpha Transparency for tally labels

label_size Size of the tally labels. Passed to geom_label

min_p The minimum proportion of the total required for adding labels. Effectively
removes labels from pie charts with few members. Alternatively when only one
column is specified, categories below this will not be shown around the edge of
the plot

show_category Show category labels around the edge of the plot if only one category/column is
specified

category_size The size of category labels if only one category/column is specified
category_colour

The colour of category labels if only one column is specified

category_width Width at which category labels will wrap onto a new line

Details

Using a data.frame as input, this function will draw pie graphs based on one ore more columns,
by simply counting the values in combination across these columns. One column must be selected
for the fill as a bare minimum, with up to three being possible. Additional columns can be set for
the x-axis to draw a series of pie-graphs in a row, with a further column able to added to layout a
series of pie graphs in a grid

If only one column/category is chosen, category labels will be added around the edge of the plot

If show_total = TRUE the overall counts for each pie graph will be added in the centre using
geom_label. Parameters for these labels are customisable

Value

A ggplot2 object able to be customised with colour scales and themes.

Also note that the $data element of the returned object will contain the data.frame used for plotting.
The additional column label_radians represents the mid-point of each pie slice and can be used
for manually adding labels to each pie. Only applies when plotting across the x or y axes

42 plotProfileHeatmap

Examples

set.seed(200)
df <- data.frame(

feature = sample(
c("Promoter", "Enhancer", "Intergenic"), 200, replace = TRUE

),
TF1 = sample(c("Up", "Down", "Unchanged"), 200, replace = TRUE),
TF2 = sample(c("Up", "Down", "Unchanged"), 200, replace = TRUE),
w = rexp(200)

)
plotPie(df, fill = "feature")
plotPie(df, fill = "feature", scale_by = "w")
plotPie(df, fill = "feature", x = "TF1")
plotPie(df, fill = "feature", x = "TF1", y = "TF2") +
scale_fill_viridis_d() +
theme_bw()

Manually adding percentages
plotPie(df, fill = "feature", x = "TF1", label_size = 5) +

geom_label(
aes(x_lab, y_lab, label = lab),
data = . %>%

dplyr::mutate(
x_lab = x + 0.5*r*sin(label_radians),
y_lab = 1 + 0.5*r*cos(label_radians),
lab = scales::percent(p, 0.1)

),
size = 3.5

)

And using a GRanges object
data("ex_prom")
gr <- ex_prom
mcols(gr) <- df[seq_along(gr),]
Show values by counts
plotPie(gr, fill = "feature")
Show values scaled by width of each range
plotPie(gr, fill = "feature", scale_by = "width")

plotProfileHeatmap Draw a coverage Profile Heatmap

Description

Plot a coverage Profile Heatmap across multiple ranges

plotProfileHeatmap 43

Usage

plotProfileHeatmap(object, ...)

S4 method for signature 'GenomicRangesList'
plotProfileHeatmap(
object,
profileCol,
xValue = "bp",
fillValue = "score",
facetX = NULL,
facetY = NULL,
colour = facetY,
linetype = NULL,
summariseBy = c("mean", "median", "min", "max", "none"),
xLab = xValue,
yLab = NULL,
fillLab = fillValue,
relHeight = 0.3,
...

)

S4 method for signature 'GenomicRanges'
plotProfileHeatmap(
object,
profileCol,
xValue = "bp",
fillValue = "score",
facetX = NULL,
facetY = NULL,
colour = facetY,
linetype = NULL,
summariseBy = c("mean", "median", "min", "max", "none"),
xLab = xValue,
yLab = NULL,
fillLab = fillValue,
relHeight = 0.3,
...

)

Arguments

object A GRanges or GRangesList object

... Passed to facet_grid internally. Can be utilised for switching panel strips or
passing a labeller function

profileCol Column name specifying where to find the profile DataFrames
xValue, fillValue

Columns within the profile DataFrames for heatmaps

44 plotProfileHeatmap

facetX, facetY Column used for facetting across the x- or y-axis respectively

colour Column used for colouring lines in the summary panel. Defaults to any column
used for facetY

linetype Column used for linetypes in the summary panel

summariseBy Function for creating the summary plot in the top panel. If set to ’none’, no
summary plot will be drawn. Otherwise the top panel will contain a line-plot
representing this summary value for each x-axis bin

xLab, yLab, fillLab

Labels for plotting aesthetics. Can be overwritten using labs() on any returned
object

relHeight The relative height of the top summary panel. Represents the fraction of the
plotting area taken up by the summary panel.

Details

Convenience function for plotting coverage heatmaps across a common set of ranges, shared be-
tween one or more samples. These are most commonly the coverage values from merged samples
within a treatment group. THe input data structure is based on that obtained from getProfileData,
and can be provided either as a GRanges object (generally for one sample) or as a GRangesList.

A ’profile DataFrame’ here refers to a data.frame (or tibble, or DataFrame) with a coverage value
in one column that corresponds to a genomic bin of a fixed size denoted in another, as generated
by getProfileData. Given that multiple ranges are most likely to be drawn, each profile data frame
must be the same size in terms of the number of bins, each of which represent a fixed number of
nucleotides. At a minimum this is a two column data frame although getProfileData will provide
three columns for each specified genomic region.

If using a GRangesList, each list element will be drawn as a separate panel by default. These panels
will appear in the same order as the list elements of the GRangesList, although this can easily
be overwritten by passing a column name to the facetX argument. The default approach will add
the original element names as the column "name" which can be seen in the $data element of any
resultant ggplot object produced by this function.

Value

A ggplot2 object, able to be customised using standard ggplot2 syntax

Examples

library(rtracklayer)
fl <- system.file(
"extdata", "bigwig", c("ex1.bw", "ex2.bw"), package = "extraChIPs"
)
bwfl <- BigWigFileList(fl)
names(bwfl) <- c("ex1", "ex2")

gr <- GRanges(
c(
"chr10:103880281-103880460", "chr10:103892581-103892760",
"chr10:103877281-103877460"

plotSplitDonut 45

)
)
pd <- getProfileData(bwfl, gr)
plotProfileHeatmap(pd, "profile_data") +

scale_fill_viridis_c(option = "inferno", direction = -1) +
labs(fill = "Coverage")

plotSplitDonut Draw Two-Level Donut Charts

Description

Create Donut charts based on one or two columns in a data frame

Usage

plotSplitDonut(object, ...)

S4 method for signature 'GRanges'
plotSplitDonut(object, scale_by = c("n", "width"), ...)

S4 method for signature 'DataFrame'
plotSplitDonut(object, ...)

S4 method for signature 'data.frame'
plotSplitDonut(
object,
inner,
outer,
scale_by = NULL,
r_centre = 0.5,
r_inner = 1,
r_outer = 1,
total_size = 5,
total_glue = "{comma(N)}",
inner_glue = "{inner} {.data[[inner]]}\n{percent(p,0.1)}",
outer_glue = "{outer} {.data[[outer]]}\n{percent(p,0.1)}",
inner_label = c("label", "text", "none"),
outer_label = c("label", "text", "none"),
label_alpha = 1,
label_size = 3,
min_p = 0.05,
explode_inner = NULL,
explode_outer = NULL,
explode_query = c("AND", "OR"),
explode_x = 0,

46 plotSplitDonut

explode_y = 0,
explode_r = 0,
nudge_r = 0.5,
expand = 0.1,
inner_palette = NULL,
outer_palette = NULL,
layout = c(main = area(1, 1, 6, 6), lg1 = area(2, 7), lg2 = area(4, 7)),
...

)

Arguments

object A GRanges or data.frame-like object

... Not used

scale_by Column to scale values by. If provided, values in this column will be summed,
instead of simply counting entries. Any label in the centre of the plot will also
reflect this difference

inner Column name to create the inner ring

outer Column name to create the outer ring, subset by the inner ring

r_centre The radius of the hole in the centre. Setting to zero will create a Pie chart
r_inner, r_outer

The radii of the inner/outer rings

total_size Label size total number of entries in the centre of the plot. Set to NA to hide the
label itself

total_glue glue-syntax for formatting the total which appears in the centre of the plot. Inter-
nally, the value N will be calculated and as such, this value should appear within
this argument.

inner_glue, outer_glue

glue-syntax for formatting labels which appear on each inner/outer segment In-
ternally, the values n and p will be calculated as totals and proportions of the
total. As such, these values can appear within this argument.

inner_label, outer_label

Can take values ’text’, ’label’ or ’none’. If setting one the first two values, the
labelling function geom_* will be called, otherwise no label will be drawn

label_alpha transparency for labels in the inner ring only

label_size Size of all text labels

min_p only display labels for segments representing greater than this proportion of the
total

explode_inner, explode_outer

Regular expressions from either the inner or outer ring for which segments will
be ’exploded’

explode_query Setting to AND and specifying values for both the inner and outer ring will
require matches in both categories

explode_x, explode_y

Numeric values for shifting exploded values

plotSplitDonut 47

explode_r Radius expansion for exploded values

nudge_r Radius expansion for labels in the outer ring

expand Passed to expansion for both x and y axes

inner_palette Colour palette for the inner ring

outer_palette Optional colour palette for the outer ring

layout Passed to plot_layout

Details

Using a data.frame or GRanges object, this function enables creation of a Pie/Donut chart with an
inner and outer ring. The function itself is extremely flexible allowing for separate colour palettes
in the inner and outer rings, as well as highly customisable labels.

Sections can be exploded using a value from the inner ring or outer ring separately, or in combina-
tion by setting explode_query = "AND". Exploded sections can be shifted by expanding the radius
(explode_r), or along the x/y co-ordinates using explode_x/y, allowing for detailed placement of
sections.

If only the inner palette is specified, segments in the outer ring will be assigned the same colours
as the inner segments, but with increased transparency. Only a single legend will be drawn in
this scenario. If an outer palette is specified, both colour palettes are completely distinct and two
distinct legends will be drawn. The placement of these legends, along with the larger donut plot,
can be manually specified by providing a layout as defined in plot_layout. Names are not required
on this layout, but may be beneficial for code reproducibility.

The inner label denoting the total can also be heavily customised using the glue syntax to present the
calculated value N along with any additional text, such as ’kb’ if scaling GenomicRanges by width.
The same approach can be taken for the inner and outer labels, where totals are held in the value n,
proportions are held in the value p and the values corresponding to each segment can be accessed
using .data[[inner]] or .data[[outer]]. Values from the inner segments can be added to the
outer labels using this strategy enabling a wide variety of labellinf approaches to be utilised.

Value

A patchwork object consisting of both ggplot2 objects and legend grobs

Examples

set.seed(200)
df <- data.frame(

feature = sample(
c("Promoter", "Enhancer", "Intergenic"), 200, replace = TRUE

),
TF1 = sample(c("Up", "Down", "Unchanged"), 200, replace = TRUE),
TF2 = sample(c("Up", "Down", "Unchanged"), 200, replace = TRUE)

)
The standard plot
plotSplitDonut(df, inner = "TF1", outer = "TF2")

Adding an exploded section along with an outer palette & customisation
plotSplitDonut(

48 propOverlap

df, inner = "TF1", outer = "feature", total_size = NA,
label_alpha = 0.5, r_centre = 0,
outer_glue = "{.data[[outer]]}\n(n = {n})", outer_label = "text",
explode_inner = "Up", explode_outer = "Prom|Enh",
explode_query = "AND", explode_r = 0.4,
inner_palette = hcl.colors(3, "Spectral", rev = TRUE),
outer_palette = hcl.colors(3, "Cividis")

)

propOverlap Find the proportions of an overlapping range

Description

Find the proportion of a query reange which overlaps the subject

Usage

propOverlap(x, y, ...)

S4 method for signature 'GRanges,GRanges'
propOverlap(x, y, ignore.strand = FALSE, ...)

Arguments

x, y A GenomicRanges object

... Not used

ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.

Details

This behaves similarly to overlapsAny except the proportion of the query range which overlaps one
or more subject ranges is returned instead of a logical vector

Value

Numeric vector the same length as x

Examples

x <- GRanges("chr1:1-10")
y <- GRanges("chr1:1-5")
propOverlap(x, y)
propOverlap(y, x)

reduceMC 49

reduceMC Reduce ranges retaining mcols

Description

Reduce ranges retaining mcols

Usage

reduceMC(x, ignore.strand = FALSE, simplify = TRUE, ...)

Arguments

x A GenomicRanges object

ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.

simplify logical(1). Attempt to simplify returned columns where possible

... Passed to reduce

Details

This function extends reduce so that all mcols are returned in the output. Where the reduced ranges
map to multiple ranges in the original range, mcols will be returned as CompressedList columns.

If simplify = TRUE columns will be returned as vectors where possible.

Value

A GRanges object

Examples

x <- GRanges(c("chr1:1-10:+", "chr1:6-12:-"))
x$id <- c("range1", "range2")
reduceMC(x)
reduceMC(x, ignore.strand = TRUE)

50 setoptsMC

setoptsMC Perform set operations retaining mcols

Description

Perform set operations retaining all mcols from the query range

Usage

setdiffMC(x, y, ...)

intersectMC(x, y, ...)

unionMC(x, y, ...)

S4 method for signature 'GRanges,GRanges'
setdiffMC(x, y, ignore.strand = FALSE, simplify = TRUE, ...)

S4 method for signature 'GRanges,GRanges'
intersectMC(x, y, ignore.strand = FALSE, simplify = TRUE, ...)

S4 method for signature 'GRanges,GRanges'
unionMC(x, y, ignore.strand = FALSE, simplify = TRUE, ...)

Arguments

x, y GenomicRanges objects

... Not used

ignore.strand If set to TRUE, then the strand of x and y is set to "*" prior to any computation.

simplify logical(1) If TRUE, any List columns will be returned as vectors where possible.
This can only occur if single, unique entries are present in all initial elements.

Details

This extends the methods provided by setdiff, intersect and union so that mcols from x will be
returned as part of the output.

Where output ranges map back to multiple ranges in x, CompressedList columns will be returned.
By default, these will be simplified if possible, however this behaviour can be disabled by setting
simplify = FALSE.

All columns will be returned which can also be time-consuming. A wise approach is to only provide
columns you require as part of the query ranges x.

If more nuanced approaches are required, the returned columns can be further modified by many
functions included in the plyranges package, such as mutate().

stitchRanges 51

Value

A GRanges object with all mcols returned form the original object. If a range obtained by setdiff
maps back to two or more ranges in the original set of Ranges, mcols will be returned as Compress-
edList columns

Examples

x <- GRanges("chr1:1-100:+")
x$id <- "range1"
y <- GRanges(c("chr1:51-60:+", "chr1:21-30:-"))
setdiffMC(x, y)
setdiffMC(x, y, ignore.strand = TRUE)

The intersection works similarly
intersectMC(x, y)

Union may contain ranges not initially in x
unionMC(x, y)
unionMC(x, y, ignore.strand = TRUE)

stitchRanges Stitch Ranges within a given distance

Description

Stitch together ranges within a given distance, using excluded ranges as barriers that cannot be
crossed

Usage

stitchRanges(x, exclude, maxgap = 12500L, ignore.strand = TRUE)

Arguments

x Ranges to be stitched together

exclude Ranges to exclude

maxgap The maximum distance between ranges to be stitched

ignore.strand logical

Details

Stitches together ranges within a given distance, using any ranges provided for exclusion as barriers
between stitched ranges. This may be particularly useful if wanting to stitch enhancers whilst
excluding promoters.

All inputs and outputs are Genomic Ranges objects

52 voomWeightsFromCPM

Value

A GRanges object

Examples

x <- GRanges(c("chr1:1-10", "chr1:101-110", "chr1:201-210", "chr2:1-10"))
y <- GRanges("chr1:200:+")
stitchRanges(x, exclude = y, maxgap = 100)

voomWeightsFromCPM Estimate voom precision weights directly From CPM values

Description

Estimate voom precision weights directly From CPM values

Usage

voomWeightsFromCPM(
cpm,
design = NULL,
w0 = NULL,
lib.size = NULL,
isLogCPM = TRUE,
span = 0.5,
...

)

Arguments

cpm Matrix of CPM or logCPM values

design The design matrix for the experiment

w0 Initial vector of sample weights. Should be calculated using arrayWeights

lib.size Initial library sizes. Must be provided as these are no estimable from CPM
values

isLogCPM logical(1). Indicates whether the data is log2 transformed already. Most com-
monly (e.g. if using the output of cqn) it will be,

span Width of the smoothing window used for the lowess mean-variance trend. Ex-
pressed as a proportion between 0 and 1.

... Passed to lmFit internally

voomWeightsFromCPM 53

Details

This function takes CPM or logCPM values and estimates the precision weights as would be done
by providing counts directly to the voom function. Using this function enables the use of logCPM
values which have been normalised using other methods such as Conditional-Quantile or Smooth-
Quantile Normalisation.

The precision weights are returned as part of the EList output, and these are automatically passed
to the function lmFit during model fitting. This will ensure that the mean-variance relationship is
appropriate for the linear modelling steps as performed by limma.

Initial sample weights can be passed to the function, and should be calculated using arrayWeights
called on the normalised logCPM values. The returned sample weights will be different to these,
given that the function voomWithQualityWeights performs two rounds of estimation. The first is
on the initial data, with the inappropriate mean-variance relationship, whilst the second round is
after incorporation of the precision weights.

Value

An object of class EList as would be output by voom. Importantly, there will be no genes element,
although this can be added later. Similarly, the returned targets element will only contain sample
names and library sizes. This can be incorporated with any other metadata as required.

Plotting data is always returned, noting the the value sx has been offset by the library sizes and will
be simple logCPM values. As such, the fitted Amean is also returned in this list element.

If initial sample weights were provided, modified weights will also be returned, as the initial func-
tion voomWithQualityWeights performs two rounds of estimation of sample weights. Here we
would simply provide the initial weights a priori, with the second round performed within the
function. Importantly, this second round of sample weight estimation uses the precision weights
ensuring the correct mean-variance relationship is used for the final estimation of sample weights

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
wc <- csaw::windowCounts(bamFiles, filter=1)
cpm <- edgeR::cpm(wc, log = TRUE)
el <- voomWeightsFromCPM(cpm, lib.size = wc$totals)

Index

∗ datasets
cytobands, 10
ex_datasets, 14

AnnotationTrack, 36
arrayWeights, 52, 53
as_tibble, 4
as_tibble(), 3

bestOverlap, 6
bestOverlap(), 3
bestOverlap,GRanges,GRanges-method

(bestOverlap), 6
bestOverlap,GRanges,GRangesList-method

(bestOverlap), 6
bplapply, 16

chop, 7
chopMC, 7
chopMC(), 3
cluster-direction, 24
collapseGenes, 8
collapseGenes(), 4
colToRanges, 9
colToRanges(), 3
colToRanges,data.frame-method

(colToRanges), 9
colToRanges,DataFrame-method

(colToRanges), 9
colToRanges,GRanges-method

(colToRanges), 9
combineTests, 26
CompressedList, 51
cytobands, 10

DataTrack, 34
density, 28
distinct, 11
distinctMC, 11
distinctMC(), 3

draw.pairwise.venn, 39
dualFilter, 12
dualFilter(), 3

edgeR::cpm(), 4
ex_datasets, 14
ex_genes (ex_datasets), 14
ex_hic (ex_datasets), 14
ex_prom (ex_datasets), 14
ex_trans (ex_datasets), 14
expansion, 47
extraChIPs-package, 3

facet_grid, 43
filterWindowsControl, 12
filterWindowsProportion, 12
findOverlaps, 6, 24, 26

GeneRegionTrack, 34–36
geom_boxplot, 31
geom_label, 41
geom_line, 28
geom_text, 30
getBestTest, 26
getProfileData, 15, 44
getProfileData(), 4
getProfileData,BigWigFile,GenomicRanges-method

(getProfileData), 15
getProfileData,BigWigFileList,GenomicRanges-method

(getProfileData), 15
getProfileData,character,GenomicRanges-method

(getProfileData), 15
glue, 46, 47
grch37.cytobands, 35
grch37.cytobands (cytobands), 10
grch38.cytobands, 35
grch38.cytobands (cytobands), 10
grlToSE, 17
grlToSE(), 3
grlToSE,GRangesList-method (grlToSE), 17

54

INDEX 55

IdeogramTrack, 10, 35
importPeaks, 18
importPeaks(), 4
InteractionTrack, 35
intersect, 50
intersectMC (setoptsMC), 50
intersectMC(), 3
intersectMC,GRanges,GRanges-method

(setoptsMC), 50
IRanges::CompressedList, 3

limma::EList, 4
limma::voom(), 4
lmFit, 53

makeConsensus, 19
mapByFeature, 20
mapByFeature(), 3
mergeByCol, 23
mergeByCol(), 3
mergeByCol,GenomicRanges-method

(mergeByCol), 23
mergeByCol,RangedSummarizedExperiment-method

(mergeByCol), 23
mergeBySig, 25
mergeBySig,GenomicRanges-method

(mergeBySig), 25
mergeBySig,RangedSummarizedExperiment-method

(mergeBySig), 25
minimalTests, 26
MulticoreParam, 16

normalizeToMatrix, 16

overlapsAny, 48

p.adjust.methods, 24
partitionRanges, 27
partitionRanges(), 3
partitionRanges,GRanges,GRanges-method

(partitionRanges), 27
plot_layout, 47
plotAssayDensities, 28
plotAssayDensities(), 4
plotAssayDensities,SummarizedExperiment-method

(plotAssayDensities), 28
plotAssayPCA, 29
plotAssayPCA(), 4
plotAssayPCA,SummarizedExperiment-method

(plotAssayPCA), 29

plotAssayRle, 31
plotAssayRle(), 4
plotAssayRle,SummarizedExperiment-method

(plotAssayRle), 31
plotHFGC, 32
plotHFGC(), 4
plotOverlaps, 38
plotOverlaps,GRangesList-method

(plotOverlaps), 38
plotOverlaps,list-method

(plotOverlaps), 38
plotPie, 40
plotPie(), 4
plotPie,data.frame-method (plotPie), 40
plotPie,DataFrame-method (plotPie), 40
plotPie,GRanges-method (plotPie), 40
plotProfileHeatmap, 42
plotProfileHeatmap(), 4
plotProfileHeatmap,GenomicRanges-method

(plotProfileHeatmap), 42
plotProfileHeatmap,GenomicRangesList-method

(plotProfileHeatmap), 42
plotSplitDonut, 45
plotSplitDonut,data.frame-method

(plotSplitDonut), 45
plotSplitDonut,DataFrame-method

(plotSplitDonut), 45
plotSplitDonut,GRanges-method

(plotSplitDonut), 45
plotTracks, 34
propOverlap, 48
propOverlap(), 3
propOverlap,GRanges,GRanges-method

(propOverlap), 48

RangedSummarizedExperiment, 12, 13
reduce, 17, 24, 26, 39, 49
reduceMC, 20, 49
reduceMC(), 3

seqinfo, 19
setdiff, 50
setdiffMC (setoptsMC), 50
setdiffMC(), 3
setdiffMC,GRanges,GRanges-method

(setoptsMC), 50
setoptsMC, 50
settings, 36
stitchRanges, 51

56 INDEX

stitchRanges(), 3
str_sort, 8
SummarizedExperiment::RangedSummarizedExperiment,

3, 4

tibble, 5
tibble::as_tibble(), 5
tibble::tibble, 3

union, 50
unionMC (setoptsMC), 50
unionMC(), 3
unionMC,GRanges,GRanges-method

(setoptsMC), 50
upset, 39

voom, 53
voomWeightsFromCPM, 52
voomWeightsFromCPM(), 4
voomWithQualityWeights, 53

	extraChIPs-package
	as_tibble
	bestOverlap
	chopMC
	collapseGenes
	colToRanges
	cytobands
	distinctMC
	dualFilter
	ex_datasets
	getProfileData
	grlToSE
	importPeaks
	makeConsensus
	mapByFeature
	mergeByCol
	mergeBySig
	partitionRanges
	plotAssayDensities
	plotAssayPCA
	plotAssayRle
	plotHFGC
	plotOverlaps
	plotPie
	plotProfileHeatmap
	plotSplitDonut
	propOverlap
	reduceMC
	setoptsMC
	stitchRanges
	voomWeightsFromCPM
	Index

