Package 'consICA'

April 10, 2023

Type Package

biocViews Technology, StatisticalMethod, Sequencing, RNASeq, Transcriptomics, Classification, FeatureExtraction

Title consensus Independent Component Analysis

Version 1.0.0

Description consICA implements a data-driven deconvolution method – consensus independent component analysis (ICA) to decompose heterogeneous omics data and extract features suitable for patient diagnostics and prognostics.

The method separates biologically relevant transcriptional signals from technical effects and provides information about the cellular composition and biological processes.

The implementation of parallel computing in the package ensures efficient analysis of modern multicore systems.

```
BugReports https://github.com/biomod-lih/consICA/issues
```

License MIT + file LICENSE

Encoding UTF-8 LazyData false

Imports fastICA (>= 1.2.1), sm, org.Hs.eg.db, GO.db, stats, SummarizedExperiment, BiocParallel, graph, methods, pheatmap, survival, topGO, graphics, grDevices

Depends R (>= 4.2.0)

Suggests knitr, BiocStyle, rmarkdown, testthat

VignetteBuilder knitr **RoxygenNote** 7.2.0

git_url https://git.bioconductor.org/packages/consICA

git_branch RELEASE_3_16

git_last_commit 665c73c

git_last_commit_date 2022-11-01

Date/Publication 2023-04-10

2 consICA

```
Author Petr V. Nazarov [aut, cre] (<a href="https://orcid.org/0000-0003-3443-0298">https://orcid.org/0000-0003-3443-0298</a>),
Tony Kaoma [aut] (<a href="https://orcid.org/0000-0002-1269-4826">https://orcid.org/0000-0003-3036-4916</a>),
Maryna Chepeleva [aut] (<a href="https://orcid.org/0000-0003-3036-4916">https://orcid.org/0000-0003-3036-4916</a>))

Maintainer Petr V. Nazarov <a href="https://orcid.org/0000-0003-3036-4916">petr.nazarov@lih.lu</a>
```

R topics documented:

	consica	2
	enrichGO	4
	estimateVarianceExplained	5
	getFeatures	6
	getGO	7
	get_score	8
	is.consICA	8
	oneICA	9
	plotICVarianceExplained	0
	samples_data	1
	saveReport	
	set_bpparam	3
	sortDataFrame	
	sortFeatures	
	survivalAnalysis	5
Index	10	6

consICA

Calculate consensus Independent Component Analysis

Description

calculate consensus independent component analysis (ICA)

Usage

```
consICA(
   X,
   ncomp = 10,
   ntry = 1,
   show.every = 1,
   filter.thr = NULL,
   ncores = 1,
   bpparam = NULL,
   reduced = FALSE,
   exclude = TRUE,
   fun = "logcosh",
   alg.typ = "deflation",
   verbose = FALSE
)
```

consICA 3

Arguments

X a 'SummarizedExperiment' object. Assay used as data matrix with features in

rows and samples in columns. See SummarizedExperiment-class

ncomp number of components.

ntry number of consensus runs. Default value is 1

show. every numeric logging period in iterations (disabled for 'ncore's > 1). Default value is

1

 $filter.\,thr \qquad Filter\,out\,\,genes\,\,(rows)\,\,with\,\,values\,\,lower\,\,than\,\,this\,\,value\,\,from\,\,{}^{\iota}X^{\iota}$

ncores number of cores to be set for parallel calculation. Default value is 1

bpparam parameters from the 'BiocParallel'

reduced If TRUE returns reduced result (no 'X', 'i.best', see 'return')

exclude are samples excluded during multiple run? If TRUE one random sample will be

excluded per run. Default is TRUE

fun the functional form of the G function used in the approximation to neg-entropy

in fastICA. Default value is "logcosh"

alg.typ parameter for fastICA(). If alg.typ == "deflation" the components are extracted

one at a time. If alg.typ == "parallel" the components are extracted simultane-

ously. Default value is "deflation"

verbose logic TRUE or FALSE. Use TRUE for print process steps. Default value is

FALSE

Value

a list with

X input 'SummarizedExperiment' object

nsamples, nfeatures

dimension of X

S, M consensus metagene and weight matrix

ncomp number of components

mr2 mean R2 between rows of M

stab stability, mean R2 between consistent columns of S in multiple tries. Applicable

only for 'ntry' > 1

i.best number of best iteration

Author(s)

Petr V. Nazarov

See Also

fastICA

4 enrichGO

Examples

```
data("samples_data")
# Deconvolve into independent components
cica <- consICA(samples_data, ncomp=15, ntry=10, show.every=0)
# X = S * M, where S - independent signals matrix, M - weights matrix
dim(samples_data)
dim(cica$S)
dim(cica$M)</pre>
```

enrichG0

Enrichment analysis of GO-terms based on Ensembl IDs

Description

Enrichment analysis of GO-terms for independent components with Ensembl IDs based on topGO package

Usage

```
enrichGO(
   genes,
   fdr = NULL,
   fc = NULL,
   ntop = NA,
   thr.fdr = 0.05,
   thr.fc = NA,
   db = "BP",
   genome = "org.Hs.eg.db",
   id = c("entrez", "alias", "ensembl", "symbol", "genename"),
   algorithm = "weight",
   do.sort = TRUE,
   randomFraction = 0,
   return.genes = FALSE
)
```

Arguments

```
genes
                  character vector with list of ENSEBML IDs
fdr
                  numeric vector of FDR for each gene
fc
                  numeric vector of logFC for each gene
                  number of first taken genes
ntop
thr.fdr
                  significance threshold for FDR
thr.fc
                  significance threshold for absolute logFC
                  name of GO database: "BP","MF","CC"
db
                  R-package for genome annotation used. For human - 'org.Hs.eg.db'
genome
```

id id

algorithm algorithm for 'runTest()'

do.sort if TRUE - resulted functions sorted by p-value

randomFraction for testing only, the fraction of the genes to be randomized return.genes If TRUE include genes in output. Default value is FALSE

Value

list with terms and stats

Author(s)

Petr V. Nazarov

estimateVarianceExplained

Estimate the variance explained by the model

Description

The method estimates the variance explained by the model and by each independent component. We used the coefficient of determination (R2) between the normalized input (X-mean(X)) and (S*M)

Usage

```
estimateVarianceExplained(cica, X = NULL)
```

Arguments

cica list compliant to 'consICA()' result

X a 'SummarizedExperiment' object. Assay used for the model. Will be used if

consICA\$X is NULL, ignore otherwise.

Value

a list of:

R2 total variance explained by the model

R2_ics Amount of variance explained by the each independent component

```
data("samples_data")
cica <- consICA(samples_data, ncomp=15, ntry=10, show.every=0)
var_ic <- estimateVarianceExplained(cica)</pre>
```

6 getFeatures

ge	tF	ea	tui	^es
5	C.	u	cui	CJ

Get features from consICA deconvolution result

Description

Extract names of features (rows in 'X' and 'S' matrices) and their false discovery rates values

Usage

```
getFeatures(cica, alpha = 0.05, sort = FALSE)
```

Arguments

cica list compliant to 'consICA()' result

alpha value in [0,1] interval. Used to filter features with FDR < 'alpha'. Default value

is 0.05

sort sort features decreasing FDR. Default is FALSE

Value

list of dataframes 'pos' for positive and 'neg' for negative affecting features with columns:

features names of features

fdr false discovery rate value

Author(s)

Petr V. Nazarov

```
data("samples_data")
# Get deconvolution of X matrix
cica <- consICA(samples_data, ncomp=10, ntry=1, show.every=0)
# Get features names and FDR for each component
features <- getFeatures(cica)
# Positive affecting features for first components are
ic1_pos <- features$ic.1$pos</pre>
```

getGO 7

getG0

Assigns IC signatures to Gene Ontologies

Description

Assigns extracted independent components to Gene Ontologies

Usage

```
getGO(
    IC,
    alpha = 0.05,
    genenames = NULL,
    genome = "org.Hs.eg.db",
    db = c("BP", "CC", "MF")
)
```

Arguments

IC list compliant to 'consICA()' result

alpha value in [0,1] interval. Used to filter features with FDR < 'alpha'. Default value

is 0.05

genenames alternative names of genes

genome R-package for genome annotation used. For human - 'org.Hs.eg.db'

db name of GO database: "BP","MF","CC"

Value

list for each db chosen (BP, CC, MM), with dataframes 'pos' for positive and 'neg' for negative affecting features for each component:

GO. ID id of gene ontology term

Term name of term

Annotated number of annotated genes
Significant number of significant genes

Expected estimate of the number of annotated genes if the significant genes would be randomly selected from the gene universe classisFisher

F-test

FDR false discovery rate value

Score genes score

Author(s)

Petr V. Nazarov

is.consICA

Examples

```
data("samples_data")
# cica <- consICA(samples_data, ncomp=40, ntry=1, show.every=0)
cica <- consICA(samples_data, ncomp=2, ntry=1, show.every=0) #exp timesave
GOs <- getGO(cica, db = "BP")</pre>
```

get_score

Create score depending on threshold and paradigm

Description

Create score depending on threshold and paradigm

Usage

```
get_score(genes, fc, thr.fc, fdr, thr.fdr, ntop)
```

Arguments

genes	character vector with list of ENSEBML IDs
fc	numeric vector of logFC for each gene
thr.fc	significance threshold for absolute logFC
fdr	numeric vector of FDR for each gene
thr.fdr	significance threshold for FDR
ntop	number of first taken genes

Value

numeric score vector

is.consICA

Is the object is consensus ICA compliant?

Description

Check if the object is a list in the same format as the result of 'consICA()'

Usage

```
is.consICA(cica)
```

Arguments

cica

list

oneICA 9

Value

TRUE or FALSE

Examples

oneICA

Runs fastICA

Description

Runs fastICA once and store in a consICA manner

Usage

```
oneICA(
   X,
   ncomp = 10,
   filter.thr = NULL,
   reduced = FALSE,
   fun = "logcosh",
   alg.typ = "deflation"
)
```

Arguments

X	a 'SummarizedExperiment' object. Assay used as data matrix with features in rows and samples in columns. See SummarizedExperiment-class
ncomp	number of components. Default value is 10
filter.thr	filter rows in input matrix with max value > 'filter.thr'. Default value is NULL
reduced	If TRUE returns reduced result (no X, see 'return')
fun	the functional form of the G function used in the approximation to neg-entropy in fastICA. Default value is "log \cos "
alg.typ	parameter for fastICA(). if alg.typ == "deflation" the components are extracted one at a time. if alg.typ == "parallel" the components are extracted simultaneously. Default value is "deflation"

Value

```
a list with

X input 'SummarizedExperiment' object nsamples, nfeatures dimension of X assay

S, M consensus metagene and weight matrix ncomp number of components
```

Author(s)

Petr V. Nazarov

See Also

fastICA

Examples

```
data("samples_data")
res <- oneICA(samples_data)</pre>
```

plotICVarianceExplained

Barplot variance explained by each IC

Description

Method to plot variance explained (R-squared) by the MOFA model for each view and latent factor. As a measure of variance explained for gaussian data we adopt the coefficient of determination (R2).

For details on the computation see the help of the estimateVarianceExplained function

Usage

```
plotICVarianceExplained(
  cica,
  sort = NULL,
  las = 2,
  title = "Variance explained per IC",
  x.cex = NULL,
  ...
)
```

samples_data 11

Arguments

cica	consICA compliant list
sort	specify the arrangement as 'asc'/'desc'. No sorting if NULL
las	orientation value for the axis labels (0 - always parallel to the axis, 1 - always horizontal, 2 - always perpendicular to the axis, 3 - always vertical)
title	character string with title of the plot
x.cex	specify the size of the tick label numbers/text with a numeric value of length 1
	extra arguments to be passed to barplot

Value

A numeric vector compliant to 'barplot' output

Examples

```
data("samples_data")
cica <- consICA(samples_data, ncomp=15, ntry=10, show.every=0)
p <- plotICVarianceExplained(cica, sort = "asc")</pre>
```

	samples_data	Samples of gene expression	
--	--------------	----------------------------	--

Description

A dataset containing the expression of 2454 genes for 472 samples from skin cutaneous melanoma (SKCM) TCGA cohort, their metadata such as age, gender, cancer type etc. and survival time-to-event data

Usage

```
data(samples_data)
```

Format

A SummarizedExperiment object:

```
assay expression matrix with genes by rows and samples by columns colData data frame with sample metadata (clinical variables)
```

12 saveReport

saveReport

Save PDF report with analysis of each independent component

Description

Save PDF report with description of each independent component (IC) consists of most affected genes, significant Go terms, survival model for the component, ANOVA analysis for samples characteristics and stability

Usage

```
saveReport(
   IC,
   Genes = NULL,
   GO = NULL,
   Var = NULL,
   surv = NULL,
   genenames = NULL,
   file = sprintf("report_ICA_%d.pdf", ncol(IC$S)),
   main = "Component # %d (stability = %.3f)",
   show.components = seq.int(1, ncol(IC$S)))
```

Arguments

IC	list compliant to 'consICA()' result
Genes	features list compilant to 'getFeatures' output (list of dataframes 'pos' for positive and 'neg' for negative affecting features with names of features false discovery rates columns). If NULL will generated automatically
GO	list compilant to 'get GO ' output. If not NULL the significant GO terms will printed in report
Var	matrix with samples metadata
surv	dataframe with time and event values for each sample
genenames	alternative gene names for printing in the report
file	report filename, ends with ".pdf"
main	title for each list discribes the component
show.components	
	which compont will be shown

Value

TRUE when successfully generate report

Author(s)

Petr V. Nazarov

set_bpparam 13

Examples

```
data("samples_data")
cica <- consICA(samples_data, ncomp=40, ntry=10, show.every=0)
GOs <- NULL
if(FALSE){
GOs <- getGO(cica, db = "BP")
}
saveReport(cica, GO=GOs, Var=samples_data$Var, surv = samples_data$Sur)</pre>
```

set_bpparam

Set up for the parallel computing for biocParallel Adapt from 'FEAST' This function sets up the environment for parallel computing.

Description

Set up for the parallel computing for biocParallel Adapt from 'FEAST' This function sets up the environment for parallel computing.

Usage

```
set_bpparam(ncores = 0, BPPARAM = NULL)
```

Arguments

ncores number of processors

BPPARAM bpparameter from bpparam

Value

BAPPARAM settings

sortDataFrame

Sort dataframe

Description

Sort dataframe, adapted from http://snippets.dzone.com/user/r-fanatic

Usage

```
sortDataFrame(x,key, ...)
```

Arguments

```
x a data.frame
key sort by this column
```

... other parameters for 'order' function (e. g. 'decreasing')

14 sortFeatures

Value

sorted dataframe

Examples

```
df \leftarrow data.frame("features" = c("f1", "f2", "f3"), fdr = c(0.02, 0.002, 1)) sortDataFrame(df, "fdr")
```

sortFeatures

Sort Genes of consICA object

Description

Sort Genes for independent components

Usage

```
sortFeatures(Genes)
```

Arguments

Genes

list compilant to 'getFeatures'output

Value

sorted list

survivalAnalysis 15

survivalAnalysis Survival analysis based on significant IC
--

Description

Cox regression (based on R package 'survival') on the weights of independent components with significant contribution in individual risk model. For more see Nazarov et al. 2019 In addition the function plot Kaplan-Meier diagram.

Usage

```
survivalAnalysis(IC, surv = NULL, time = NULL, event = NULL, fdr = 0.05)
```

Arguments

IC	list compliant to 'consICA()' result
surv	dataframe with time and event values for each sample. Use this parameter or 'time' and 'event'
time	survival time value for each sample
event	survival event factor for each sample (TRUE or FALSE)
fdr	false discovery rate threshold for significant components involved in final model. Default value is 0.05

Value

a list with

cox.model an object of class 'coxph' representing the fit. See 'coxph.object' for details hazard.score hazard score for significant components (fdr < 'fdr' in individual cox model)

```
data("samples_data")
# Get deconvolution of X matrix
cica <- consICA(samples_data, ncomp=10, ntry=1, show.every=0)
surv <- survivalAnalysis(cica,
   surv = SummarizedExperiment::colData(samples_data)[,c("time", "event")])</pre>
```

Index

```
\ast datasets
    samples_data, 11
{\tt barplot}, {\color{red} {\it II}}
consICA, 2
enrichGO, 4
estimateVarianceExplained, 5, 10
fastICA, 3, 9, 10
get_score, 8
getFeatures, 6
getGO, 7
is.consICA, 8
oneICA, 9
\verb|plotICVarianceExplained|, 10
samples_data, 11
saveReport, 12
set\_bpparam, 13
sortDataFrame, 13
\verb|sortFeatures|, 14|
survivalAnalysis, 15
```