
Package ‘bigmelon’
April 10, 2023

Type Package

Title Illumina methylation array analysis for large experiments

Version 1.24.0

Description Methods for working with Illumina arrays using gdsfmt.

License GPL-3

Depends R (>= 3.3), wateRmelon (>= 1.25.0), gdsfmt (>= 1.0.4),
methods, minfi (>= 1.21.0), Biobase, methylumi

Imports stats, utils, GEOquery, graphics, BiocGenerics, illuminaio

Suggests BiocGenerics, RUnit, BiocStyle, minfiData, parallel,
IlluminaHumanMethylation450kanno.ilmn12.hg19,
IlluminaHumanMethylationEPICanno.ilm10b2.hg19, bumphunter

LazyLoad yes

Collate zzz.R es2gds.R dasenGds.R dbGdsn.R dfsfitGdsn.R gds2mlumi.R
gdsnclass_methods.R inout.R pfilterGds.R prcompGdsn.R
pwodGdsn.R qnGdsn.R comboGds.R ranknorm.R GEOtoGDS.R ecc.gdsn.R
bumphunterGdsn.R

biocViews DNAMethylation, Microarray, TwoChannel, Preprocessing,
QualityControl, MethylationArray, DataImport, CpGIsland

NeedsCompilation no

git_url https://git.bioconductor.org/packages/bigmelon

git_branch RELEASE_3_16

git_last_commit 77478bf

git_last_commit_date 2022-11-01

Date/Publication 2023-04-10

Author Tyler J. Gorrie-Stone [cre, aut],
Ayden Saffari [aut],
Karim Malki [aut],
Leonard C. Schalkwyk [aut]

Maintainer Tyler J. Gorrie-Stone <tyler.gorrie-stone@diamond.ac.uk>

1

2 bigmelon-package

R topics documented:
bigmelon-package . 2
app2gds . 3
backup.gdsn . 4
bigmelon-accessors . 5
bigmelon-normalization . 7
bumphunterEngine.gdsn . 8
cantaloupe . 10
combo.gds . 11
dasenrank . 12
es2gds . 13
estimateCellCounts . 14
finalreport2gds . 16
gds2mlumi . 16
GEOtoGDS . 17
getquantilesandranks . 18
iadd . 19
pfilter.gds . 21
prcomp.gds.class . 22
pwod.gdsn . 23
redirect.gds . 24
wm-port . 25

Index 27

bigmelon-package Write large-scale Illumina array datasets to CoreArray Genomic Data
Structure (GDS) data files for efficient storage, access, and modifica-
tion.

Description

Functions for storing Illumina array data as CoreArray Genomic Data Structure (GDS) data files
(via the gdsfmt package), appending these files , and applying array normalization methods from
the wateRmelon package.

Details

Package: bigmelon
Type: Package
Version: 1.13.8
Date: 2020-02-24
License: GPL3

app2gds 3

Author(s)

Tyler Gorrie-Stone Leonard C Schalkwyk, Ayden Saffari, Karim Malki. Who to contact: <t.gorrie-
stone@qmul.ac.uk>, <lschal@essex.ac.uk>

References

[1]Tyler J Gorrie-Stone, Melissa C Smart, Ayden Saffari, Karim Malki, Eilis Hannon, Joe Bur-
rage, Jonathan Mill, Meena Kumari, Leonard C Schalkwyk: Bigmelon: tools for analysing large
DNA methylation datasets, Bioinformatics, Volume 35, Issue 6, 15 March 2019, Pages 981-986.
https://doi.org/10.1093/bioinformatics/bty713

[2]Pidsley R, Wong CCY, Volta M, Lunnon K, Mill J, Schalkwyk LC: A data-driven approach to
preprocessing Illumina 450K methylation array data. BMC genomics, 14(1), 293.

See Also

es2gds, dasen, wateRmelon, gdsfmt.

app2gds Append a MethyLumiSet object to a preexisting gds file

Description

This function will append a MethyLumiSet object to a gds file and return a gds.class object.

Usage

app2gds(m, bmln)

Arguments

m The MethyLumiSet object to be appended to the gds file, with the same number
of rows as the gds file.

bmln Either: A gds.class object
Or: A character string specifying the filepath of an existing .gds file to write to.
Or: A character string specifying the file path of a new .gds file to write to

Details

Currently this function only takes a MethyLumiSet object as the only type of eligible input. This
function will also produce unexpected results if the number of rows of the new object does not
match the existing .gds file. Hopefully the function will noisily fail if this is the case however to
prevent any errors from occuring it is recommended that raw idat files are read in using readEPIC
or appended with iadd or iadd2 to ensure that all rows are of the same length and have the same
annotation.

4 backup.gdsn

Value

A gds.class object pointed towards the newly appended .gds file.

Author(s)

Leonard C Schalkwyk, Ayden Saffari, Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

See Also

es2gds, iadd, iadd2.

Examples

#load example dataset
data(melon)

#split data into halves
melon_1 <- melon[,1:6]
melon_2 <- melon[,7:12]

#convert first half to gds
e <- es2gds(melon_1,'1_half_melon.gds')

#append second half to existing gds file
f <- app2gds(melon_2,e)

unlink("1_half_melon.gds")

backup.gdsn Copy gds node to a backup folder within gds object

Description

This function will copy a designated gdsn.class object stored inside a gds object to a backup folder
(aptly named backup). If the backup folder does not exist, this will be created. This is a wrapper to
copyto.gdsn which should be used if one wishes to copy a gds node to a seperate gds file.

Usage

backup.gdsn(gds = NULL, node)

Arguments

gds If NULL, function will call getfolder.gdsn to find the root node. Otherwise,
user can specify a separate gds.class object to copy the specified node to.

node gdsn.class object (a gds node) which can be specified using index.gdsn

bigmelon-accessors 5

Value

A gdsobject with an additional folder called backup with supplied node within.

Author(s)

Tyler Gorrie-Stone <t.gorrie-stone@qmul.ac.uk>

See Also

copyto.gdsn

Examples

data(melon)
e <- es2gds(melon, "melon.gds")
nod <- index.gdsn(e, "betas")
backup.gdsn(gds = NULL, node = nod)
closefn.gds(e)
unlink("melon.gds")

bigmelon-accessors Bigmelon accessors

Description

Functions to access data nodes in gds.class objects.

Usage

S4 method for signature 'gds.class'
betas(object)
S4 method for signature 'gds.class'
methylated(object)
S4 method for signature 'gds.class'
unmethylated(object)
S4 method for signature 'gds.class'
pvals(object)
S4 method for signature 'gds.class'
fData(object)
S4 method for signature 'gds.class'
pData(object)
S4 method for signature 'gds.class'
QCmethylated(object)
S4 method for signature 'gds.class'
QCunmethylated(object)
S4 method for signature 'gds.class'
QCrownames(object)

6 bigmelon-accessors

S4 method for signature 'gds.class'
getHistory(object)
S4 method for signature 'gds.class'
colnames(x, do.NULL=TRUE, prefix=NULL)
S4 method for signature 'gds.class'
rownames(x, do.NULL=TRUE, prefix=NULL)
S4 method for signature 'gds.class'
exprs(object)
S4 method for signature 'gds.class'
fot(x)

Arguments

object A gds.class object.
for colnames and rownames:

x A gds.class object.

do.NULL logical. If ’FALSE’ and names are ’NULL’, names are created.

prefix prefix: for created names.

Details

Each function will return the data stored in the corresponding node as either a gdsn.class object,
matrix, or data.frame. These are names following the conventions of the methylumi package and
perform similar functions.

Each function which returns a gdsn.class object can be further index using the ’[’ operators. This
includes an additional name argument which optionally returns the named attributes to the data as
these are not stored inside the gdsn.node.

The QC functions will return the QC data as a matrix, these are seperated for methylation and
unmethylated values and the rownames.

exprs will return a data.frame from beta values for all probes and all samples.

Value

Returns specified node representing the called accessor

Author(s)

Leonard C Schalkwyk, Ayden Saffari, Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

Examples

data(melon)
e <- es2gds(melon,'wat_melon.gds')
betas(e)
head(betas(e)[,])
methylated(e)[1:5, 1:3]
unmethylated(e)[1:3 ,1:5]
pvals(e)[1:5, 1:5]

bigmelon-normalization 7

head(fData(e))
head(pData(e))
head(colnames(e))
head(rownames(e))

closefn.gds(e)
unlink("wat_melon.gds")

bigmelon-normalization

Bigmelon Quantile Normalization methods.

Description

Set of functions that are used to perform quantile normalization methods on gds.class objects.

Usage

S4 method for signature 'gds.class'
dasen(mns, fudge = 100, ret2 = FALSE, node="betas",...)
dasen.gds(gds, node, mns, uns, onetwo, roco, fudge, ret2)
qn.gdsn(gds, target, newnode)
db.gdsn(gds, mns, uns)
dfsfit.gdsn(gds, targetnode, newnode, roco, onetwo)

Arguments

gds A gds.class object

node The "name" of desired output gdsn.class node

mns The gdsn.class node that corresponds to "methylated" intensities.

uns The gdsn.class node that corresponds to "unmethylated" intensities.

onetwo The gdsn.class node that corresponds to probe designs (in reference to 450k
and EPIC arrays) OR character string pointing to location of gdsn.class node.
e.g. "fData/DESIGN" OR vector containing probe design types of length > 1.

roco This allows a background gradient model to be fit. This is split from data col-
umn names by default. roco=NULL disables model fitting (and speeds up pro-
cessing), otherwise roco can be supplied as a character vector of strings like
’R01C01’ (only 3rd and 6th characters used).

fudge The value added to total intensity to prevent denominactors close to zero when
calculation betas. default = 100

ret2 if TRUE, appends the newly calculated methylated and unmethylated intensities
to original gds (as specified in gds arguement). Will overwrite the raw intensi-
ties.

target Target gdsn.class node to perform normalization on. If using "*****.gds"
method you do not need to specify this.

8 bumphunterEngine.gdsn

targetnode Target gdsn.class node to perform normalization on. If using "*****.gds"
method you do not need to specify this.

newnode "name" of desired output gdsn.class node. If using "*****.gds" method you
do not need to specify this.

... Additional args such as roco or onetwo.

Details

Each function performs a normalization method described within the wateRmelon package. Func-
tions: qn.gdsn, design.qn.gdsn, db.gdsn and dfsfit.gdsn are described to allow users to create
their own custom normalization methods. Otherwise calling dasen or dasen.gds e.t.c will perform
the necessary operations for quantile normalization.

Each ’named’ normalization method will write a temporary gds object called "temp.gds" into the
current working directory and it is removed when normalization is complete. Current methods sup-
plied by default arguments will replace the raw betas with normalized betas, but leave the methy-
lated and unmethylated intensities unprocessed.

Value

Normalization methods return nothing but will affect the gds file and replace/add nodes given to the
function.

Author(s)

Tyler J Gorrie-Stone <t.gorrie-stone@qmul.ac.uk>

See Also

wateRmelon, dasen

Examples

data(melon)
e <- es2gds(melon,'wat_melon.gds')
dasen(e)
closefn.gds(e) # Close gds object
unlink('wat_melon.gds') # Delete Temp file

bumphunterEngine.gdsn Bumphunter using bigmelon

Description

Estimate regions for which a genomic profile deviates from its baseline value. Originally imple-
mented to detect differentially methylated genomic regions between two populations. Functions
identically to bumphunter.

bumphunterEngine.gdsn 9

Usage

bumphunterEngine.gdsn(mat, design, chr = NULL, pos, cluster = NULL, coef = 2, cutoff = NULL, pickCutoff = FALSE, pickCutoffQ = 0.99, maxGap = 500, nullMethod=c("permutation","bootstrap"), smooth = FALSE, smoothFunction = locfitByCluster, useWeights = FALSE, B=ncol(permutations), permutations=NULL, verbose = TRUE, ...)

Arguments

mat A gdsn.class object (e.g betas(gfile)

design Design matrix with rows representing samples and columns representing covari-
ates. Regression is applied to each row of mat.

chr A character vector with the chromosomes of each location.

pos A numeric vector representing the chromosomal position.

cluster The clusters of locations that are to be analyzed together. In the case of microar-
rays, the clusters are many times supplied by the manufacturer. If not available
the function clusterMaker can be used to cluster nearby locations.

coef An integer denoting the column of the design matrix containing the covariate
of interest. The hunt for bumps will be only be done for the estimate of this
coefficient.

cutoff A numeric value. Values of the estimate of the genomic profile above the cutoff
or below the negative of the cutoff will be used as candidate regions. It is possi-
ble to give two separate values (upper and lower bounds). If one value is given,
the lower bound is minus the value.

pickCutoff Should bumphunter attempt to pick a cutoff using the permutation distribution?

pickCutoffQ The quantile used for picking the cutoff using the permutation distribution.

maxGap If cluster is not provided this maximum location gap will be used to define clus-
ter via the clusterMaker function.

nullMethod Method used to generate null candidate regions, must be one of ‘bootstrap’ or
‘permutation’ (defaults to ‘permutation’). However, if covariates in addition to
the outcome of interest are included in the design matrix (ncol(design)>2), the
‘permutation’ approach is not recommended. See vignette and original paper
for more information.

smooth A logical value. If TRUE the estimated profile will be smoothed with the
smoother defined by smoothFunction

smoothFunction A function to be used for smoothing the estimate of the genomic profile. Two
functions are provided by the package: loessByCluster and runmedByCluster.

useWeights A logical value. If TRUE then the standard errors of the point-wise estimates of
the profile function will be used as weights in the loess smoother loessByCluster.
If the runmedByCluster smoother is used this argument is ignored.

B An integer denoting the number of resamples to use when computing null distri-
butions. This defaults to 0. If permutations is supplied that defines the number
of permutations/bootstraps and B is ignored.

permutations is a matrix with columns providing indexes to be used to scramble the data
and create a null distribution when nullMethod is set to permutations. If the
bootstrap approach is used this argument is ignored. If this matrix is not supplied
and B>0 then these indexes are created using the function sample.

10 cantaloupe

verbose logical value. If TRUE, it writes out some messages indicating progress. If FALSE
nothing should be printed.

... further arguments to be passed to the smoother functions.

Details

This function is a direct replication of the bumphunter function by Rafael A. Irizarry, Martin J.
Aryee, Kasper D. Hansen, and Shan Andrews.

Author(s)

Original Function by Rafael A. Irizarry, Martin J. Aryee, Kasper D. Hansen, and Shan Andrews.
Bigmelon implementation by Tyler Gorrie-Stone Who to contact if this all goes horribly wrong:
<t.gorrie-stone@qmul.ac.uk>

cantaloupe Small MethyLumi 450k data sets for testing

Description

Small MethyLumi 450k data sets intended for testing purposes only.

Usage

data(cantaloupe)
data(honeydew)

Format

cantaloupe: MethyLumiSet with assayData containing 841 features, 3 samples. honeydew: Methy-
LumiSet with assayData containing 841 features, 4 samples.

Value

Loads data into R

combo.gds 11

combo.gds Combine two different gds objects together

Description

Function will attempt to combine together the shared gdsn.class nodes between two gds object
depending on the dimensions of the primary gds.class object.

Usage

combo.gds(file, primary, secondary)

Arguments

file Name of the new gds file to be created.

primary A gds.class object.

secondary A gds.class object.

Details

–EXPERIMENTAL– Will crudely combine shared nodes between primary and secondary based on
the dimensions / rownames of the primary node. NAs will be coerced where probes are missing
from secondary gds.

Currently will only look for nodes with the names "betas", "methylated", "unmethylated", "pvals"
and "NBeads".

Value

Returns (and creates) as new gds file in the specified location with the combination of two gds
objects together.

Note

Will lose information relating to "pData". Therefore we recommend compiling separate pData
object manually and adding combined pData post-function

Author(s)

Tyler Gorrie-Stone <t.gorrie-stone@qmul.ac.uk>

Examples

data(melon)
a <- es2gds(melon[,1:6], "primary.gds")
b <- es2gds(melon[,7:12], "secondary.gds")

ab <- combo.gds("combo.gds", primary = a, secondary = b)

12 dasenrank

closefn.gds(a)
unlink("primary.gds")
closefn.gds(b)
unlink("secondary.gds")
closefn.gds(ab)
unlink("combo.gds")

dasenrank Dasen Quantile Normalization by storing ranks

Description

This performs an experimental variant of dasen normalisation for .gds format objects which stores
the ranks of the methylated and unmethylated intensities inside of the normalised values and inter-
polates the quantiles when they are needed.

Notably this eliminates a secondary re-sorting pass which is required by quantile normalisatoin as
it will be performed downstream using computebeta.gds which will produce normalise betas or
manually with ’[’ which will access the ranks and interpolate the specific quantiles as needed.

Usage

dasenrank(gds, mns, uns, onetwo, roco, calcbeta = NULL, perc = 1)
computebeta.gds(gds, new.node, mns, uns, fudge)

Arguments

gds gds.class object which contains methylated and unmethylated intensities. The
function will write two (four) nodes to this object called ’mnsrank’ and ’un-
srank’ which contain the ranks of the given nodes.

mns gdsn.class object OR character string that refers to location in gds that relates to
the (raw) methylated intensities.

uns gdsn.class object OR character string that refers to location in gds that relates to
the (raw) unmethylated intensities.

onetwo gdsn.class object OR character string that refers to location in gds that contains
information relating to probe design OR vector of length equal to the number
of rows in the array that contains ’I’ and ’II’ in accordance to Illumina Human-
Methylation micro-array design.

roco Sentrix (R0#C0#) position of all samples.

calcbeta Default = NULL, if supplied with a string, a new gdsn.node will be made with
supplied string, which will contain the calculated betas.

perc A number between 0 and 1 that relates to the given proportion of columns that
are used to normalise the data. Default is set to 1, but incase there are lots of
samples to normalise this number can be reduce to increase speed of code.

new.node Character string depicting name of new betas node in given gds object.

fudge Arbitrary value to offset low intensities

es2gds 13

Details

calcbeta is a known bottle-neck for this code! Also function is highly experimental.

Value

Nothing is returned to the R environment, however the supplied gds will have 4 or 5 gdsn.nodes
added. These are: ’mnsrank’, ’unsrank’, ’isnamnsrank’ (hidden), ’isnaunsrank’(hidden) and cal-
cbeta if supplied. ’mnsrank’ and ’unsrank’ have been given some attributes - which contain the
calculated quantiles from getquantilesandranks.

Author(s)

Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

Examples

data(melon)
e <- es2gds(melon, "melon.gds")
#dasenrank(gds = e)
closefn.gds(e)
unlink("melon.gds")

es2gds Coersion method for MethyLumiSet, RGChannelSet or MethylSet to
CoreArray Genomic Data Structure (GDS) data file

Description

The es2gds function takes a MethyLumiSet, RGChannelSet or MethylSet data object and converts
it into a CoreArray Genomic Data Structure (GDS) data file (via the gdsfmt package), returning this
as a gds.class object for use with bigmelon.

Usage

es2gds(m, file, qc = TRUE)

Arguments

m A MethyLumiSet, RGChannelSet or MethylSet object

file A character string specifying the name of the .gds file to write to.

qc When set to true (default), data from control probes included.

Value

A gds.class object, which points to the newly created .gds file.

14 estimateCellCounts

Author(s)

Leonard C Schalkwyk, Ayden Saffari, Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

See Also

app2gds, iadd.

Examples

#load example dataset
data(melon)
#convert to gds
e <- es2gds(melon,'melon.gds')
closefn.gds(e)
unlink('melon.gds')

estimateCellCounts Cell Proportion Estimation using bigmelon

Description

Estimates the relative proprotion of pure cell types within a sample, identical to estimateCellCounts.
Currently, only a reference data-set exists for 450k arrays. As a result, if performed on EPIC data,
function will convert gds to 450k array dimensions (this will not be memory efficient).

Usage

estimateCellCounts.gds(
gds,
gdPlatform = c("450k", "EPIC", "27k"),
mn = NULL,
un = NULL,
bn = NULL,
perc = 1,
compositeCellType = "Blood",
probeSelect = "auto",
cellTypes = c("CD8T","CD4T","NK","Bcell","Mono","Gran"),
referencePlatform = c("IlluminaHumanMethylation450k",

"IlluminaHumanMethylationEPIC",
"IlluminaHumanMethylation27k"),

returnAll = FALSE,
meanPlot = FALSE,
verbose=TRUE,
...)

estimateCellCounts 15

Arguments

gds An object of class gds.class, which contains (un)normalised methylated and un-
methylated intensities

gdPlatform Which micro-array platform was used to analysed samples

mn ’Name’ of gdsn node within gds that contains methylated intensities, if NULL
it will default to ’methylated’ or ’mnsrank’ if dasenrank was used prior

un ’Name’ of gdsn node within gds that contains unmethylated intensities, if NULL
it will default to ’unmethylated’ or ’unsrank’ if dasenrank was used prior

bn ’Name’ of gdsn node within gds that contains un(normalised) beta intensities. If
NULL - function will default to ’betas’.

perc Percentage of query-samples to use to normalise reference dataset. This should
be 1 unless using a very large data-set which will allow for an increase in per-
formance

compositeCellType

Which composite cell type is being deconvoluted. Should be either "Blood",
"CordBlood", or "DLPFC"

probeSelect How should probes be selected to distinguish cell types? Options include "both",
which selects an equal number (50) of probes (with F-stat p-value < 1E-8) with
the greatest magnitude of effect from the hyper- and hypo-methylated sides,
and "any", which selects the 100 probes (with F-stat p-value < 1E-8) with the
greatest magnitude of difference regardless of direction of effect. Default input
"auto" will use "any" for cord blood and "both" otherwise, in line with previous
versions of this function and/or our recommendations. Please see the references
for more details.

cellTypes Which cell types, from the reference object, should be we use for the deconvo-
lution? See details.

referencePlatform

The platform for the reference dataset; if the input rgSet belongs to another
platform, it will be converted using convertArray.

returnAll Should the composition table and the normalized user supplied data be return?

verbose Should the function be verbose?

meanPlot Whether to plots the average DNA methylation across the cell-type discrimating
probes within the mixed and sorted samples.

... Other arguments, i.e arguments passed to plots

Details

See estimateCellCounts for more information regarding the exact details. estimateCellCounts.gds
differs slightly, as it will impose the quantiles of type I and II probes onto the reference Dataset
rather than normalising the two together. This is 1) More memory efficient and 2) Faster - due to
not having to normalise out a very small effect the other 60 samples from the reference set will have
on the remaining quantiles.

Optionally, a proportion of samples can be used to derive quantiles when there are more than 1000
samples in a dataset, this will further increase performance of the code at a cost of precision.

16 gds2mlumi

finalreport2gds Read finalreport files and convert to genomic data structure files

Description

Function to easily load Illumina methylation data into a genomic data structure (GDS) file.

Usage

finalreport2gds(finalreport, gds, ...)

Arguments

finalreport A filename of the text file exported from GenomeStudio

gds The filename for the gds file to be created

... Additional arguments passed to methylumiR

Details

Creates a .gds file.

Value

A gds.class object

Author(s)

Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

Examples

finalreport <- "finalreport.txt"
Not run: finalreport2gds(finalreport, gds="finalreport.gds")

gds2mlumi Convert Genomic Data Structure file to Methylumiset or Methylset ob-
ject.

Description

Convert a Genomic Data Structure object back into a methylumi object, with subsetting features.

Usage

gds2mlumi(gds, i, j)
gds2mset(gds, i, j, anno)

GEOtoGDS 17

Arguments

gds a gds object
i Index of rows
j Index of Columns
anno If NULL, function will attempt to guess the annotation to be used. Otherwise

can be specified with either "27k", "450k", "epic" or "unknown".

Value

A methylumi object

Author(s)

Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

Examples

data(melon)
e <- es2gds(melon, "melon.gds")
gds2mlumi(e)
closefn.gds(e)
unlink("melon.gds")

GEOtoGDS Download data from GEO and convert it into a gdsfmt object

Description

Uses the GEOquery R package to download a GSE Accession into the current working directory.
This will only work for GSE’s that have raw idat files associated with them.

Usage

geotogds(geo, gds, method = "wget", keepidat = F, keeptar = F, ...)

Arguments

geo Either a GEO accession number (’GSE########’) or a previously downloaded
tarball ’GSE######.tar.gz’

gds A character string that specifies the path and name of the .gds file you want to
write to.

method Character value to indicate which method should be used to download data from
GEO. Default is ’wget’

keepidat Logical, indicate whether or not raw idat files in the working directon should be
removed after parsing, if FALSE: idat files will be removed.

keeptar Logical, indicate whether or not the downloaded tarball should be removed after
parsing, if FALSE: the tarball will be removed.

... Additional Arguments to pass to other functions (if any)

18 getquantilesandranks

Value

geotogds will return a gds.class object that will point towards a the newly created .gds file with
majority of downloaded contents inside.

Author(s)

Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

Examples

#load example dataset
gfile <- geotogds("GSE*******", "Nameoffile.gds")
Will not work if gds has no idats submitted. May also fail if idats
are not deposited in a way readily readable by readEPIC().
closefn.gds(gfile)

getquantilesandranks Compute the quantiles and ranks for a given gdsn.node

Description

Used inside dasenrank to generate the quantiles for both type ’I’ and type ’II’ probes to normalise
DNA methylation data using bigmelon.

Usage

getquantilesandranks(gds, node, onetwo, rank.node = NULL, perc = 1)

Arguments

gds A gds.class object

node A gdsn.class object, or a character string that refers to a node within supplied
gds.

onetwo gdsn.class object OR character string that refers to location in gds that contains
information relating to probe design OR vector of length equal to the number
of rows in the array that contains ’I’ and ’II’ in accordance to Illumina Human-
Methylation micro-array design. This can be obtained with fot(gds)

rank.node Default = NULL. If supplied with character string, function will calculate the
ranks of given node and store them in gds. Additionally, the computed quan-
tiles will now instead be attributed to rank.node which can be accessed with
get.attr.gdsn

perc A number between 0 and 1 that relates to the given proportion of columns that
are used to normalise the data. Default is set to 1, but in cases where there many
of samples to normalise this number can be reduced to increase speed of code.

iadd 19

Details

Used in dasenrank, can be used externally for testing purposes.

Value

If rank.node is NULL. A list containing quantiles, intervals and supplied probe design will be
returned. If rank.node was supplied, nothing will be returned. Instead a new node will be created in
given gds that has the otherwise returned list attached as an attribute. Which can be accessed with
get.attr.gdsn

Author(s)

Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

Examples

data(melon)
e <- es2gds(melon, "melon.gds")
output <- getquantilesandranks(gds = e, 'methylated', onetwo = fot(e), perc = 1, rank.node = NULL)
with-out put.
#getquantilesandranks(gds = e, 'methylated', onetwo = fot(e), perc = 1, rank.node = 'mnsrank')
closefn.gds(e)
unlink("melon.gds")

iadd Add data from Illumina IDAT files to a gds file.

Description

iadd will add data from multiple, specified, idat files providing ’/path/to/barcode’ is valid path to a
specified gds file. Barcode here implies the first part of the idat file name i.e without ’_(Red|Grn).idat’

iadd2 will add data from all idat files that are stored within a single directory to a gds file.

idats2gds will add data from a set of barcodes into the same gds file, one by one, optionally will han-
dle idat files from different maps providing force=TRUE. However, will not combine from arrays
of differing types e.g. 450k vs EPIC.

Usage

iadd(bar, gds, n = TRUE, force = FALSE, target_cpgs = NULL, ...)
iadd2(path, gds, chunksize = NULL, force=FALSE, ...)
idats2gds(barcodes, gds, n=TRUE, force = FALSE, ...)

20 iadd

Arguments

bar The barcode for an IDAT file OR the file path of the file containing red or green
channel intensities for that barcode (this will automatically locate and import
both files regardless of which one you provide)

path The file path where (multiple) IDAT files exist. iadd2 will process every idat
within the specified directory.

gds Either: A gds.class object

Or: A character string specifying the name of an existing .gds file to write to.

Or: A character string specifying the name of a new .gds file to write to

chunksize If NULL, iadd2 will read in all barcodes in one go. Or if supplied with a numeric
value, iadd2 will read in that number of idat files in batches

n Logical, whether or not bead-counts are extracted from idat files.

Force Logical, whether or not rownames from the first idat file are applied to all idat
files. Useful in combining together idat files of differing lengths.

target_cpgs A vector of CpGs to specifically read in and set the dimensions of array to.

... Additional Arguments passed to wateRmelons methylumIDATepic.

Value

returns a gds.class object, which points to the appended .gds file.

Author(s)

Tyler Gorrie-Stone, Leonard C Schalkwyk, Ayden Saffari. Who to contact: <tyler.gorrie-stone@diamond.ac.uk>

See Also

es2gds, app2gds.

Examples

if(require('minfiData')){
bd <- system.file('extdata', package='minfiData')
gfile <- iadd2(file.path(bd, '5723646052'), gds = 'melon.gds')
closefn.gds(gfile)
unlink('melon.gds')
}

pfilter.gds 21

pfilter.gds Basic data filtering for Illumina methylation data in gds objects

Description

The pfilter function filters data sets based on bead count and detection p-values. The user can set
their own thresholds or use the default pfilter settings. This specific function will take a Genomic
Data Structure (GDS) file as input and perform pfilter similar to how pfilter in wateRmelon is
performed.

Usage

S4 method for signature 'gds.class'
pfilter(mn, perCount = NULL, pnthresh = NULL,
perc = NULL, pthresh = NULL)

Arguments

mn a gds object OR node corresponding to methylated intensities

perCount Threshold specifying which sites should be removed if they have a given per-
centage of samples with a beadcount <3, default = 5

pnthresh cut off for detection p-value, default= 0.05

perc remove sample having this percentage of sites with a detection p-value greater
than pnthresh, default = 1

pthresh Threshold specifying which sites should be removed if they have a given per-
centage of samples with a detection p-value greater than pnthresh, default = 1

Value

See pfilter. If using pfilter.gds, function If using pfilter.gds function will return a list of containing
two locical vectors of length(nrow) and lneght(ncol) which can be used to subset data. Otherwise if
called using pfilter data will be subsetted automatically.

Author(s)

Tyler Gorrie-Stone, Original (wateRmelon) Function by Ruth Pidsley Who to Contact: <t.gorrie-
stone@qmul.ac.uk

See Also

pfilter

22 prcomp.gds.class

Examples

data(melon)
e <- es2gds(melon, "melon.gds")
pfilter(e)
closefn.gds(e)
unlink("melon.gds")

prcomp.gds.class Principal Component Analysis for high-dimensional data

Description

Performs principal components analysis on the given gds object and returns the results as an object
of class "prcomp".

Usage

S3 method for class 'gds.class'
prcomp(x, node.name, center = FALSE, scale. = FALSE,
rank. = NULL, retx = FALSE, tol = NULL, perc = 0.01,
npcs = NULL, parallel = NULL, method = c('quick', 'sorted'), verbose = FALSE, ...)

Arguments

x A gds.class object.
node.name Name of the gdsn.class node to learn principal components from
center Logical value indicating whether variables should be shifted to be zero centered.
scale. Logical value indicating whether the variables should be scaled to have unit

variance
tol a value indicating the magnitude below which components should be omitted.
rank. (Still functional) Number of principal components to be returned
retx a logical value indicating whether the rotated variables should be returned.
perc The percentage of the number of rows that should be used to calculate principle

components. Ranging from 0 to 1, a value of 1 would indicicate all rows will be
used.

npcs Number of principal components to be returned
parallel Can supply either a cluster object (made from makeCluster) or a integer describ-

ing the number of cores to be used. This is only used if method="sorted".
method Indicates whhich method to use out of "quick" and "sorted". "quick" stochasti-

cally selects number of rows according to perc. And the supplies them to svd.
"sorted" determines the interquartile range for each row then selects the top per-
centage (according to perc) of probes with the largest interquartile range and
supplies selected rows to svd.

verbose A logical value indicating whether message outputs are displayed.
... arguments passed to or from other methods. If "x" is a formula one might specify

"scale." or "tol".

pwod.gdsn 23

Details

The calculation is done by a singular value decomposition of the (centered and possibly scaled) data
matrix, not by using "eigen" on the covariance matrix. This is generally the preferred method for
numerical accuracy. The "print" method for these objects prints the results in a nice format and the
"plot" method produces a scree plot.

Value

An object of prcomp class

Examples

data(melon)
e <- es2gds(melon, "melon.gds")
prcomp(e, node.name="betas", perc=0.01, method='quick')
closefn.gds(e)
unlink("melon.gds")

pwod.gdsn Probe-Wise Outlier Detection for DNA methylation data.

Description

Function performed outlier detection for each probe (row) using Tukey’s Interquartile Range method.

Usage

pwod.gdsn(node, mul = 4)

Arguments

node gdsn.class node that contains the data matrix to be filtered

mul The number of interquartile ranges used to determine outlying probes. Default
is 4 to ensure only very obvious outliers are removed.

Details

Detects outlying probes across arrays in methylumi and minfi objects.

Value

Nothing is returned. However the supplied gds object (of-which the node is a child of) will have a
new node with NAs interdispersed where outliers are found.

Author(s)

Tyler Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

24 redirect.gds

See Also

pwod

Examples

data(melon)
e <- es2gds(melon, "melon.gds")
pwod(e)
closefn.gds(e)
unlink("melon.gds")

redirect.gds Change the location of the paths for row and column names in a gds
file.

Description

Change how a gds object ascribes row and column names by changing the paths node of a gds file.
Although a bit laborious, the row and column information is not preserved inside a node which
contains data. Thusly during accession the row and column names are attributed after data has been
accessed.

Usage

redirect.gds(gds, rownames, colnames)

Arguments

gds gds.class object containing node named "paths".

rownames Character string that points to named part of supplied gds that corresponds to
rownames. e.g. "fData/Target_ID". Default = "fData/Probe_ID"

colnames Character string that points to names part of supplied gds that corresponds to
colnames. e.g. "pData/Sample_ID". Default = "pData/barcode"

Details

This function is particularly important within many functions inside bigmelon and may lead to
downstream errors if the row and column names are not correctly specified. If data is read in
through es2gds the path nodex should be correctly set up and all downstream analysis will carry out
as normal. Will fail noisily if given a pathway that does not exist.

Value

Changes the gdsn.class node named "paths" to supplied rownames and colnames within supplied
gds.class object.

wm-port 25

Author(s)

Tyler J. Gorrie-Stone Who to contact: <t.gorrie-stone@qmul.ac.uk>

See Also

add.gdsn, app2gds, es2gds

Examples

data(melon)
e <- es2gds(melon, "melon.gds") # Create gds object
redirect.gds(e, rownames = "fData/TargetID", colnames = "pData/sampleID")
Deleting Temp files
closefn.gds(e)
unlink("melon.gds")

wm-port Functions imported from wateRmelon

Description

Manual page for methods for the extraenous functions from wateRmelon. For more details for
specific functions see the respective manual pages in wateRmelon.

Usage

S4 method for signature 'gdsn.class,gdsn.class'
qual(norm, raw)
S4 method for signature 'gds.class'
predictSex(x, x.probes=NULL, pc=2, plot=TRUE, irlba=TRUE, center=FALSE, scale.=FALSE)
S4 method for signature 'gdsn.class'
predictSex(x, x.probes=NULL, pc=2, plot=TRUE, irlba=TRUE, center=FALSE, scale.=FALSE)

Arguments

norm normalized node (gdsn.class)
raw raw node (gdsn.class)
x gdsclass object or node corresponding to betas
x.probes Default is NULL, is required to be supplied in bigmelon. logical or numeric

vector containing indicies of X chromosome probes
pc The principal component to guess sex across (usually the 2nd one in most cases)
plot Logical, indicated whether or not to plot the prediction
irlba Logical, indicate whether or not to use the faster method to generate principal

components
center Logical, indicate whether or not to center data around 0
scale. Logical, indicate whether or not to scale data prior to prcomp

26 wm-port

Details

For the full usage and description of any functions that link to this manual page, please visit the
respective manual pages from wateRmelon.

Value

Returns expected output of functions from wateRmelon

See Also

wateRmelon

Index

∗ backup
backup.gdsn, 4

∗ combo
combo.gds, 11

∗ datasets
cantaloupe, 10

∗ package
bigmelon-package, 2

∗ wm-port
wm-port, 25

’[.gds.class’ (bigmelon-accessors), 5
’[.gdsn.class’ (bigmelon-accessors), 5
.getEstimate2 (bumphunterEngine.gdsn), 8
.sortvector (getquantilesandranks), 18

add.gdsn, 25
app2gds, 3, 14, 20, 25

backup.gdsn, 4
betaqn,gds.class-method

(bigmelon-normalization), 7
betas,gds.class-method

(bigmelon-accessors), 5
bigmelon (bigmelon-package), 2
bigmelon-accessors, 5
bigmelon-normalization, 7
bigmelon-package, 2
bumphunter, 8, 10
bumphunterEngine.gdsn, 8

cantaloupe, 10
clusterMaker, 9
colnames,gds.class-method

(bigmelon-accessors), 5
colnames,gdsn.class-method

(bigmelon-accessors), 5
combo.gds, 11
computebeta.gds (dasenrank), 12
convertArray, 15
copyto.gdsn, 4, 5

danen,gds.class-method
(bigmelon-normalization), 7

danen.gds (bigmelon-normalization), 7
danes,gds.class-method

(bigmelon-normalization), 7
danes.gds (bigmelon-normalization), 7
danet,gds.class-method

(bigmelon-normalization), 7
danet.gds (bigmelon-normalization), 7
dasen, 3, 8
dasen,gds.class-method

(bigmelon-normalization), 7
dasen.gds (bigmelon-normalization), 7
dasenrank, 12, 15, 18, 19
daten1,gds.class-method

(bigmelon-normalization), 7
daten1.gds (bigmelon-normalization), 7
daten2,gds.class-method

(bigmelon-normalization), 7
daten2.gds (bigmelon-normalization), 7
db.gdsn (bigmelon-normalization), 7
dfsfit.gdsn (bigmelon-normalization), 7
dmrse,gds.class-method (wm-port), 25
dmrse,gdsn.class-method (wm-port), 25
dmrse_col,gds.class-method (wm-port), 25
dmrse_col,gdsn.class-method (wm-port),

25
dmrse_row,gds.class-method (wm-port), 25
dmrse_row,gdsn.class-method (wm-port),

25

es2gds, 3, 4, 13, 20, 25
estimateCellCounts, 14, 14, 15
exprs,gds.class-method

(bigmelon-accessors), 5

fData,gds.class-method
(bigmelon-accessors), 5

finalreport2gds, 16
fot (bigmelon-accessors), 5

27

28 INDEX

fot,gds.class-method
(bigmelon-accessors), 5

gds2mlumi, 16
gds2mset (gds2mlumi), 16
gdsfmt, 3
gdsn.class, 7
genki,gds.class-method (wm-port), 25
genki,gdsn.class-method (wm-port), 25
GEOtoGDS, 17
geotogds (GEOtoGDS), 17
get.attr.gdsn, 18, 19
getfolder.gdsn, 4
getHistory,gds.class-method

(bigmelon-accessors), 5
getpheno (GEOtoGDS), 17
getquantiles (estimateCellCounts), 14
getquantilesandranks, 18

honeydew (cantaloupe), 10

iadd, 3, 4, 14, 19
iadd2, 3, 4
iadd2 (iadd), 19
idats2gds (iadd), 19
index.gdsn, 4

methylated,gds.class-method
(bigmelon-accessors), 5

methylumiR, 16

nanes,gds.class-method
(bigmelon-normalization), 7

nanes.gds (bigmelon-normalization), 7
nanet,gds.class-method

(bigmelon-normalization), 7
nanet.gds (bigmelon-normalization), 7
nasen,gds.class-method

(bigmelon-normalization), 7
nasen.gds (bigmelon-normalization), 7
naten,gds.class-method

(bigmelon-normalization), 7
naten.gds (bigmelon-normalization), 7

pData,gds.class-method
(bigmelon-accessors), 5

pfilter, 21
pfilter,gds.class (pfilter.gds), 21
pfilter,gds.class-method (pfilter.gds),

21

pfilter.gds, 21
prcomp, gds.class (prcomp.gds.class), 22
prcomp, gds.class-method

(prcomp.gds.class), 22
prcomp.gds (prcomp.gds.class), 22
prcomp.gds.class, 22
predictSex (wm-port), 25
predictSex,gds.class-method (wm-port),

25
predictSex,gdsn.class-method (wm-port),

25
pvals,gds.class-method

(bigmelon-accessors), 5
pwod, 24
pwod, gds.class (pwod.gdsn), 23
pwod, gdsn.class (pwod.gdsn), 23
pwod.gdsn, 23

QCmethylated (bigmelon-accessors), 5
QCmethylated,gds.class-method

(bigmelon-accessors), 5
QCrownames (bigmelon-accessors), 5
QCrownames,gds.class-method

(bigmelon-accessors), 5
QCunmethylated (bigmelon-accessors), 5
QCunmethylated,gds.class-method

(bigmelon-accessors), 5
qn.gdsn (bigmelon-normalization), 7
qual,gdsn.class,gdsn.class-method

(wm-port), 25

readEPIC, 3
redirect.gds, 24
rownames,gds.class-method

(bigmelon-accessors), 5
rownames,gdsn.class-method

(bigmelon-accessors), 5

seabi,gds.class-method (wm-port), 25

unmethylated,gds.class-method
(bigmelon-accessors), 5

wateRmelon, 3, 8, 26
wm-port, 25

	bigmelon-package
	app2gds
	backup.gdsn
	bigmelon-accessors
	bigmelon-normalization
	bumphunterEngine.gdsn
	cantaloupe
	combo.gds
	dasenrank
	es2gds
	estimateCellCounts
	finalreport2gds
	gds2mlumi
	GEOtoGDS
	getquantilesandranks
	iadd
	pfilter.gds
	prcomp.gds.class
	pwod.gdsn
	redirect.gds
	wm-port
	Index

