Package 'FEAST'

April 10, 2023

Type Package

Title FEAture SelcTion (FEAST) for Single-cell clustering

Version 1.6.0

Description Cell clustering is one of the most important and commonly performed tasks in singlecell RNA sequencing (scRNA-seq) data analysis.

An important step in cell clustering is to select a subset of genes (referred to as "fea-

tures"), whose expression patterns will then

be used for downstream clustering. A good set of features should include the ones that distinguish different cell types,

and the quality of such set could have significant impact on the clustering accuracy.

FEAST is an R library for selecting most representative features before perform-

ing the core of scRNA-seq clustering. It can be used

as a plug-

in for the etablished clustering algorithms such as SC3, TSCAN, SHARP, SIMLR, and Seurat. The core of FEAST algorithm includes three steps:

1. consensus clustering;

2. gene-level significance inference;

3. validation of an optimized feature set.

License GPL-2

Encoding UTF-8

LazyData true

Depends R (>= 4.1), mclust, BiocParallel, SummarizedExperiment

biocViews Sequencing, SingleCell, Clustering, FeatureExtraction

BugReports https://github.com/suke18/FEAST/issues

Imports SingleCellExperiment, methods, stats, utils, irlba, TSCAN, SC3, matrixStats

Suggests rmarkdown, Seurat, ggpubr, knitr, testthat (>= 3.0.0), BiocStyle

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation yes

Author Kenong Su [aut, cre], Hao Wu [aut] Maintainer Kenong Su <kenong.su@emory.edu> git_url https://git.bioconductor.org/packages/FEAST git_branch RELEASE_3_16 git_last_commit_7d99b9d git_last_commit_date 2022-11-01 Date/Publication 2023-04-10

R topics documented:

align_CellType	2
cal_F2	3
cal_Fisher2	4
cal_metrics	4
cal_MSE	5
Consensus	5
eval_Cluster	6
FEAST	7
FEAST_fast	8
Norm_Y	8
process_Y	9
Purity	10
SC3_Clust	10
Select_Model_short_SC3	11
Select_Model_short_TSCAN	
trueclass	13
TSCAN_Clust	
vector2matrix	14
Visual_Rslt	15
Y	15
	17

Index

align_CellType Align the cell types from the prediction with the truth.

Description

Align the cell types from the prediction with the truth.

Usage

align_CellType(tt0)

cal_F2

Arguments

tt0 a N*N table.

Value

the matched (re-ordered) table

Examples

```
vec1 = rep(1:4, each=100)
vec2 = sample(vec1)
tb = table(vec1, vec2)
#tb_arg = align_CellType(tb)
```

cal_F2

Calculate the gene-level F score and corresponding significance level.

Description

Calculate the gene-level F score and corresponding significance level.

Usage

cal_F2(Y, classes)

Arguments

Υ	A gene expression matrix
classes	The initial cluster labels NA values are allowed. This can directly from the Consensus function.

Value

The score vector

```
data(Yan)
cal_F2(Y, classes = trueclass)
```

cal_Fisher2

Description

Calculate the gene-level fisher score.

Usage

cal_Fisher2(Y, classes)

Arguments

Y	A gene expression matrix
classes	The initial cluster labels NA values are allowed. This can directly from the
	Consensus function.

Value

The score vector This is from the paper https://arxiv.org/pdf/1202.3725.pdf Vector based calculation

cal_metrics	Calculate 3 metrics and these methods are exported in C codes. flag
	= 1 - Rand index, flag $= 2 - Fowlkes$ and Mallows's index, flag $= 3$
	— Jaccard index

Description

Calculate 3 metrics and these methods are exported in C codes. flag = 1 — Rand index, flag = 2 — Fowlkes and Mallows's index, flag = 3 — Jaccard index

Usage

```
cal_metrics(cl1, cl2, randMethod = c("Rand", "FM", "Jaccard"))
```

Arguments

cl1	a vector
c12	a vector
randMethod	a string chosen from "Rand", "FM", or "Jaccard"

Value

a numeric vector including three values

cal_MSE

Standard way to preprocess the count matrix. It is the QC step for the genes.

Description

Standard way to preprocess the count matrix. It is the QC step for the genes.

Usage

```
cal_MSE(Ynorm, cluster, return_mses = FALSE)
```

Arguments

Ynorm	A normalized gene expression matrix. If not, we will normalize it for you.
cluster	The clustering outcomes. Specifically, they are cluster labels.
return_mses	True or False indicating whether returning the MSE.

Value

The MSE of the clustering centers with the predicted Y.

Examples

```
data(Yan)
Ynorm = Norm_Y(Y)
cluster = trueclass
MSE_res = cal_MSE(Ynorm, cluster)
```

Consensus

Consensus Clustering

Description

Consensus Clustering

Usage

```
Consensus(Y, num_pcs = 10, top_pctg = 0.33, k = 2, thred = 0.9, nProc = 1)
```

Arguments

Y	A expression matrix. It is recommended to use the raw count matrix. Users can input normalized matrix directly.
num_pcs	The number of top pcs that will be investigated on through consensus clustering.
top_pctg	Top percentage of features for dimension reduction
k	The number of input clusters (best guess).
thred	For the final GMM clustering, the probability of a cell belonging to a certain cluster.
nProc	number of cores for BiocParallel enviroment.

Value

the clustering labels and the featured genes.

Examples

```
data(Yan)
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con = Consensus(Y, k=5)
```

eval_Cluster Calculate the a series of the evaluation statistics.

Description

Calculate the a series of the evaluation statistics.

Usage

```
eval_Cluster(vec1, vec2)
```

Arguments

vec1	a vector.
vec2	a vector. x and y are with the same length.

Value

a vector of evaluation metrics

Examples

vec2 = vec1 = rep(1:4, each = 100)
vec2[1:10] = 4
acc = eval_Cluster(vec1, vec2)

FEAST

FEAST main function

Description

FEAST main function

Usage

```
FEAST(
    Y,
    k = 2,
    num_pcs = 10,
    dim_reduce = c("irlba", "svd", "pca"),
    split = FALSE,
    batch_size = 1000,
    nProc = 1
)
```

Arguments

Υ	A expression matrix. Raw count matrix or normalized matrix.
k	The number of input clusters (best guess).
num_pcs	The number of top pcs that will be investigated through the consensus clustering.
dim_reduce	dimension reduction methods chosen from pca, svd, or irlba.
split	boolean. If T, using subsampling to calculate the gene-level significance.
batch_size	when split is true, need to claim the batch size for spliting the cells.
nProc	number of cores for BiocParallel environment.

Value

the rankings of the gene-significance.

```
data(Yan)
k = length(unique(trueclass))
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
ixs = FEAST(Y, k=k)
```

FEAST_fast

Description

FEAST main function (fast version)

Usage

FEAST_fast(Y, k = 2, num_pcs = 10, split = FALSE, batch_size = 1000, nProc = 1)

Arguments

Y	A expression matrix. Raw count matrix or normalized matrix.
k	The number of input clusters (best guess).
num_pcs	The number of top pcs that will be investigated through the consensus clustering.
split	boolean. If T, using subsampling to calculate the gene-level significance.
batch_size	when split is true, need to claim the batch size for spliting the cells.
nProc	number of cores for BiocParallel enviroment.

Value

the rankings of the gene-significance.

Examples

data(Yan)
k = length(unique(trueclass))
res = FEAST_fast(Y, k=k)

Norm_Y	Normalize the count expression matrix by the size factor and take the
	log transformation.

Description

Normalize the count expression matrix by the size factor and take the log transformation.

Usage

Norm_Y(Y)

Arguments Y

a count expression matrix

process_Y

Value

a normalized matrix

Examples

data(Yan)
Ynorm = Norm_Y(Y)

process_Y	Standard way to preprocess the count matrix. It is the QC step for the
	genes.

Description

Standard way to preprocess the count matrix. It is the QC step for the genes.

Usage

 $process_Y(Y, thre = 2)$

Arguments

Υ	A gene expression data (Raw count matrix)
thre	The threshold of minimum number of cells expressing a certain gene (default =2)

Value

A processed gene expression matrix. It is not log transformed

```
data(Yan)
YY = process_Y(Y, thre=2)
```

Purity

Description

Calculate the purity between two vectors.

Usage

Purity(x, y)

Arguments

Х	a vector.
у	a vector. x and y are with the same length.

Value

the purity score

SC3_Clust	SC3 Clustering	
	, i i i i i i i i i i i i i i i i i i i	

Description

SC3 Clustering

Usage

SC3_Clust(Y, k = NULL, input_markers = NULL)

Arguments

Y	A expression matrix. It is recommended to use the raw count matrix.
k	The number of clusters. If it is not provided, k is estimated by the default method in SC3.
input_markers	A character vector including the featured genes. If they are not presented, SC3 will take care of this.

Value

the clustering labels and the featured genes.

Select_Model_short_SC3

Using clustering results based on feature selection to perform model selection.

Description

Using clustering results based on feature selection to perform model selection.

Usage

```
Select_Model_short_SC3(Y, cluster, tops = c(500, 1000, 2000))
```

Arguments

Y	A gene expression matrix
cluster	The initial cluster labels NA values are allowed. This can directly from the Consensus function.
tops	A numeric vector containing a list of numbers corresponding to top genes; e.g., tops = $c(500, 1000, 2000)$.

Value

mse and the SC3 clustering result.

```
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con_res = Consensus(Y, k=k)
# not run
# mod_res = Select_Model_short_SC3(Y, cluster = con_res$cluster, top = c(100, 200))
```

Select_Model_short_TSCAN

Using clustering results (from TSCAN) based on feature selection to perform model selection.

Description

Using clustering results (from TSCAN) based on feature selection to perform model selection.

Usage

```
Select_Model_short_TSCAN(
    Y,
    cluster,
    minexpr_percent = 0.5,
    cvcutoff = 1,
    tops = c(500, 1000, 2000)
)
```

Arguments

Υ	A gene expression matrix
cluster	The initial cluster labels NA values are allowed. This can directly from the Consensus function.
minexpr_percent	
	The threshold used for processing data in TSCAN. Using it by default.
cvcutoff	The threshold used for processing data in TSCAN. Using it by default.
tops	A numeric vector containing a list of numbers corresponding to top genes; e.g., $tops = c(500, 1000, 2000)$.

Value

mse and the TSCAN clustering result.

```
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, cixs]
con_res = Consensus(Y, k=k)
# not run
# mod_res = Select_Model_short_TSCAN(Y, cluster = con_res$cluster, top = c(100, 200))
```

trueclass

Description

The true cell type labels for Yan dataset. It includes 8 different cell types.

Usage

data("Yan")

Format

A character vector contains the cell type label

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552

References

Yan, Liying, et al. "Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells." Nature structural & molecular biology 20.9 (2013): 1131.

Examples

```
data("Yan")
table(trueclass)
```

TSCAN_Clust T

TSCAN Clustering

Description

TSCAN Clustering

Usage

```
TSCAN_Clust(Y, k, minexpr_percent = 0.5, cvcutoff = 1, input_markers = NULL)
```

Arguments

Υ	A expression matrix. It is recommended to use the raw count matrix.
k	The number of clusters. If it is not provided, k is estimated by the default method in SC3.
minexpr_percent	
	minimum expression threshold (default = 0.5).
cvcutoff	the cv cutoff to filter the genes (default = 1).
input_markers	A character vector including the featured genes. If they are not presented, SC3 will take care of this.

Value

the clustering labels and the featured genes.

Examples

```
data(Yan)
k = length(unique(trueclass))
# TSCAN_res = TSCAN_Clust(Y, k=k)
```

vector2matrix *function for convert a vector to a binary matrix*

Description

function for convert a vector to a binary matrix

Usage

```
vector2matrix(vec)
```

Arguments

vec a vector.

Value

a n by n binary matrix indicating the adjacency.

Visual_Rslt

Description

Using clustering results based on feature selection to perform model selection.

Usage

Visual_Rslt(model_cv_res, trueclass)

Arguments

<pre>model_cv_res</pre>	model selection result from Select_Model_short_SC3.
trueclass	The real class labels

Value

a list of mse dataframe, clustering accuracy dataframe, and ggplot object.

Examples

```
data(Yan)
k = length(unique(trueclass))
Y = process_Y(Y, thre = 2) # preprocess the data
set.seed(123)
rixs = sample(nrow(Y), 500)
cixs = sample(ncol(Y), 40)
Y = Y[rixs, ]
con_res = Consensus(Y, k=k)
# Not run
# mod_res = Select_Model_short_SC3(Y, cluster = con_res$cluster, top = c(100, 200))
library(ggpubr)
# Visual_Rslt(model_cv_res = mod_res, trueclass = trueclass)
```

Υ

An example single cell count expression matrix (Yan)

Description

Y is a count expression matrix which belongs to "matrix" class. The data includes 124 cells about human preimplantation embryos and embryonic stem cells. It contains 19304 genes after removing genes with extreme high dropout rate.

Usage

data("Yan")

Format

An object of "matrix" class contains the count expressions

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552

References

Yan, Liying, et al. "Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells." Nature structural & molecular biology 20.9 (2013): 1131.

Examples

data("Yan") Y[1:10, 1:4]

Index

* datasets trueclass, 13 Y, 15 align_CellType, 2 cal_F2, 3 cal_Fisher2,4 cal_metrics,4 cal_MSE, 5 Consensus, 5eval_Cluster, 6 FEAST, 7 ${\tt FEAST_fast, 8}$ Norm_Y,8 process_Y, 9 Purity, 10SC3_Clust, 10 Select_Model_short_SC3, 11 Select_Model_short_TSCAN, 12 trueclass, 13 TSCAN_Clust, 13 vector2matrix, 14 Visual_Rslt, 15

Y, 15