Package 'EpiMix'

April 3, 2023

Title EpiMix: an integrative tool for the population-level analysis of DNA methylation

Version 1.0.1

Description

EpiMix is a comprehensive tool for the integrative analysis of high-throughput DNA methylation data and gene expression data. EpiMix enables automated data downloading (from TCGA or GEO), preprocessing, methylation modeling, interactive visualization and functional annotation. To identify hypo- or hypermethylated CpG sites across physiological or pathological conditions, EpiMix uses a beta mixture modeling to identify the methylation states of each CpG probe and compares the methylation of the experimental group to the control group. The output from EpiMix is the functional DNA methylation that is predictive of gene expression. EpiMix incorporates specialized algorithms to identify functional DNA methylation at various genetic elements, including proximal cis-regulatory elements of protein-coding genes, distal enhancers, and genes encoding microRNAs and lncRNAs.

Depends R (>= 4.2.0), EpiMix.data (>= 0.99.2)

License GPL-3 **Encoding** UTF-8

Imports AnnotationHub, AnnotationDbi, Biobase, biomaRt, data.table, doParallel, doSNOW, downloader, dplyr, ELMER.data, ExperimentHub, foreach, GenomeInfoDb, GenomicFeatures, GenomicRanges, GEOquery, ggplot2, graphics, grDevices, impute, IRanges, limma, methods, parallel, plyr, progress, R.matlab, RColorBrewer, RCurl, rlang, RPMM, S4Vectors, stats, SummarizedExperiment, tibble, tidyr, utils

Suggests BiocStyle, clusterProfiler, karyoploteR, knitr, org.Hs.eg.db, regioneR, Seurat, survival, survminer, TxDb.Hsapiens.UCSC.hg19.knownGene, RUnit, BiocGenerics

biocViews Software, Epigenetics, Preprocessing, DNAMethylation, GeneExpression, DifferentialMethylation

RoxygenNote 7.2.3 VignetteBuilder knitr

BugReports https://github.com/gevaertlab/EpiMix/issues

git_url https://git.bioconductor.org/packages/EpiMix						
git_branch RELEASE_3_16						
git_last_commit 6a1aecd						
git_last_commit_date 2023-02-14						
Date/Publication 2023-04-03						
Author Yuanning Zheng [aut, cre], John Jun [aut], Olivier Gevaert [aut]						
Maintainer Yuanning Zheng <eric2021@stanford.edu></eric2021@stanford.edu>						

${\sf R}$ topics documented:

2

addDistNearestTSS
addGeneNames
calcDistNearestTSS
ClusterProbes
EpiMix
EpiMix_PlotGene
EpiMix_PlotModel
EpiMix_PlotProbe
EpiMix_PlotSurvival
filterProbes
functionEnrich
generateFunctionalPairs
GEO_Download_DNAMethylation
$GEO_Download_Gene Expression \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
GEO_GetSampleInfo
GEO_getSampleMap
GEO_Preprocess_DNAMethylation
GEO_Preprocess_GeneExpression
Get.Pvalue.p
getFeatureProbe
getMethStates_Helper
GetNearGenes
getProbeAnnotation
getRegionNearGenes
GetSurvivalProbe
getTSS
MethylMix_Predict
predictOneGene
removeDuplicatedGenes
TCGA_Download_DNAmethylation
TCGA_Download_GeneExpression
TCGA_GetData
TCGA_GetSampleInfo
TCGA Preprocess DNAmethylation

addDistNearestTSS 3

	TCGA_Preprocess_ TCGA_Select_Data translateMethylMix validEpigenomes	nset Results	 		 		 			 												 42 43
Index																						44
addD:	istNearestTSS	Calcul	ate ti	he a	lista	nce	be	etw	ee	n p	oro	be	ar	ıd	ge	ne	TS	SS				

Description

Calculate the distance between probe and gene TSS

Usage

```
addDistNearestTSS(data, NearGenes, genome, met.platform, cores = 1)
```

Arguments

data A multi Assay Experiment with both DNA methylation and gene Expression

objects

NearGenes A list or a data frame with the pairs gene probes

genome Which genome build will be used: hg38 (default) or hg19.

met.platform DNA methyaltion platform to retrieve data from: EPIC or 450K (default)

cores Number fo cores to be used. Deafult: 1

Value

a dataframe of nearest genes with distance to TSS.

addGeneNames	The addGeneNames function	

Description

Given a dataframe with a column of probe names, add the gene names

Usage

```
addGeneNames(df_data, ProbeAnnotation)
```

4 calcDistNearestTSS

Arguments

df_data a dataframe with a column named Probe

ProbeAnnotation

a dataframe with ProbeAnnotation, including one column named 'probe' and

another column named 'gene'

Value

a dataframe with added gene names

calcDistNearestTSS

Calculate distance from region to nearest TSS

Description

Idea For a given region R linked to X genes G merge R with nearest TSS for G (multiple) this will increse nb of lines i.e R1 - G1 - TSS1 - DIST1 R1 - G1 - TSS2 - DIST2 To vectorize the code: make a granges from left and onde from right and find distance collapse the results keeping min distance for equals values

Usage

calcDistNearestTSS(links, TRange, tssAnnot)

Arguments

links Links to calculate the distance

TRange Genomic coordinates for Tartget region

tssAnnot TSS annotation

Value

dataframe of genomic distance from TSS

Author(s)

Tiago C. Silva

ClusterProbes 5

ClusterProbes

The ClusterProbes function

Description

This function uses the annotation for Illumina methylation arrays to map each probe to a gene. Then, for each gene, it clusters all its CpG sites using hierchical clustering and Pearson correlation as distance and complete linkage. If data for normal samples is provided, only overlapping probes between cancer and normal samples are used. Probes with SNPs are removed. This function is prepared to run in parallel if the user registers a parallel structure, otherwise it runs sequentially. This function also cleans up the sample names, converting them to the 12 digit format.

Usage

```
ClusterProbes(MET_data, ProbeAnnotation, CorThreshold = 0.4)
```

Arguments

MET_data data matrix for methylation. ProbeAnnotation GRange object for probe annoation.

CorThreshold correlation threshold for cutting the clusters.

Value

List with the clustered data sets and the mapping between probes and genes.

EpiMix

The EpiMix function

Description

EpiMix uses a model-based approach to identify functional changes DNA methylation that affect gene expression.

Usage

```
EpiMix(
 methylation.data,
  gene.expression.data,
  sample.info,
  group.1,
 group.2,
 mode = "Regular",
 promoters = FALSE,
```

6 EpiMix

```
correlation = "negative",
 met.platform = "HM450",
 genome = "hg38",
 cluster = FALSE,
  listOfGenes = NULL,
  filter = TRUE,
  raw.pvalue.threshold = 0.05,
  adjusted.pvalue.threshold = 0.05,
  numFlankingGenes = 20,
  roadmap.epigenome.groups = NULL,
  roadmap.epigenome.ids = NULL,
  chromatin.states = c("EnhA1", "EnhA2", "EnhG1", "EnhG2"),
 NoNormalMode = FALSE,
  cores = 1,
 MixtureModelResults = NULL,
 OutputRoot = "."
)
```

Arguments

methylation.data

Matrix of the DNA methylation data with CpGs in rows and samples in columns. gene.expression.data

Matrix of the gene expression data with genes in rows and samples in columns.

sample.info

Dataframe that maps each sample to a study group. Should contain two columns: the first column (named 'primary') indicates the sample names, and the second column (named 'sample.type') indicating which study group each sample belongs to (e.g., "Cancer" vs. "Normal", "Experiment" vs. "Control"). Sample names in the 'primary' column must coincide with the column names of the methylation.data.

group.1 Character vector indicating the name(s) for the experiment group.

group. 2 Character vector indicating the names(s) for the control group.

mode Character string indicating the analytic mode to model DNA methylation. Should

be one of the followings: 'Regular', 'Enhancer', 'miRNA' or 'lncRNA'. Default:

'Regular'. See details for more information.

promoters Logic indicating whether to focus the analysis on CpGs associated with promot-

ers (2000 bp upstream and 1000 bp downstream of the transcription start site).

This parameter is only used for the Regular mode.

correlation Character vector indicating the expected correlation between DNA methylation

and gene expression. Can be either 'negative' or 'positive'. Default: 'negative'.

met.platform Character string indicating the microarray type for collecting the DNA methy-

lation data. The value should be either 'HM27', 'HM450' or 'EPIC'. Default:

'HM450'

genome Character string indicating the genome build version to be used for CpG anno-

tation. Should be either 'hg19' or 'hg38'. Default: 'hg38'.

cluster Logic indicating whether to cluster CpG site based on methylation levels using

hierarchical clustering

EpiMix 7

listOfGenes Character vector used for filtering the genes to be evaluated.

filter Logic indicating whether to use a linear regression filter to pre-filter the CpGs

whose methyhlation correlates with gene expression. Used in the Regular mode.

Default: TRUE.

raw.pvalue.threshold

Numeric value indicating the threshold of the raw P value for selecting the functional CpG-gene pairs. Default: 0.05.

adjusted.pvalue.threshold

Numeric value indicating the threshold of the adjusted P value for selecting the function CpG-gene pairs. Default: 0.05.

numFlankingGenes

Numeric value indicating the number of flanking genes whose expression is to be evaluated for selecting the functional enhancers. Default: 20.

roadmap.epigenome.groups

(parameter used for the 'Enhancer' mode) Character vector indicating the tissue group(s) to be used for selecting the enhancers. See details for more information. Default: NULL.

roadmap.epigenome.ids

(parameter used for the 'Enhancer' mode) Character vector indicating the epigenome ID(s) to be used for selecting the enhancers. See details for more information. Default: NULL.

chromatin.states

(parameter used for the 'Enhancer' mode) Character vector indicating the chromatin states to be used for selecting the enhancers. To get the available chromatin states, please run the list.chromatin.states() function. Default: c('EnhA1', 'EnhA2', 'EnhG1', 'EnhG2').

NoNormalMode

Logical indicating if the methylation states found in the experiment group should be compared to the control group. Default: FALSE.

cores Number of CPU cores to be used for computation. Default: 1. MixtureModelResults

Pre-computed EpiMix results, used for generating functional probe-gene pair

matrix. Default: NULL

OutputRoot File path to store the EpiMix result object. Default: '.' (current directory)

Details

mode: EpiMix incorporates four alternative analytic modes for modeling DNA methylation: "Regular," "Enhancer", "miRNA" and "lncRNA". The four analytic modes target DNA methylation analysis on different genetic elements. The Regular mode aims to model DNA methylation at proximal cis-regulatory elements of protein-coding genes. The Enhancer mode targets DNA methylation analysis on distal enhancers. The miRNA or lncRNA mode focuses on methylation analysis of miRNA- or lncRNA-coding genes.

roadmap.epigenome.groups & roadmap.epigenome.ids:

Since enhancers are cell-type or tissue-type specific, EpiMix needs to know the reference tissues or cell types in order to select the proper enhancers. EpiMix identifies enhancers from the RoadmapEpigenomic project (Nature, PMID: 25693563), which enhancers were identified by ChromHMM

8 EpiMix

in over 100 tissue and cell types. Available epigenome groups (a group of relevant cell types) or epigenome ids (individual cell types) can be obtained from the original publication (Nature, PMID: 25693563, figure 2). They can also be retrieved from the list.epigenomes() function. If both roadmap.epigenome.groups and roadmap.epigenome.ids are specified, EpiMix will select all the epigenomes from the combination of the inputs.

Value

The results from EpiMix is a list with the following components:

MethylationDrivers

CpG probes identified as differentially methylated by EpiMix.

NrComponents The number of methylation states found for each driver probe.

MixtureStates A list with the DM-values for each driver probe. Differential Methylation val-

ues (DM-values) are defined as the difference between the methylation mean of samples in one mixture component from the experiment group and the methyla-

tion mean in samples from the control group, for a given probe.

MethylationStates

Matrix with DM-values for all driver probes (rows) and all samples (columns).

Classifications

Matrix with integers indicating to which mixture component each sample in the experiment group was assigned to, for each probe.

Models Beta mixture model parameters for each driver probe.

group.1 sample names in group.1 (experimental group).

group.2 sample names in group.2 (control group).

FunctionalPairs

Dataframe with the prevalence of differential methyaltion for each CpG probe in the sample population, and fold change of mRNA expression and P values for each significant probe-gene pair.

Examples

EpiMix_PlotGene 9

```
gene.expression.data = mRNA.data,
                       sample.info = LUAD.sample.annotation,
                       mode = 'Enhancer',
                       group.1 = 'Cancer',
                       group.2 = 'Normal',
                       met.platform = 'HM450',
                       roadmap.epigenome.ids = 'E096',
                       OutputRoot = tempdir())
# Example #3: miRNA mode
EpiMixResults <- EpiMix(methylation.data = MET.data,</pre>
                       gene.expression.data = microRNA.data,
                       sample.info = LUAD.sample.annotation,
                       mode = 'miRNA',
                       group.1 = 'Cancer',
                       group.2 = 'Normal',
                       met.platform = 'HM450',
                       OutputRoot = tempdir())
# Example #4: lncRNA mode
EpiMixResults <- EpiMix(methylation.data = MET.data,</pre>
                       gene.expression.data = lncRNA.data,
                       sample.info = LUAD.sample.annotation,
                       mode = 'lncRNA',
                       group.1 = 'Cancer',
                       group.2 = 'Normal',
                       met.platform = 'HM450',
                       OutputRoot = tempdir())
```

EpiMix_PlotGene

The EpiMix_PlotGene function

Description

plot the genomic coordinate, DM values and chromatin state for each CpG probe of a specific gene.

Usage

```
EpiMix_PlotGene(
  gene.name,
  EpiMixResults,
  met.platform = "HM450",
  roadmap.epigenome.id = "E002",
  left.gene.margin = 10000,
  right.gene.margin = 10000,
  gene.name.font = 0.7,
  show.probe.name = TRUE,
  probe.name.font = 0.6,
```

10 EpiMix_PlotGene

```
plot.transcripts = TRUE,
plot.transcripts.structure = TRUE,
y.label.font = 0.8,
y.label.margin = 0.1,
axis.number.font = 0.5,
chromatin.label.font = 0.7,
chromatin.label.margin = 0.02
```

Arguments

gene.name character string indicating the name of the gene to be plotted.

EpiMixResults the resulting list object returned from the function of EpiMix.

met.platform character string indicating the type of the microarray where the DNA methy-

lation data were collected. The value should be either 'HM27', 'HM450' or

'EPIC'. Default: 'HM450'

roadmap.epigenome.id

character string indicating the epigenome id (EID) for a reference tissue or cell type. Default: 'E002'

left.gene.margin

numeric value indicating the number of extra nucleotide bases to be plotted on the left side of the target gene. Default: 10000.

right.gene.margin

numeric value indicating the number of extra nucleotide bases to be plotted on the right side of the target gene. Default: 10000.

gene.name.font numeric value indicating the font size for the gene name. Default: 0.7.

show.probe.name

logic indicating whether to show the name(s) for each differentially methylated CpG probe. Default: TRUE

probe.name.font

numeric value indicating the font size of the name(s) for the differentially methylated probe(s) in pixels. Default: 0.6.

plot.transcripts

logic indicating whether to plot each individual transcript of the gene. Default: TRUE. If False, the gene will be plotted with a single rectangle, without showing the structure of individual transcripts.

plot.transcripts.structure

logic indicating whether to plot the transcript structure (introns and exons). Non-coding exons are shown in green and the coding exons are shown in red. Default: TRUE.

y.label.font font size of the y axis label

y.label.margin distance between y axis label and y axis

axis.number.font

font size of axis ticks and numbers

chromatin.label.font

font size of the labels of the histone proteins

EpiMix_PlotModel 11

```
chromatin.label.margin
```

distance between the histone protein labels and axis

Details

this function requires R package dependencies: karyoploteR, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db

roadmap.epigenome.id: since the chromatin state is tissue or cell-type specific, EpiMix needs to know the reference tissue or cell type in order to retrieve the proper DNase-seq and histone ChIP-seq data. Available epigenome ids can be obtained from the Roadmap Epigenomic study (Nature, PMID: 25693563, figure 2). They can also be retrieved from the list.epigenomes() function.

Value

plot of the genomic coordinate, DM values and chromatin state for each CpG probe of a specific gene.

Examples

EpiMix_PlotModel

The EpiMix_PlotModel function.

Description

Produce the mixture model and the gene expression plots representing the EpiMix results.

12 EpiMix_PlotModel

Usage

```
EpiMix_PlotModel(
   EpiMixResults,
   Probe,
   methylation.data,
   gene.expression.data = NULL,
   GeneName = NULL,
   axis.title.font = 20,
   axis.text.font = 16,
   legend.title.font = 18,
   legend.text.font = 18,
   plot.title.font = 20
)
```

Arguments

EpiMixResults resulting list object from the EpiMix function.

Probe character string indicating the name of the CpG probe for which to create a

mixture model plot.

methylation.data

Matrix with the methylation data with genes in rows and samples in columns.

gene.expression.data

Gene expression data with genes in rows and samples in columns (optional).

Default: NULL.

GeneName character string indicating the name of the gene whose expression will be ploted

with the EpiMix plot (optional). Default: NULL.

axis.title.font

font size for the axis legend.

axis.text.font font size for the axis label.

legend.title.font

font size for the legend title.

legend.text.font

font size for the legend label.

plot.title.font

font size for the plot title.

Details

The violin plot and the scatter plot will be NULL if the gene expression data or the GeneName is not provided

Value

A list of EpiMix plots:

MixtureModelPlot

a histogram of the distribution of DNA methylation data

EpiMix_PlotProbe

```
ViolinPlot a violin plot of gene expression levels in different mixutures in the MixtureModelPlot

CorrelationPlot a scatter plot between DNA methylation and gene expression
```

Examples

EpiMix_PlotProbe

The EpiMix_PlotProbe function

Description

plot the genomic coordinate and the chromatin state of a specific CpG probe and the nearby genes.

Usage

```
EpiMix_PlotProbe(
  probe.name,
  EpiMixResults,
  met.platform = "HM450",
  roadmap.epigenome.id = "E002",
  numFlankingGenes = 20,
  left.gene.margin = 10000,
  right.gene.margin = 10000,
  gene.name.pos = 2,
  gene.name.size = 0.5,
  gene.arrow.length = 0.05,
  gene.line.width = 2,
  plot.chromatin.state = TRUE,
```

14 EpiMix_PlotProbe

```
y.label.font = 0.8,
y.label.margin = 0.1,
axis.number.font = 0.5,
chromatin.label.font = 0.7,
chromatin.label.margin = 0.02
```

Arguments

probe.name character string indicating the CpG probe name.

EpiMixResults resulting list object returned from EpiMix.

met.platform character string indicating the type of micro-array where the DNA methyla-

tion data were collected. Can be either 'HM27', 'HM450' or 'EPIC'. Default:

'HM450'

roadmap.epigenome.id

character string indicating the epigenome id (EID) for a reference tissue or cell

type. Default: 'E002'

numFlankingGenes

numeric value indicating the number of flanking genes to be plotted with the CpG probe. Default: 20 (10 gene upstream and 10 gene downstream).

left.gene.margin

numeric value indicating the number of extra nucleotide bases to be plotted on the left side of the image. Default: 10000.

right.gene.margin

numeric value indicating the number of extra nucleotide bases to be plotted on the right side of the image. Default: 10000.

gene.name.pos

integer indicating the position for plotting the gene name relative to the gene structure. Should be 1 or 2 or 3 or 4, indicating bottom, left, top, and right, respectively.

gene.name.size numeric value indicating the font size of the gene names in pixels.

gene.arrow.length

numeric value indicating the size of the arrow which indicates the positioning of the gene.

gene.line.width

numeric value indicating the line width for the genes.

plot.chromatin.state

logical indicating whether to plot the DNase-seq and histone ChIP-seq signals. Warnings: If the 'numFlankingGenes' is a larger than 15, plotting the chromatin state may flood the internal memory.

y.label.font font size of the y axis label.

y.label.margin distance between y axis label and y axis.

axis.number.font

font size of axis ticks and numbers.

chromatin.label.font

font size of the labels of the histone proteins.

chromatin.label.margin

distance between the histone protein labels and axis.

EpiMix_PlotSurvival 15

Details

this function requires additional dependencies: karyoploteR, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db

roadmap.epigenome.id: since the chromatin state is tissue or cell-type specific, EpiMix needs to know the reference tissue or cell type in order to retrieve the proper DNase-seq and histone ChIP-seq data. Available epigenome ids can be obtained from the Roadmap Epigenomic study (Nature, PMID: 25693563, figure 2). They can also be retrieved from the list.epigenomes() function.

Value

plot with CpG probe and nearby genes. Genes whose expression is significantly negatively associated with the methylation of the probe are shown in red, while the others are shown in black.

Examples

```
library(karyoploteR)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(org.Hs.eg.db)
library(regioneR)
data(Sample_EpiMixResults_Regular)
# The CpG site to plot
probe.name = 'cg00374492'
# The number of adjacent genes to be plotted
numFlankingGenes = 10
# Set up the reference cell/tissue type
roadmap.epigenome.id = 'E096'
# Generate the plot
EpiMix_PlotProbe(probe.name = probe.name,
                 EpiMixResults = Sample_EpiMixResults_Regular,
                 met.platform = 'HM450',
                 roadmap.epigenome.id = roadmap.epigenome.id,
                 numFlankingGenes = numFlankingGenes)
```

EpiMix_PlotSurvival EpiMix_PlotSurvival function

Description

function to plot Kaplan-meier survival curves for patients with different methylation state of a specific probe.

Usage

```
EpiMix_PlotSurvival(
   EpiMixResults,
   plot.probe,
   TCGA_CancerSite = NULL,
   clinical.df = NULL,
   font.legend = 16,
   font.x = 16,
   font.y = 16,
   font.tickslab = 14,
   legend = c(0.8, 0.9),
   show.p.value = TRUE
)
```

Arguments

List of objects returned from the EpiMix function **EpiMixResults** plot.probe Character string with the name of the probe TCGA_CancerSite TCGA cancer code (e.g. 'LUAD') clinical.df (If the TCGA CancerSite parameter has been specified, this parameter is optional) Dataframe with survival information. Must contain at least three columns: 'sample.id', 'days_to_death', 'days_to_last_follow_up'. font.legend numeric value indicating the font size of the figure legend. Default: 16 font.x numeric value indicating the font size of the x axis label. Default: 16 numeric value indicating the font size of the y axis label. Default: 16 font.y font.tickslab numeric value indicating the font size of the axis tick label. Default: 14 legend numeric vector indicating the x,y coordinate for positioning the figure legend. c(0,0) indicates bottom left, while c(1,1) indicates top right. Default: c(0.8,0.9). If 'none', legend will be removed. show.p.value logic indicating whether to show p value in the plot. P value was calculated by log-rank test. Default: TRUE.

Value

Kaplan-meier survival curve showing the survival time for patients with different methylation states of the probe.

Examples

```
library(survival)
library(survminer)

data(Sample_EpiMixResults_miRNA)

EpiMix_PlotSurvival(EpiMixResults = Sample_EpiMixResults_miRNA,
```

filterProbes 17

```
plot.probe = 'cg00909706',
TCGA_CancerSite = 'LUAD')
```

filterProbes

The filterProbes function

Description

filter CpG sites based on user-specified conditions

Usage

```
filterProbes(
  mode,
  gene.expression.data,
  listOfGenes,
  promoters,
  met.platform,
  genome
)
```

Arguments

mode analytic mode gene.expression.data

matrix of gene expression data

listOfGenes list of genes of interest

promoters logic indicating whether to filter CpGs on promoters

met.platform methylation platform genome genome build version

Value

filtered ProbeAnnotation

18 functionEnrich

functionEnrich

The functionEnrich function

Description

Perform functional enrichment analysis for the differentially methylated genes occurring in the significant CpG-gene pairs.

Usage

```
functionEnrich(
   EpiMixResults,
   methylation.state = "all",
   enrich.method = "GO",
   ont = "BP",
   simplify = TRUE,
   cutoff = 0.7,
   pvalueCutoff = 0.05,
   pAdjustMethod = "BH",
   qvalueCutoff = 0.2,
   save.dir = "."
)
```

Arguments

EpiMixResults List of the result objects returned from the EpiMix function.

methylation.state

character string indicating whether to use all the differentially methylated genes or only use the hypo- or hyper-methylated genes for enrichment analysis. Can

be either 'all', 'Hyper' or 'Hypo'.

enrich.method character string indicating the method to perform enrichment analysis, can be

either 'GO' or 'KEGG'.

ont character string indicating the aspect for GO analysis. Can be one of 'BP' (i.e.,

biological process), 'MF' (i.e., molecular function), and 'CC' (i.e., cellular com-

ponent) subontologies, or 'ALL' for all three.

simplify boolean value indicating whether to remove redundancy of enriched GO terms.

cutoff if simplify is TRUE, this is the threshold for similarity cutoff of the ajusted p

value.

pvalueCutoff adjusted pvalue cutoff on enrichment tests to report

pAdjustMethod one of 'holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none'

qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i)

pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and

iii) qvalueCutoff on qvalues to be reported.

save.dir path to save the enrichment table.

generateFunctionalPairs

19

Value

a clusterProfiler enrichResult instance

Examples

```
library(clusterProfiler)
library(org.Hs.eg.db)

data(Sample_EpiMixResults_Regular)

enrich.results <- function.enrich(
   EpiMixResults = Sample_EpiMixResults_Regular,
   enrich.method = 'GO',
   ont = 'BP',
   simplify = TRUE,
   save.dir = ''
)</pre>
```

generateFunctionalPairs

The generateFunctionalPairs function

Description

Wrapper function to get functional CpG-gene pairs

Usage

```
generateFunctionalPairs(
   MET_matrix,
   MET_Control,
   gene.expression.data,
   ProbeAnnotation,
   raw.pvalue.threshold,
   adjusted.pvalue.threshold,
   cores,
   mode = "Regular",
   correlation = "negative"
)
```

Arguments

```
MET_matrix matrix of methylation states

MET_Control beta values of control groups
gene.expression.data
matrix of gene expression data
```

ProbeAnnotation

dataframe of probe annotation

raw.pvalue.threshold

raw p value threshold

adjusted.pvalue.threshold

adjusted p value threshold

cores number of computational cores

mode character string indicating the analytic mode

correlation the expected relationship between DNAme and gene expression

Value

a dataframe of functional CpG-gene matrix

GEO_Download_DNAMethylation

The GEO_Download_DNAmethylation function

Description

Download the methylation data and the associated sample phenotypic data from the GEO database.

Usage

```
GEO_Download_DNAMethylation(
  AccessionID,
  targetDirectory = ".",
  DownloadData = TRUE
)
```

Arguments

AccessionID character string indicating GEO accession number. Currently support the GEO

series (GSE) data type.

targetDirectory

character string indicting the file path to save the data. Default: '.' (current

directory).

DownloadData logical indicating whether the actual data should be downloaded (Default: TRUE).

If False, the desired directory where the downloaded data should have been

saved is returned.

Value

a list with two elements. The first element ('\$MethylationData') indicating the file path to the downloaded methylation data. The second element ('\$PhenotypicData') indicating the file path to the sample phenotypic data.

Examples

GEO_Download_GeneExpression

The GEO_Download_GeneExpression function

Description

Download the gene expression data and the associated sample phenotypic data from the GEO database.

Usage

```
GEO_Download_GeneExpression(
  AccessionID,
  targetDirectory = ".",
  DownloadData = TRUE
)
```

Arguments

AccessionID character string indicating the GEO accession number. Currently support the

GEO series (GSE) data type.

targetDirectory

character string indicting the file path to save the data. Default: '.' (current

directory)

DownloadData logical indicating whether the actual data should be downloaded (Default: TRUE).

If False, the desired directory where the downloaded data should have been

saved is returned.

Value

a list with two elements. The first element ('\$GeneExpressionData') indicating the file path to the downloaded methylation data. The second element ('\$PhenotypicData') indicating the file path to the sample phenotypic data.

Examples

GEO_GetSampleInfo

The GEO GetSampleInfo function

Description

auxiliary function to generate a sample information dataframe that indicates which study group each sample belongs to.

Usage

```
GEO_GetSampleInfo(METdirectories, group.column, targetDirectory = ".")
```

Arguments

METdirectories list of the file paths to the downloaded DNA methylation data, which can be the output from the GEO_Download_DNAMethylation function.

group.column character string indicating the column in the phenotypic data that defines the

study group of each sample. The values in this column will be used to split the

experiment and the control group.

targetDirectory

file path to save the output. Default: '.' (current directory)

Value

a dataframe with two columns: a 'primary' column indicating the actual sample names, a 'sample.type' column indicating the study group for each sample.

GEO_getSampleMap

the GEO getSampleMap function

Description

auxiliary function to generate a sample map for DNA methylation data and gene expression data

Usage

```
GEO_getSampleMap(METdirectories, GEdirectories, targetDirectory = ".")
```

Arguments

METdirectories list of the file paths to the downloaded DNA methylation datasets, which can be the output from the GEO_Download_DNAMethylation function.

GEdirectories list of the file paths to the downloaded gene expression datasets, which can be

the output from the GEO_Download_GeneExpression function.

targetDirectory

file path to save the output. Default: '.' (current directory)

Value

dataframe with three columns: \$assay (character string indicating the type of the experiment, can be either 'DNA methylation' or 'Gene expression'), \$primary(character string indicating the actual sample names), \$colnames (character string indicating the actual column names for each samples in DNA methylation data and gene expression data)

```
GEO_Preprocess_DNAMethylation
```

The GEO_Preprocess_DNAMethylation function

Description

Preprocess DNA methylation data from the GEO database.

Usage

```
GEO_Preprocess_DNAMethylation(
  methylation.data,
 met.platform = "EPIC",
  genome = "hg38",
  sample.info = NULL,
  group.1 = NULL,
  group.2 = NULL,
  sample.map = NULL,
  rm.chr = c("chrX", "chrY"),
 MissingValueThresholdGene = 0.2,
 MissingValueThresholdSample = 0.2,
  doBatchCorrection = FALSE,
 BatchData = NULL,
 batch.correction.method = "Seurat",
  cores = 1
)
```

Arguments

methylation.data

matrix of DNA methylation data with CpG in rows and sample names in columns.

met.platform

character string indicating the type of the Illumina Infinium BeadChip for collecting the methylation data. Should be either 'HM450' or 'EPIC'. Default:

'EPIC'

genome

character string indicating the genome build version for retrieving the probe annotation. Should be either 'hg19' or 'hg38'. Default: 'hg38'.

sample.info

dataframe that maps each sample to a study group. Should contain two columns: the first column (named: 'primary') indicating the sample names, and the second column (named: 'sample.type') indicating which study group each sample

belongs to (e.g., "Experiment" vs. "Control", "Cancer" vs. "Normal"). Sample names in the 'primary' column must coincide with the column names of the methylation.data. Please see details for more information. Default: NULL.

group.1 character vector indicating the name(s) for the experiment group. The values

must coincide with the values in the 'sample.type' of the sample.info dataframe.Please

see details for more information. Default: NULL.

group. 2 character vector indicating the names(s) for the control group. The values must

coincide with the values in the 'sample.type' of the sample.info dataframe. Please

see details for more information. Default: NULL.

sample.map dataframe for mapping the GEO accession ID (column names) to the actual sam-

ple names. Can be the output from the GEO_getSampleMap function. Default:

NULL.

rm.chr character vector indicating the probes on which chromosomes to be removed.

Default: 'chrX', 'chrY'.

MissingValueThresholdGene

threshold for missing values per gene. Genes with a percentage of NAs greater

than this threshold are removed. Default: 0.3.

 ${\tt MissingValueThresholdSample}$

threshold for missing values per sample. Samples with a percentage of NAs

greater than this threshold are removed. Default: 0.1.

doBatchCorrection

logical indicating whether to perform batch correction. If TRUE, the batch data

need to be provided.

BatchData dataframe with batch information. Should contain two columns: the first column

indicating the actual sample names, the second column indicating the batch. Users are expected to retrieve the batch information from the GEO on their own, but this can also be done using the GEO_getSampleInfo function with the 'group.column' as the column indicating the batch for each sample. Defualt':

NULL.

batch.correction.method

character string indicating the method that will be used for batch correction.

Should be either 'Seurat' or 'Combat'. Default: 'Seurat'.

cores number of CPU cores to be used for batch effect correction. Defaut: 1.

Details

The data preprocessing pipeline includes: (1) eliminating samples and genes with too many NAs, imputing NAs. (2) (optional) mapping the column names of the DNA methylation data to the actual sample names based on the information from 'sample.map'. (3) (optional) removing CpG probes on the sex chromosomes or the user-defined chromosomes. (4) (optional) doing Batch correction. If both sample.info and group.1 and group.2 information are provided, the function will perform missing value estimation and batch correction on group.1 and group.2 separately. This will ensure that the true difference between group.1 and group.2 will not be obscured by missing value estimation and batch correction.

Value

DNA methylation data matrix with probes in rows and samples in columns.

Examples

GEO_Preprocess_GeneExpression

 $The~GEO_Preprocess_Gene Expression~function$

Description

Preprocess the gene expression data from the GEO database.

Usage

```
GEO_Preprocess_GeneExpression(
  gene.expression.data,
  sample.info = NULL,
  group.1 = NULL,
  group.2 = NULL,
  sample.map = NULL,
  MissingValueThresholdGene = 0.3,
  MissingValueThresholdSample = 0.1,
  doBatchCorrection = FALSE,
  BatchData = NULL,
  batch.correction.method = "Seurat",
  cores = 1
)
```

Arguments

```
gene.expression.data
```

a matrix of gene expression data with gene in rows and samples in columns.

sample.info

dataframe that maps each sample to a study group. Should contain two columns: the first column (named: 'primary') indicating the sample names, and the second column (named: 'sample.type') indicating which study group each sample belongs to (e.g., "Experiment" vs. "Control", "Cancer" vs. "Normal"). Sample names in the 'primary' column must coincide with the column names of the methylation.data. Please see details for more information. Default: NULL.

group.1 character vector indicating the name(s) for the experiment group. The values

must coincide with the values in the 'sample.type' of the sample.info dataframe.Please

see details for more information. Default: NULL.

group. 2 character vector indicating the names(s) for the control group. The values must

coincide with the values in the 'sample.type' of the sample.info dataframe. Please

see details for more information. Default: NULL.

sample.map dataframe for mapping the GEO accession ID (column names) to the actual sam-

ple names. Can be the output from the GEO_getSampleMap function. Default:

NULL.

MissingValueThresholdGene

threshold for missing values per gene. Genes with a percentage of NAs greater

than this threshold are removed. Default is 0.3.

MissingValueThresholdSample

threshold for missing values per sample. Samples with a percentage of NAs

greater than this threshold are removed. Default is 0.1.

doBatchCorrection

logical indicating whether to perform batch correction. If TRUE, the batch data

need to be provided.

BatchData dataframe with batch information. Should contain two columns: the first col-

umn indicating the actual sample names, the second column indicating the batch. Users are expected to retrieve the batch information from GEO on their own, but this can also be done using the GEO_getSampleInfo function with the 'group.column'

as the column indicating the batch for each sample. Defualt': NULL.

batch.correction.method

character string indicating the method that be used for batch correction. Should

be either 'Seurat' or 'Combat'. Default: 'Seurat'.

cores number of CPU cores to be used for batch effect correction. Default: 1

Details

The preprocessing pipeline includes: (1) eliminating samples and genes with too many NAs and imputing NAs. (2) if the gene names (rownames) in the gene expression data are ensembl_gene_ids or ensembl_transcript_ids, translate the gene names or the transcript names to human gene symbols (HGNC). (3) mapping the column names of the gene expression data to the actual sample names based on the information from 'sample.map'. (4) doing batch correction.

Value

gene expression data matrix with genes in rows and samples in columns.

Examples

Get.Pvalue.p 27

```
group.2 = 'Normal')
}
```

Get.Pvalue.p

Calculate empirical Pvalue

Description

Calculate empirical Pvalue

Usage

```
Get.Pvalue.p(U.matrix, permu)
```

Arguments

U.matrix A data.frame of raw pvalue from U test. Output from .Stat.nonpara permu data frame of permutation. Output from .Stat.nonpara.permu

Value

A data frame with empirical Pvalue.

getFeatureProbe to select probes within promoter regions or distal regions.

Description

getFeatureProbe is a function to select the probes falling into distal feature regions or promoter regions.

This function selects the probes on HM450K that either overlap distal biofeatures or TSS promoter.

Usage

```
getFeatureProbe(
  feature = NULL,
  TSS,
  genome = "hg38",
  met.platform = "HM450",
  TSS.range = list(upstream = 2000, downstream = 2000),
  promoter = FALSE,
  rm.chr = NULL
)
```

Arguments

feature A GRange object containing biofeature coordinate such as enhancer coordinates.

If NULL only distal probes (2Kbp away from TSS will be selected) feature

option is only usable when promoter option is FALSE.

TSS A GRange object contains the transcription start sites. When promoter is FALSE,

Union.TSS in **ELMER.data** will be used for default. When promoter is TRUE, UCSC gene TSS will be used as default (see detail). User can specify their own

preference TSS annotation.

genome Which genome build will be used: hg38 (default) or hg19.

met.platform DNA methyaltion platform to retrieve data from: EPIC or 450K (default)

TSS. range A list specify how to define promoter regions. Default is upstream =2000bp and

downstream=2000bp.

promoter A logical. If TRUE, function will outut the promoter probes. If FALSE, function

will ouput the distal probes overlaping with features. The default is FALSE.

rm. chr A vector of chromosome need to be remove from probes such as chrX chrY or

chrM

Details

In order to get real distal probes, we use more comprehensive annotated TSS by both GENCODE and UCSC. However, to get probes within promoter regions need more accurate annotated TSS such as UCSC. Therefore, there are different settings for promoter and distal probe selection. But user can specify their own favorable TSS annotation. Then there won't be any difference between promoter and distal probe selection. @return A GRanges object contains the coordinate of probes which locate within promoter regions or distal feature regions such as union enhancer from REMC and FANTOM5. @usage getFeatureProbe(feature, TSS, TSS.range = list(upstream = 2000, downstream = 2000), promoter = FALSE, rm.chr = NULL)

Value

A GRange object containing probes that satisfy selecting critiria.

getMethStates_Helper The getMethStates_Helper function

Description

helper function to determine the methylation state based on DM values

Usage

getMethStates_Helper(DMValues)

Arguments

DMValues a character vector indicating the DM values of a CpG site

GetNearGenes 29

Value

a character string incdicating the methylation state of the CpG

GetNearGenes

GetNearGenes to collect nearby genes for one locus.

Description

GetNearGenes is a function to collect equal number of gene on each side of one locus. It can receite either multi Assay Experiment with both DNA methylation and gene Expression matrix and the names of probes to select nearby genes, or it can receive two granges objects TRange and geneAnnot.

Usage

```
GetNearGenes(
  data = NULL,
  probes = NULL,
  geneAnnot = NULL,
  TRange = NULL,
  numFlankingGenes = 20
)
```

Arguments

data A multi Assay Experiment with both DNA methylation and gene Expression

objects

probes Name of probes to get nearby genes (it should be rownames of the DNA methy-

lation object in the data argument object)

geneAnnot A GRange object or Summarized Experiment object that contains coordinates

of promoters for human genome.

TRange A GRange object or Summarized Experiment object that contains coordinates

of a list of targets loci.

numFlankingGenes

A number determines how many gene will be collected totally. Then the number devided by 2 is the number of genes collected from each side of targets (number levels 1 levels 20). Perfective 200

shoule be even) Default to 20.

Value

A data frame of nearby genes and information: genes' IDs, genes' symbols, distance with target and side to which the gene locate to the target.

References

Yao, Lijing, et al. "Inferring regulatory element landscapes and transcription factor networks from cancer methylomes." Genome biology 16.1 (2015): 1.

getProbeAnnotation The getProbeAnnotation function

Description

Helper function to get the probe annotation based on mode

Usage

```
getProbeAnnotation(mode, met.platform, genome)
```

Arguments

mode analytic mode
met.platform methylation platform
genome genome build version

Value

a ProbeAnnotation dataframe consisting of two columns: probe, gene

getRegionNearGenes

Identifies nearest genes to a region

Description

Auxiliary function for GetNearGenes This will get the closest genes (n=numFlankingGenes) for a target region (TRange) based on a genome of reference gene annotation (geneAnnot). If the transcript level annotation (tssAnnot) is provided the Distance will be updated to the distance to the nearest TSS.

Usage

```
getRegionNearGenes(
  TRange = NULL,
  numFlankingGenes = 20,
  geneAnnot = NULL,
  tssAnnot = NULL
)
```

Arguments

TRange A GRange object contains coordinate of targets.

numFlankingGenes

A number determine how many gene will be collected from each

geneAnnot A GRange object contains gene coordinates of for human genome.

tssAnnot A GRange object contains tss coordinates of for human genome.

GetSurvivalProbe 31

Value

A data frame of nearby genes and information: genes' IDs, genes' symbols,

Author(s)

Tiago C Silva (maintainer: tiagochst@usp.br)

GetSurvivalProbe

The GetSurvivalProbe function

Description

Get probes whose methylation state is predictive of patient survival

Usage

```
GetSurvivalProbe(
   EpiMixResults,
   TCGA_CancerSite = NULL,
   clinical.data = NULL,
   raw.pval.threshold = 0.05,
   p.adjust.method = "none",
   adjusted.pval.threshold = 0.05,
   OutputRoot = ""
```

Arguments

EpiMixResults List of objects returned from the EpiMix function

TCGA_CancerSite

String indicating the TCGA cancer code (e.g. 'LUAD')

clinical.data

(If the TCGA_CancerSite is specified, this parameter is optional) Dataframe with survival information. Must contain at least three columns: 'sample.id', 'days_to_death', 'days_to_last_follow_up'.

raw.pval.threshold

numeric value indicting the raw p value threshold for selecting the survival predictive probes. Survival time is compared by log-rank test. Default: 0.05

p.adjust.method

character string indicating the statistical method for adjusting multiple comparisons, can be either of 'holm', 'hochberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none'. Default: 'fdr'

adjusted.pval.threshold

numeric value indicting the adjusted p value threshold for selecting the survival predictive probes. Default: 0.05

OutputRoot

path to save the output. If not null, the return value will be saved as 'Survival)Probes.csv'.

32 getTSS

Value

a dataframe with probes whose methylation state is predictive of patient survival and the p value.

Examples

getTSS

getTSS to fetch GENCODE gene annotation (transcripts level) from Bioconductor package biomaRt If upstream and downstream are specified in TSS list, promoter regions of GENCODE gene will be generated.

Description

getTSS to fetch GENCODE gene annotation (transcripts level) from Bioconductor package biomaRt If upstream and downstream are specified in TSS list, promoter regions of GENCODE gene will be generated.

Usage

```
getTSS(genome = "hg38", TSS = list(upstream = NULL, downstream = NULL))
```

Arguments

genome Which genome build will be used: hg38 (default) or hg19.

TSS A list. Contains upstream and downstream like TSS=list(upstream, downstream).

When upstream and downstream is specified, coordinates of promoter regions

with gene annotation will be generated.

Value

GENCODE gene annotation if TSS is not specified. Coordinates of GENCODE gene promoter regions if TSS is specified.

Author(s)

Lijing Yao (maintainer: lijingya@usc.edu)

MethylMix_Predict 33

hylMix_Predict function

Description

Given a new data set with methylation data, this function predicts the mixture component for each new sample and driver gene. Predictions are based on posterior probabilities calculated with MethylMix'x fitted mixture model.

Usage

```
MethylMix_Predict(newBetaValuesMatrix, MethylMixResult)
```

Arguments

newBetaValuesMatrix

Matrix with new observations for prediction, genes/cpg sites in rows, samples in columns. Although this new matrix can have a different number of genes/cpg sites than the one provided as METcancer when running MethylMix, naming of genes/cpg sites should be the same.

MethylMixResult

Output object from MethylMix

Value

A matrix with predictions (indices of mixture component), driver genes in rows, new samples in columns

predictOneGene	The predictOneGene function

Description

Auxiliar function. Given a new vector of beta values, this function calculates a matrix with posterior prob of belonging to each mixture commponent (columns) for each new beta value (rows), and return the number of the mixture component with highest posterior probabilit

Usage

```
predictOneGene(newVector, mixtureModel)
```

Arguments

newVector vector with new beta values

mixtureModel beta mixture model object for the gene being evaluated.

Value

A matrix with predictions (indices of mixture component), driver genes in rows, new samples in columns

 ${\tt removeDuplicatedGenes}$ The ${\tt removeDuplicatedGenes}$ function

Description

sum up the transcript expression values if a gene has multiple transcripts

Usage

removeDuplicatedGenes(GEN_data)

Arguments

GEN_data gene expression data matrix

Value

gene expression data matrix with duplicated genes removed

TCGA_Download_DNAmethylation

The TCGA_Download_DNAmethylation function

Description

Download DNA methylation data from TCGA.

Usage

TCGA_Download_DNAmethylation(CancerSite, TargetDirectory, downloadData = TRUE)

Arguments

CancerSite character of length 1 with TCGA cancer code.

TargetDirectory

character with directory where a folder for downloaded files will be created.

downloadData logical indicating if data should be downloaded (default: TRUE). If false, the

url of the desired data is returned.

Value

list with paths to downloaded files for both 27k and 450k methylation data.

Examples

```
METdirectories <- TCGA_Download_DNAmethylation(CancerSit = 'OV', TargetDirectory = tempdir())
```

TCGA_Download_GeneExpression

The TCGA_Download_GeneExpression function

Description

Download gene expression data from TCGA.

Usage

```
TCGA_Download_GeneExpression(
  CancerSite,
  TargetDirectory,
  mode = "Regular",
  downloadData = TRUE
)
```

Arguments

CancerSite character string indicating the TCGA cancer code.

TargetDirectory

character with directory where a folder for downloaded files will be created.

mode

character string indicating whether we should download the gene expression

data for miRNAs or lncRNAs, instead of for protein-coding genes. See details

for more information.

downloadData

logical indicating if the data should be downloaded (default: TRUE). If False,

the url of the desired data is returned.

Details

mode: when mode is set to 'Regular', this function downloads the level 3 RNAseq data (file tag 'mRNAseq_Preprocess.Level_3'). Since there is not enough RNAseq data for OV and GBM, the micro array data is downloaded. If you plan to run the EpiMix on miRNA- or lncRNA-coding genes, please specify the 'mode' parameter to 'miRNA' or 'lncRNA'.

Value

list with paths to downloaded files for gene expression.

36 TCGA_GetData

Examples

TCGA_GetData

The TCGA_GetData function

Description

This function wraps the functions for downloading, pre-processing and analysis of the DNA methylation and gene expression data from the TCGA project.

Usage

```
TCGA_GetData(
   CancerSite,
   mode = "Regular",
   outputDirectory = ".",
   doBatchCorrection = FALSE,
   batch.correction.method = "Seurat",
   roadmap.epigenome.ids = NULL,
   roadmap.epigenome.groups = NULL,
   forceUse450K = FALSE,
   cores = 1
)
```

Arguments

CancerSite character string indicating the TCGA cancer code. The information can be found

at: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations

mode character string indicating the analytic mode to model DNA methylation. Should

be one of the followings: 'Regular', 'Enhancer', 'miRNA' or 'lncRNA'. Default:

'Regular'. See details for more information.

outputDirectory

character string indicating the file path to save the output.

TCGA_GetData 37

doBatchCorrection

logical indicating whether to do batch effect correction during preprocessing. Default: False.

batch.correction.method

character string indicating the method to perform batch effect correction. The value should be either 'Seurat' or 'Combat'. Seurat is much fatster than the Combat. Default: 'Seurat'.

roadmap.epigenome.ids

character vector indicating the epigenome ID(s) to be used for selecting enhancers. See details for more information. Default: NULL.

roadmap.epigenome.groups

character vector indicating the tissue group(s) to be used for selecting enhancers. See details for more information. Default: NULL.

forceUse450K logic indicating whether force to use only 450K methylation data. Default:

FALSE

cores Number of CPU cores to be used for computation.

Details

mode: EpiMix incorporates four alternative analytic modes for modeling DNA methylation: "Regular," "Enhancer", "miRNA" and "lncRNA". The four analytic modes target DNA methylation analysis on different genetic elements. The Regular mode aims to model DNA methylation at proximal cis-regulatory elements of protein-coding genes. The Enhancer mode targets DNA methylation analysis on distal enhancers. The miRNA or lncRNA mode focuses on methylation analysis of miRNA- or lncRNA-coding genes.

roadmap.epigenome.groups & roadmap.epigenome.ids:

Since enhancers are cell-type or tissue-type specific, EpiMix needs to know the reference tissues or cell types in order to select proper enhancers. EpiMix identifies enhancers from the RoadmapEpigenomic project (Nature, PMID: 25693563), in which enhancers were identified by ChromHMM in over 100 tissue and cell types. Available epigenome groups (a group of relevant cell types) or epigenome ids (individual cell types) can be obtained from the original publication (Nature, PMID: 25693563, figure 2). They can also be retrieved from the list.epigenomes() function. If both roadmap.epigenome.groups and roadmap.epigenome.ids are specified, EpiMix will select all the epigenomes from the combination of the inputs.

Value

The results from EpiMix is a list with the following components:

MethylationDrivers

CpG probes identified as differentially methylated by EpiMix.

NrComponents The number of methylation states found for each driver probe.

MixtureStates A list with the DM-values for each driver probe. Differential Methylation val-

ues (DM-values) are defined as the difference between the methylation mean of samples in one mixture component from the experiment group and the methyla-

tion mean in samples from the control group, for a given probe.

MethylationStates

Matrix with DM-values for all driver probes (rows) and all samples (columns).

Classifications

Matrix with integers indicating to which mixture component each sample in the experiment group was assigned to, for each probe.

Models Beta mixture model parameters for each driver probe.

group.1 sample names in group.1 (experimental group).

group. 2 sample names in group. 2 (control group).

FunctionalPairs

Dataframe with the prevalence of differential methyaltion for each CpG probe in the sample population, and fold change of mRNA expression and P values for each significant probe-gene pair.

Examples

```
# Example #1 - Regular mode
EpiMixResults <- TCGA_GetData(CancerSite = 'LUAD',</pre>
                               outputDirectory = tempdir(),
                               cores = 8)
# Example #2 - Enhancer mode
EpiMixResults <- TCGA_GetData(CancerSite = 'LUAD',</pre>
                               mode = 'Enhancer',
                               roadmap.epigenome.ids = 'E097',
                               outputDirectory = tempdir(),
                               cores = 8)
Example #3 - miRNA mode
EpiMixResults <- TCGA_GetData(CancerSite = 'LUAD',</pre>
                               mode = 'miRNA',
                               outputDirectory = tempdir(),
                               cores = 8)
#' Example #4 - lncRNA mode
EpiMixResults <- TCGA_GetData(CancerSite = 'LUAD',</pre>
                               mode = 'lncRNA',
                               outputDirectory = tempdir(),
                               cores = 8)
```

TCGA_GetSampleInfo

The TCGA_GetSampleInfo function

Description

The TCGA_GetSampleInfo function

Usage

```
TCGA_GetSampleInfo(METProcessedData, CancerSite = "LUAD", TargetDirectory = "")
```

Arguments

METProcessedData

Matrix of preprocessed methylation data.

CancerSite Character string of TCGA study abbreviation.

TargetDirectory

Path to save the sample.info. Default: ".

Details

Generate the 'sample.info' dataframe for TCGA data.

Value

A dataframe for the sample groups. Contains two columns: the first column (named: 'primary') indicating the sample names, and the second column (named: 'sample.type') indicating whether each sample is a Cancer or Normal tissue.

Examples

```
{
data(MET.data)
sample.info <- TCGA_GetSampleInfo(MET.data, CancerSite = 'LUAD')
}</pre>
```

TCGA_Preprocess_DNAmethylation

The TCGA_Preprocess_DNAmethylation function

Description

Pre-processes DNA methylation data from TCGA.

Usage

```
TCGA_Preprocess_DNAmethylation(
   CancerSite,
   METdirectories,
   doBatchCorrection = FALSE,
   batch.correction.method = "Seurat",
   MissingValueThreshold = 0.2,
   cores = 1,
   use450K = FALSE
)
```

Arguments

CancerSite character string indicating the TCGA cancer code.

METdirectories character vector with directories with the downloaded data. It can be the object

returned by the TCGA_Download_DNAmethylation function.

doBatchCorrection

logical indicating whether to perform batch correction. Default: False.

batch.correction.method

character string indicating the method to perform batch correction. The value should be either 'Seurat' or 'Combat'. Default: 'Seurat'. Note: Seurat is much

faster than the Combat.

MissingValueThreshold

numeric values indicating the threshold for removing samples or genes with

missing values. Default: 0.2.

cores integer indicating the number of cores to be used for performing batch correction

with Combat.

use450K logic indicating whether to force use 450K, instead of 27K data.

Details

Pre-process includes eliminating samples and genes with too many NAs, imputing NAs, and doing Batch correction. If there are samples with both 27k and 450k data, the 27k data will be used only if the sample number in the 27k data is greater than the 450k data and there is more than 50 samples in the 27k data. Otherwise, the 450k data is used and the 27k data is discarded.

Value

pre-processed methylation data matrix with CpG probe in rows and samples in columns.

Pre-processed methylation data matrix with CpG probe in rows and samples in columns.

Examples

TCGA_Preprocess_GeneExpression

The TCGA Preprocess GeneExpression function

Description

Pre-processes gene expression data from TCGA.

Usage

```
TCGA_Preprocess_GeneExpression(
   CancerSite,
   MAdirectories,
   mode = "Regular",
   doBatchCorrection = FALSE,
   batch.correction.method = "Seurat",
   MissingValueThresholdGene = 0.3,
   MissingValueThresholdSample = 0.1,
   cores = 1
)
```

Arguments

CancerSite character string indicating the TCGA cancer code.

MAdirectories character vector with directories with the downloaded data. It can be the object

returned by the GEO_Download_GeneExpression function.

mode character string indicating whether the genes in the gene expression data are

miRNAs or lncRNAs. Should be either 'Regular', 'Enhancer', 'miRNA' or

'lncRNA'. This value should be consistent with the same parameter in the TCGA_Download_GeneExpres

function. Default: 'Regular'.

doBatchCorrection

logical indicating whether to perform batch effect correction. Default: False.

batch.correction.method

character string indicating the method to perform batch correction. The value should be either 'Seurat' or 'Combat'. Default: 'Seurat'. Seurat is much fatster

than the Combat.

MissingValueThresholdGene

threshold for missing values per gene. Genes with a percentage of NAs greater

than this threshold are removed. Default is 0.3.

MissingValueThresholdSample

threshold for missing values per sample. Samples with a percentage of NAs

greater than this threshold are removed. Default is 0.1.

cores integer indicating the number of cores to be used for performing batch correction

with Combat

Details

Pre-process includes eliminating samples and genes with too many NAs, imputing NAs, and doing Batch correction. If the rownames of the gene expression data are ensembl ENSG names or ENST names, the function will convert them to the human gene symbol (HGNC).

Value

pre-processed gene expression data matrix.

Examples

```
# Example #1: Preprocessing gene expression for Regular mode
GEdirectories <- TCGA_Download_GeneExpression(CancerSite = 'OV',</pre>
                                                TargetDirectory = tempdir())
GEProcessedData <- TCGA_Preprocess_GeneExpression(CancerSite = 'OV',</pre>
                                                    MAdirectories = GEdirectories)
# Example #2: Preprocessing gene expression for miRNA mode
GEdirectories <- TCGA_Download_GeneExpression(CancerSite = 'OV',
                                                TargetDirectory = tempdir(),
                                                mode = 'miRNA')
GEProcessedData <- TCGA_Preprocess_GeneExpression(CancerSite = 'OV',
                                                    MAdirectories = GEdirectories,
                                                    mode = 'miRNA')
# Example #3: Preprocessing gene expression for lncRNA mode
GEdirectories <- TCGA_Download_GeneExpression(CancerSite = 'OV',</pre>
                                                TargetDirectory = tempdir(),
                                                mode = 'lncRNA')
GEProcessedData <- TCGA_Preprocess_GeneExpression(CancerSite = 'OV',</pre>
                                                    MAdirectories = GEdirectories,
                                                    mode = 'lncRNA')
```

TCGA_Select_Dataset The TCGA_Select_Dataset function

Description

internal function to select which MET dataset to use

Usage

```
TCGA_Select_Dataset(CancerSite, MET_Data_27K, MET_Data_450K, use450K)
```

Arguments

CancerSite TCGA cancer code

MET_Data_27K matrix of MET_Data_27K

MET_Data_450K matrix of MET_Data_450K

use450K logic indicating whether to force use 450K data

Value

the selected MET data set

translateMethylMixResults

The translateMethylMixResults function

Description

unfold clustered MethylMix results to single CpGs

Usage

translateMethylMixResults(MethylMixResults, probeMapping)

Arguments

MethylMixResults

list of MethylMix output

probeMapping dataframe of probe to gene-cluster mapping

Value

list of unfolded MethylMix results

validEpigenomes

The validEpigenomes function

Description

check user input for roadmap epigenome groups or ids

Usage

```
validEpigenomes(roadmap.epigenome.groups, roadmap.epigenome.ids)
```

Arguments

```
roadmap.epigenome.groups
epigenome groups
roadmap.epigenome.ids
epigenome ids
```

Value

a character vector of selected epigenome ids

Index

* cluter_probes	Get.Pvalue.p, 27
ClusterProbes, 5	getFeatureProbe, 27
* download	getMethStates_Helper, 28
GEO_Download_DNAMethylation, 20	GetNearGenes, 29
GEO_Download_GeneExpression, 21	getProbeAnnotation, 30
TCGA_Download_DNAmethylation, 34	getRegionNearGenes, 30
TCGA_Download_GeneExpression, 35	GetSurvivalProbe, 31
* preprocess	getTSS, 32
GEO_Preprocess_DNAMethylation, 23	
GEO_Preprocess_GeneExpression, 25	MethylMix_Predict, 33
TCGA_Preprocess_DNAmethylation, 39	
TCGA_Preprocess_GeneExpression, 40	predictOneGene, 33
* purpose	
GEO_GetSampleInfo, 22	removeDuplicatedGenes, 34
GEO_getSampleMap, 22	TCGA_Download_DNAmethylation, 34
* testing	TCGA_Download_GeneExpression, 35
GEO_GetSampleInfo, 22	TCGA_GetData, 36
GEO_getSampleMap, 22	TCGA_GetSampleInfo, 38
	TCGA_Preprocess_DNAmethylation, 39
addDistNearestTSS, 3	TCGA_Preprocess_GeneExpression, 40
addGeneNames, 3	TCGA_Select_Dataset, 42
and a Direct No. 200 at 1700 A	translateMethylMixResults, 43
calcDistNearestTSS, 4	transfacere enginizates, 15
ClusterProbes, 5	validEpigenomes, 43
EpiMix, 5	, , , , , , , , , , , , , , , , , , ,
EpiMix_PlotGene, 9	
EpiMix_PlotModel, 11	
EpiMix_PlotProbe, 13	
EpiMix_PlotSurvival, 15	
Epinix_i locodi vival, 15	
filterProbes, 17	
functionEnrich, 18	
generateFunctionalPairs, 19	
GEO_Download_DNAMethylation, 20	
GEO_Download_GeneExpression, 21	
GEO_GetSampleInfo, 22	
GEO_getSampleMap, 22	
GEO_Preprocess_DNAMethylation, 23	
GEO Preprocess GeneExpression 25	