Package ‘CoreGx’

April 10, 2023
Type Package

Title Classes and Functions to Serve as the Basis for Other 'Gx'
Packages

Version 2.2.0
Date 2022-10-13

Description A collection of functions and classes which serve as the foundation
for our lab's suite of R packages, such as 'PharmacoGx' and 'RadioGx'. This
package was created to abstract shared functionality from other lab package
releases to increase ease of maintainability and reduce code repetition in
current and future 'Gx' suite programs. Major features include a 'CoreSet'
class, from which 'RadioSet' and 'PharmacoSet' are derived, along with get
and set methods for each respective slot. Additional functions related to
fitting and plotting dose response curves, quantifying statistical
correlation and calculating area under the curve (AUC) or survival fraction
(SF) are included. For more details please see the included documentation,
as well as:

Smirnov, P., Safikhani, Z., El-Hachem, N., Wang, D., She, A., Olsen, C.,
Freeman, M., Selby, H., Gendoo, D., Grossman, P., Beck, A., Aerts, H.,
Lupien, M., Goldenberg, A. (2015) <doi:10.1093/bioinformatics/btv723>.

Manem, V., Labie, M., Smirnov, P., Kofia, V., Freeman, M., Koritzinksy, M.,
Abazeed, M., Haibe-Kains, B., Bratman, S. (2018) <doi:10.1101/449793>.

VignetteBuilder knitr

VignetteEngine knitr::rmarkdown

biocViews Software, Pharmacogenomics, Classification, Survival
Encoding UTF-8

LazyData TRUE

Depends R (>=4.1), BiocGenerics, SummarizedExperiment

Imports Biobase, S4Vectors, MultiAssayExperiment, MatrixGenerics,
piano, BiocParallel, parallel, BumpyMatrix, checkmate, methods,
stats, utils, graphics, grDevices, 1sa, data.table, crayon,
glue, rlang, bench

Suggests pander, markdown, BiocStyle, rmarkdown, knitr, formatR,
testthat

https://doi.org/10.1093/bioinformatics/btv723
https://doi.org/10.1101/449793

2 R topics documented:

License GPL (>= 3)

Config/testthat/edition 3

Roxygen list(markdown=TRUE, r6=FALSE)
RoxygenNote 7.2.0

Collate 'allGenerics.R' 'immutable-class.R' "LongTable-class.R'
'CoreSet-class.R' 'CoreSet-accessors.R' 'CoreSet-utils.R'
'DataMapper-class.R' 'LongTable-accessors.R'
LongTable-utils.R' 'LongTableDataMapper-class.R'
"LongTableDataMapper-accessors.R'
"TreatmentResponseExperiment-class.R' "TREDataMapper-class.R'
'adaptiveMatthewCor.R' 'aggregate-methods.R'
'callingWaterfall.R' 'connectivityScore.R' 'cosinePerm.R'
'datasets.R' 'deprecated.R' 'endoaggregate-methods.R'
'globals.R' 'gwc.R' 'matthewCor.R' 'mergeAssays-method.R'
‘methods-coerce.R' 'methods-dim.R' 'methods-dimnames.R'
‘methods-drugSensitivitySig.R' ‘'methods-guessMapping.R'
'methods-metaConstruct.R' 'methods-subsetTo.R’
'optimizeCoreGx.R' 'updateObject-methods.R' 'utilities.R’
'utils-iteration.R' 'utils-messages.R' 'utils-optimization.R'
'utils-testing.R" 'utils-updateS4.R’

git_url https://git.bioconductor.org/packages/CoreGx
git_branch RELEASE_3_16

git_last_commit 681e43d

git_last_commit_date 2022-11-01

Date/Publication 2023-04-10

Author Petr Smirnov [aut],
Ian Smith [aut],
Christopher Eeles [aut],
Feifei Li [aut],
Benjamin Haibe-Kains [aut, cre]

Maintainer Benjamin Haibe-Kains <benjamin.haibe.kains@utoronto.ca>

R topics documented:

e e e 5
assayToBumpyMatrix oL L e e 5
AtCurve2 ..o oL e 6
JongTableToSummarizedExperiment 8
aggregate,data.table-methodo 0oL 0oL 9
aggregate,LongTable-method L oo 10
AEIEZAte2 i e e e e e e e e e e e e 12
AMCC . o v v v v e e e e e e e e e e e e e e 14
AS L L 15

R topics documented: 3

assayCols e e 17
assaylndex 18
assayKeys oL 18
assignment-immutable 19
buildComboProfiles 20
buildComboProfiles,LongTable-method 20
buildLongTable e 21
buildLongTable,character-method 22
buildLongTable,data.frame-method 22
buildLongTable list-method 23
cimmutable 24
checkColumnCardinality 25
checkCsetStructure L e e 25
clevelandSmall_cSet e 26
colData,LongTableDataMapper-method 27
colData,TREDataMapper-method 27
collDs e e 28
collect_fn_params e e 28
colMeta e 29
CONNECHIVILYSCOre o e 30
CoreGx-deprecated 31
CoreSet e 32
COreSet-aCCesSOTS « .« v v v v v v v e e e e e e e e e e e e e e e e e e 33
CoreSet-class e 43
CoreSet-utils L 44
CoreSet2 e 46
cosinePerm 47
DataMapper-acCessorso e e e e e e e e e e 48
DataMapper-class e e e e e 49
drop_fn_params e e 49
endoaggregate L. e e e e e e e e 50
endoaggregate,LongTable-method 50
exampleDataMapper 52
getlntern L. e 53
guesSMapping e e 53
guessMapping,LongTableDataMapper-method 54
SWC o v e e e e e e 55
idCols . . . e 56
immutable L. 57
ISAEEMS . . . v o e e e e e e e e e 58
is_optim_compatible L 59
lapply,MultiAssayExperiment-method 59
list OR_LongTable-class i et 60
LongTable o e 60
LongTable-accessors oo it e 61
LongTableDataMapper i i e e e e 61
LongTableDataMapper-accessors v v v v v v i e 63

LongTableDataMapper-class 65

Index

R topics documented:

make_optim_function 66
INCC © v v e v e e e e e e e e e e e e e e e e e e e 67
merckLongTable 68
METZEASSAYS . o o v o e 68
mergeAssays,LongTable-method oL 69
metaConstruct oL e e e e e e e 70
metadata,LongTable-method 71
metadata<-,LongTable-method 71
mutable 72
nci TRE small e 72
optimizeCOreGX v v it e e e e e e e e e 73
reindeX 74
reindex,LongTable-method 74
rowData,LongTableDataMapper-method 75
rowData,TREDataMapper-method 75
rowlDs . .o 76
rowMeta L e e e e 77
sensitivityIlnfo L oL 77
sensitivitylnfo<-o oL 78
SENSItiVityMeasures i e e e e e 78
SensSitivityMeasures<- e e e e e e e e e e e e 79
sensitivityProfiles L 80
sensitivityProfiles<- 80
sensitivityRawo 81
sensitivityRaw<- L 81
sensitivitySlotToLongTable 82
setOps-immutable L 82
show,CoreSet-method 83
show,LongTable-method 84
showSigAnnot 84
subset,LongTable-method oo 85
summarizeMolecularProfiles oL oo 86
summarizeSensitivityProfiles oL o o 87
TreatmentResponseExperiment 87
TREDataMapper o e e e e e e 89
TREDataMapper-acCessors v v v v v v v v e e e e e e e e e e e e e e 90
TREDataMapper-class e 93
updateObject,CoreSet-method L. 94
updateObject,LongTable-method 94
[[LongTable, ANY,ANY,ANY-method 95
[[<-,LongTable, ANY,ANY-method 96
$,LongTable-method 97
$<-LongTable-method 97

99

Convenience function for converting R code to a call

Description

This is used to pass through unevaluated R expressions into subset and [, where they will be evalu-
ated in the correct context.

Usage
Gl
Arguments
pairlist One or more R expressions to convert to calls.
Value

call An R call object containing the quoted expression.

Examples

. (sample_linel == 'A2058"')

.assayToBumpyMatrix Convert a LongTable assay into a BumpyMatrix object

Description

Convert a LongTable assay into a BumpyMatrix object

Usage

.assayToBumpyMatrix(LT, assay, rows, cols, sparse = TRUE)

Arguments
LT LongTable with assay to convert into BumpyMatrix
assay character(1) A valid assay name in LT, as returned by assayNames(LT).
rows character () The rownames associated with the assay rowKey
cols character () The names associated with the assay colKey
sparse logical(1) Should the BumpyMatrix be sparse (i.e., is the assay sparse).
Value

BumpyMatrix containing the data from assay.

6 fitCurve2
.fitCurve2 Curve fitting via stats: :optim L-BFGS-B with fall-back grid/pattern
search if convergence is not achieved.
Description
Curve fitting via stats: :optim L-BFGS-B with fall-back grid/pattern search if convergence is not
achieved.
Usage
.fitCurve2(
par,
X ’
Y,
fn,
loss,
lower = -Inf,
upper = Inf,
precision = 1e-04,
density = c(2, 10, 5),
step = 0.5/density,
loss_args = list(),
span = 1,
optim_only = FALSE,
control = list(factr = 1e-08, ndeps = rep(1e-04, times = length(par)), trace = 0)
)
Arguments
par numeric Vector of intial guesses for the parameters. For each index i of par,
par[i] must be within the range (lower\[i\1, upper\[i\]). If only a single
upper or lower value is present, that range is used for all parameters in par.
X numeric Values to evaluate fn for.
y numeric Target output values to optimze fn against.
fn function A function to optimize. Any fn arguments passed via ... will be
treated as constant and removed from the optimization. It is assumed that the
first argument is the x value to optimize over and any subsequent arguments
are free parameters to be optimized. Transformed to be optim compatible via
make_optim_function is the first arguement isn’t already par.
loss character (1) or function Either the name of one of the bundled loss functions
(see details) or a custom loss function to compute for the output of fn over x.
lower numeric(1) Lower bound for parameters. Parallel to par.
upper numeric(1) Upper bound for paramteres. Parallel to par.

fitCurve2

precision

density

step

loss_args

span

optim_only

control

Details
TODO

Value

numeric Vector of

Examples

Not run:

numeric smallest step size used in pattern search, once step size drops below
this value, the search terminates.

numeric how many points in the dimension of each parameter should be evalu-
ated (density of the grid)

initial step size for pattern search.
pairlist Fall through arguments to fn.

list Additional argument to the loss function. These get passed to losss via
do.call analagously to using

numeric Can be safely kept at 1, multiplicative ratio for initial step size in pat-
tern search. Must be larger than precision.

logical (1) Should the fall back methods when optim fails be skipped? Default
is FALSE.

list List of control parameters to pass to optim. See ?optim for details.

optimal parameters for fn fit against y on the values of x.

Four parameter hill curve equation
hillEgn <- function(x, Emin, Emax, EC50, lambda) {
(Emin + Emax * (x / EC5@)*lambda) / (1 + (x / EC50)"lambda)

}

Make some dummy data
doses <- rev(1000 / (2%(1:20)))

lambda <- 1
Emin <- 1
Emax <- 0.1

EC50 <- median(doses)

response <- hillEgn(doses, Emin=Emin, lambda=lambda, Emax=Emax, EC50=EC50)
nresponse <- response + rnorm(length(response), sd=sd(response)*@.1) # add noise
3-parameter optimization

3par <- .fitCurve2(

par=c(Emax,
x=doses,

EC50, lambda),

y=nresponse,

fn=hillEqgn,
Emin=Emin,

set this as constant in the function being optimized (via ...)

loss=.normal_loss,
loss_args=list(trunc=FALSE, n=1, scale=0.07),

upper=c(1,
lower=c(0,

max (doses), 6),
min(doses), 0)

8 .IongTableToSummarizedExperiment

2-parameter optimization
2par <- .fitCurve2(
par=c(Emax, EC50),
x=doses,
y=nresponse,
fn=hillEqgn,
Emin=Emin, # set this as constant in the function being optimized (via ...)
lambda=1,
loss=.normal_loss,
loss_args=list(trunc=FALSE, n=1, scale=0.07),
upper=c(1, max(doses)),
lower=c(@, min(doses))

)

End(Not run)

.longTableToSummarizedExperiment
Convert LongTable to gDR Style SummarizedExperiment

Description

Convert LongTable to gDR Style SummarizedExperiment

Usage

.longTableToSummarizedExperiment (LT, assay_names)

Arguments
LT LongTable to convert to gDR SummarizedExperiment format.
assay_names character () Names to rename the assays to. These are assumed to be in the
same order as assayNames(LT).
Value

SummarizedExperiment object with all assay from LT as BumpyMatrixes.

aggregate,data.table-method 9

aggregate,data. table-method
Functional S4 API for aggregation over a data.table object.

Description

Compute a group-by operation over a data. table in a functional, pipe compatible format.

Usage

S4 method for signature 'data.table'
aggregate(

X,

by,

subset = TRUE,

nthread = 1,

progress = TRUE,

BPPARAM = NULL,

enlist = TRUE,

moreArgs = list()

Arguments

X data. table to compute aggregation over.
by character One or more valid column names in x to compute groups using.

call One or more aggregations to compute for each group by in x. If you name
aggregation calls, that will be the column name of the value in the resulting
data.table otherwise a default name will be parsed from the function name
and its first argument, which is assumed to be the name of the column being
aggregated over.

subset call An R call to evaluate before perfoming an aggregate. This allows you to
aggregate over a subset of columns in an assay but have it be assigned to the
parent object. Default is TRUE, which includes all rows. Passed through as the
i argument in [.data. table.

nthread numeric(1) Number of threads to use for split-apply-combine parallelization.
Uses BiocParllel: :bplapply if nthread > 1 or you pass in BPPARAM. Does not
modify data.table threads, so be sure to use setDTthreads for reasonable nested
parallelism. See details for performance considerations.

progress logical(1) Display a progress bar for parallelized computations? Only works
if bpprogressbar<- is defined for the current BiocParallel back-end.

BPPARAM BiocParallelParam object. Use to customized the the parallization back-end
of bplapply. Note, nthread over-rides any settings from BPPARAM as long as
bpworkers<- is defined for that class.

10 aggregate,LongTable-method

enlist logical (1) Default is TRUE. Set to FALSE to evaluate the first call in . . . within
data.table groups. See details for more information.

moreArgs list() A named list where each item is an argument one of the calls in ...
which is not a column in the table being aggregated. Use to further parameterize
you calls. Please note that these are not added to your aggregate calls unless you
specify the names in the call.

Details

This S4 method override the default aggregate method for a data. frame and as such you need to
call aggregate.data. frame directly to get the original S3 method for a data. table.

Use of Non-Standard Evaluation:

Arguments in . . . are substituted and wrapped in a list, which is passed through to the j argument
of [.data. table internally. The function currently tries to build informative column names for
unnamed arguments in . . . by appending the name of each function call with the name of its first
argument, which is assumed to be the column name being aggregated over. If an argument to . . .
is named, that will be the column name of its value in the resulting data. table.

Enlisting:

The primary use case for enlist=FALSE is to allow computation of dependent aggregations, where
the output from a previous aggregation is required in a subsequent one. For this case, wrap your
call in { and assign intermediate results to variables, returning the final results as a list where each
list item will become a column in the final table with the corresponding name. Name inference is
disabled for this case, since it is assumed you will name the returned list items appropriately. A
major advantage over multiple calls to aggregate is that the overhead of parallelization is paid
only once even for complex multi-step computations like fitting a model, capturing its paramters,
and making predictions using it. It also allows capturing arbitrarily complex calls which can be
recomputed later using the update, TreatmentResponseExperiment-method A potential disad-
vantage is increased RAM usage per thread due to storing intermediate values in variables, as well
as any memory allocation overhead associate therewith.

Value

data.table of aggregated results with an aggregations attribute capturing metadata about the
last aggregation performed on the table.

aggregate,LongTable-method
Functional API for aggregation over a LongTable or inheriting class

Description

Compute a group-by operation over a LongTable object or it’s inhering classes.

aggregate,LongTable-method 11

Usage

S4 method for signature 'LongTable'

aggregate(
X,
assay,
by,

L

subset = TRUE,

nthread = 1,

progress = TRUE,
BPPARAM = NULL,
enlist = TRUE,
moreArgs = list()

Arguments

X
assay

by

subset

nthread

progress

BPPARAM

enlist

moreArgs

LongTable or inheriting class to compute aggregation on.
character (1) The assay to aggregate over.
character One or more valid column names in x to compute groups using.

call One or more aggregations to compute for each group by in x. If you name
aggregation calls, that will be the column name of the value in the resulting
data.table otherwise a default name will be parsed from the function name
and its first argument, which is assumed to be the name of the column being
aggregated over.

call An R call to evaluate before perfoming an aggregate. This allows you to
aggregate over a subset of columns in an assay but have it be assigned to the
parent object. Default is TRUE, which includes all rows. Passed through as the
i argument in [.data. table.

numeric(1) Number of threads to use for split-apply-combine parallelization.
Uses BiocParllel: :bplapply if nthread > 1 or you pass in BPPARAM. Does not
modify data.table threads, so be sure to use setDTthreads for reasonable nested
parallelism. See details for performance considerations.

logical(1) Display a progress bar for parallelized computations? Only works
if bpprogressbar<- is defined for the current BiocParallel back-end.

BiocParallelParam object. Use to customized the the parallization back-end
of bplapply. Note, nthread over-rides any settings from BPPARAM as long as
bpworkers<- is defined for that class.

logical (1) Default is TRUE. Set to FALSE to evaluate the first call in . . . within
data.table groups. See details for more information.

list() A named list where each item is an argument one of the calls in ...
which is not a column in the table being aggregated. Use to further parameterize
you calls. Please note that these are not added to your aggregate calls unless you
specify the names in the call.

12 aggregate2

Details

Use of Non-Standard Evaluation:

Arguments in . . . are substituted and wrapped in a list, which is passed through to the j argument
of [.data. table internally. The function currently tries to build informative column names for
unnamed arguments in . . . by appending the name of each function call with the name of its first
argument, which is assumed to be the column name being aggregated over. If an argument to . . .
is named, that will be the column name of its value in the resulting data. table.

Enlisting:

The primary use case for enlist=FALSE is to allow computation of dependent aggregations, where
the output from a previous aggregation is required in a subsequent one. For this case, wrap your
call in { and assign intermediate results to variables, returning the final results as a list where each
list item will become a column in the final table with the corresponding name. Name inference is
disabled for this case, since it is assumed you will name the returned list items appropriately. A
major advantage over multiple calls to aggregate is that the overhead of parallelization is paid
only once even for complex multi-step computations like fitting a model, capturing its paramters,
and making predictions using it. It also allows capturing arbitrarily complex calls which can be
recomputed later using the update, TreatmentResponseExperiment-method A potential disad-
vantage is increased RAM usage per thread due to storing intermediate values in variables, as well
as any memory allocation overhead associate therewith.

Value

data.table of aggregation results.

See Also
data.table::[.data.table, BiocParallel: :bplapply

aggregate? Functional API for data.table aggregation which allows capture of as-
sociated aggregate calls so they can be recomputed later.

Description

Functional API for data.table aggregation which allows capture of associated aggregate calls so they
can be recomputed later.

Usage

aggregate2(
X,
by,
nthread = 1,
progress = TRUE,
BPPARAM = NULL,

aggregate2 13

enlist = TRUE,
moreArgs = list()

)
Arguments

X data.table

by character One or more valid column names in x to compute groups using.
call One or more aggregations to compute for each group by in x. If you name
aggregation calls, that will be the column name of the value in the resulting
data.table otherwise a default name will be parsed from the function name
and its first argument, which is assumed to be the name of the column being
aggregated over.

nthread numeric(1) Number of threads to use for split-apply-combine parallelization.
Uses BiocParllel: :bplapply if nthread > 1 or you pass in BPPARAM. Does not
modify data.table threads, so be sure to use setDTthreads for reasonable nested
parallelism. See details for performance considerations.

progress logical (1) Display a progress bar for parallelized computations? Only works
if bpprogressbar<- is defined for the current BiocParallel back-end.

BPPARAM BiocParallelParam object. Use to customized the the parallization back-end

of bplapply. Note, nthread over-rides any settings from BPPARAM as long as
bpworkers<- is defined for that class.

enlist logical (1) Default is TRUE. Set to FALSE to evaluate the first call in . . . within
data.table groups. See details for more information.

moreArgs list() A named list where each item is an argument one of the calls in ...
which is not a column in the table being aggregated. Use to further parameterize
you calls. Please note that these are not added to your aggregate calls unless you
specify the names in the call.

Details

Use of Non-Standard Evaluation:

Arguments in . . . are substituted and wrapped in a list, which is passed through to the j argument
of [.data. table internally. The function currently tries to build informative column names for
unnamed arguments in . . . by appending the name of each function call with the name of its first
argument, which is assumed to be the column name being aggregated over. If an argument to . . .
is named, that will be the column name of its value in the resulting data. table.

Enlisting:

The primary use case for enlist=FALSE is to allow computation of dependent aggregations, where
the output from a previous aggregation is required in a subsequent one. For this case, wrap your
call in { and assign intermediate results to variables, returning the final results as a list where each
list item will become a column in the final table with the corresponding name. Name inference is
disabled for this case, since it is assumed you will name the returned list items appropriately. A
major advantage over multiple calls to aggregate is that the overhead of parallelization is paid
only once even for complex multi-step computations like fitting a model, capturing its paramters,
and making predictions using it. It also allows capturing arbitrarily complex calls which can be

14

amcc

recomputed later using the update, TreatmentResponseExperiment-method A potential disad-
vantage is increased RAM usage per thread due to storing intermediate values in variables, as well
as any memory allocation overhead associate therewith.

Value

data. table of aggregation results.

See Also

data.table::[.data.table, BiocParallel: :bplapply

amcc

Calculate an Adaptive Matthews Correlation Coefficient

Description

This function calculates an Adaptive Matthews Correlation Coefficient (AMCC) for two vectors
of values of the same length. It assumes the entries in the two vectors are paired. The Adaptive
Matthews Correlation Coefficient for two vectors of values is defined as the Maximum Matthews
Coefficient over all possible binary splits of the ranks of the two vectors. In this way, it calculates the
best possible agreement of a binary classifier on the two vectors of data. If the AMCC is low, then it
is impossible to find any binary classification of the two vectors with a high degree of concordance.

Usage
amcc(x, y, step.prct = @, min.cat = 3, nperm = 1000, nthread = 1, ...)
Arguments
X,y Two paired vectors of values. Could be replicates of observations for the same
experiments for example.
step.prct Instead of testing all possible splits of the data, it is possible to test steps of a
percentage size of the total number of ranks in x/y. If this variable is 0, function
defaults to testing all possible splits.
min.cat The minimum number of members per category. Classifications with less mem-
bers fitting into both categories will not be considered.
nperm The number of perumatation to use for estimating significance. If 0, then no
p-value is calculated.
nthread Number of threads to parallize over. Both the AMCC calculation and the per-
mutation testing is done in parallel.
Additional arguments
Value

Returns a list with two elements. $amcc contains the highest mcc’ value over all the splits, the p
value, as well as the rank at which the split was done.

as 15

Examples

x <- ¢(1,2,3,4,5,6,7)
y <= ¢(1,3,5,4,2,7,6)
amcc(x,y, min.cat=2)

as Coerce a LongTable to a TreatmentResponseExperiment

Description
Coerce a LongTable into a data. table.
S3 version of coerce method for convenience.
Currently only supports coercing to data.table or data.frame
S3 version of coerce method fro convenience.

Coerce a data.table with the proper configuration attributes back to a LongTable

Usage

S3 method for class 'long.table'
as.data.table(from)

S3 method for class 'long.table'

as.data.frame(x, row.names, optional = TRUE, ...)
Arguments
from A LongTableDataMapper to coerce.
X LongTable to coerce to data. frame.
row.names An optional character vector of rownames. We do not recommend using this

parameter, it is included for S3 method consistency with as.data. frame.

optional logical Is it optional for row and column names to be valid R names? If FALSE

will use the make.names function to ensure the row and column names are valid
R names. Defaults to TRUE.

Does nothing.

Value

The data in object, as the child-class TreatmentResponseExperiment.
A data.table with the data from a LongTable.

A data.table containing the data from the LongTable, as well as the ‘longTableDataMapper’
attribute which contains the data needed to reverse the coercion.

data.table containing the data from the LongTable, with the ‘longTableDataMapper’ attribute
containg the metadata needed to reverse the coercing operation.

16 as.long.table

data.frame containing the data from the LongTable, with the ‘longTableDataMapper’ attribute
containg the metadata needed to reverse the coercion operation.

LongTable object configured with the longTableDataMapper
data.table with long format of data in from

data. frame with long format of data in from.
SummarizedExperiment with each assay as a BumpyMatrix

A TREDataMapper object.

See Also

TreatmentResponseExperiment

BumpyMatrix: :BumpyMatrix

Examples

data(clevelandSmall_cSet)

TRE <- as(treatmentResponse(clevelandSmall_cSet),
"TreatmentResponseExperiment”)

TRE

as(merckLongTable, 'data.table')

as(merckLongTable, 'data.frame')

dataTable <- as(merckLongTable, 'data.table')

print(attr(dataTable, 'longTableDataMapper')) # Method doesn't work without this

as(dataTable, 'LongTable')

SE <- molecularProfilesSlot(clevelandSmall_cSet)[[1]]
as(SE, 'data.table')

SE <- molecularProfilesSlot(clevelandSmall_cSet)[[1]]
as(SE, 'data.frame')

as.long.table Coerce from data.table to LongTable

Description

Coerce a data.table with the proper configuration attributes back to a LongTable

Usage

as.long.table(x)

assayCols 17

Arguments
X A data. frame with the ’longTableDataMapper’ attribute, containing three lists
named assayCols, rowDataCols and colDataCols. This attribute is automatically
created when coercing from a LongTable to a data.table.
Value

LongTable object configured with the longTableDataMapper

Examples

dataTable <- as(merckLongTable, 'data.table')
print(attr(dataTable, 'longTableDataMapper')) # Method doesn't work without this
as.long.table(dataTable)

assayCols Generic to access the assay columns of a rectangular object.

Description

Generic to access the assay columns of a rectangular object.

Usage
assayCols(object, ...)
Arguments
object S4 An object to get assay ids from.
Allow new arguments to this generic.
Value

Depends on the implemented method.

Examples

print("Generics shouldn't need examples?")

18 assayKeys

assayIndex Retrieve and assaylndex

Description

Retrieve and assayIndex

Usage
assayIndex(x, ...)
Arguments
X An S4 object.
pairlist Allow definition of new parameters for implementations of this generic.
Value

An object representing the "assaylndex" of an S4 object.

Examples

print("Generics shouldn't need examples?")

assayKeys Retrieve a set of assayKeys

Description

Retrieve a set of assayKeys

Usage
assayKeys(x, ...)
Arguments
X An S4 object.
pairlist Allow definition of new parameters for implementations of this generic.
Value

An object representing the "assayKeys" of an S4 object.

assignment-immutable 19

Examples

print("Generics shouldn't need examples?")

assignment-immutable Intercept assignment operations for "immutable” S3 objects.

Description

Prevents modification of objects labelled with the "immutable" S3-class by intercepting assighment
during S3-method dispatch and returning an error.

Usage
\method{subset}{immutable}(object, ...) <- value

S3 replacement method for class 'immutable'
object[...] <- value

S3 replacement method for class 'immutable'
object[[...]1] <- value

S3 replacement method for class 'immutable'
object$... <- value

S3 replacement method for class 'immutable'
names(x) <- value

S3 replacement method for class 'immutable'
dimnames(x) <- value

\method{colnames}{immutable}(x) <- value

\method{rownames}{immutable}(x) <- value

Arguments
object, x An R object inherting from the "immutable" S3-class.
Catch subset arguments for various dimensions.
value Not used.
Value

None, throws an error.

20 buildComboProfiles,LongTable-method

Examples

immutable_df <- immutable(data.frame(a=1:5, b=letters[1:5]))
return immutable data.frame

immutable_df[1:4,]

return immutable vector

immutable_df$a

buildComboProfiles Build an assay table with an S4 object.

Description

Build an assay table with an S4 object.

Usage
buildComboProfiles(object, ...)

Arguments

object S4 An S4 object a list-like slot containing assays for the object.

Allow new arguments to be defined for this generic.

Value

data.table.

Examples

"This is a generic method!”

buildComboProfiles,LongTable-method
Build an assay table with selected assay profiles for drug combinations

Description

Build an assay table with selected assay profiles for drug combinations

Usage

S4 method for signature 'LongTable'
buildComboProfiles(object, profiles)

buildLongTable 21

Arguments
object LongTable or inheriting class containing curated drug combination data.
profiles character a vector of profile names, i.e., column names of assays.
Value

A data.table containing fields treatment1id, treatmentidose, treatment2id, treatment2dose,
sampleid, which are used as keys to keep track of profiles, along with columns of selected profiles
from their assays. Each x_1 is the monothearpy profile of treatment 1 in the combination, and the
same rule applies to treatment 2.

Examples

Not run:
combo_profile_1 <- buildComboProfiles(tre, c("auc"”, "SCORE"))
combo_profile_2 <- buildComboProfiles(tre, c("HS", "EC50", "E_inf", "ZIP"))

End(Not run)

buildLongTable Build a LongTable object

Description

Build a LongTable object

Usage
buildLongTable(from, ...)

Arguments
from What to build the LongTable from?
pairlist Allow definition of new parameters for implementations of this generic.
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

22 buildLongTable,data.frame-method

buildLongTable,character-method
LongTable build method from character

Description

LongTable Create a LongTable object from a single .csv file

Usage

S4 method for signature 'character'
buildLongTable(from, rowDataCols, colDataCols, assayCols)

Arguments
from character Path to the .csv file containing the data and metadata from which to
build the LongTable.
rowDataCols list List with two character vectors, the first specifying one or more columns
to be used as cell identifiers (e.g., cell-line name columns) and the second con-
taining any additional metadata columns related to the cell identifiers.
colDataCols list List with two character vectors, the first specifying one or more columns
to be used as column identifiers (e.g., drug name columns) and the second con-
taining any additional metadata columns related to the column identifiers.
assayCols list A named list of character vectors specifying how to parse assay columns
into a list of data. tables. Each list data.table will be named for the name of
corresponding list item and contain the columns specified in the character vector
of column names in each list item.
Value

A LongTable object containing one or more assays, indexed by rowID and colID.

buildLongTable,data. frame-method
LongTable build method

Description

Create a LongTable object from a single data.table or data.frame object.

Usage

S4 method for signature 'data.frame'
buildLongTable(from, rowDataCols, colDataCols, assayCols)

buildLongTable,list-method 23

Arguments

from

rowDataCols

colDataCols

assayCols

Value

character Path to the .csv file containing the data and metadata from which to
build the LongTable.

list List with two character vectors, the first specifying one or more columns
to be used as cell identifiers (e.g., cell-line name columns) and the second con-
taining any additional metadata columns related to the cell identifiers. If you
wish to rename any of these columns, assign the new names to their respective
character vectors.

list List with two character vectors, the first specifying one or more columns
to be used as column identifiers (e.g., drug name columns) and the second con-
taining any additional metadata columns related to the column identifiers. If you
wish to rename any of these columns, assign the new names to their respective
character vectors.

list A named list of character vectors specifying how to parse assay columns
into a list of data.tables. Each list data.table will be named for the name
of corresponding list item and contain the columns specified in the character
vector of column names in each list item. If there are no names for assayCols,
the assays will be numbered by instead.

A LongTable object containing one or more assays, indexed by rowID and colID.

buildLongTable,list-method

LongTable build method from list

Description

Create a LongTable object from a list containing file paths, data.frames and data.tables.

Usage

S4 method for signature 'list'
buildLongTable(from, rowDataCols, colDataCols, assayCols)

Arguments

from

rowDataCols

colDataCols

list A list containing any combination of character file paths, data.tables and
data.frames which will be used to construct the LongTable.

list List with two character vectors, the first specifying one or more columns
to be used as cell identifiers (e.g., cell-line name columns) and the second con-
taining any additional metadata columns related to the cell identifiers.

list List with two character vectors, the first specifying one or more columns
to be used as column identifiers (e.g., drug name columns) and the second con-
taining any additional metadata columns related to the column identifiers.

24 c.immutable

assayCols list A named list of character vectors specifying how to parse assay columns
into a list of data. tables. Each list data.table will be named for the name of
corresponding list item and contain the columns specified in the character vector
of column names in each list item.

Value

A LongTable object constructed with the data in from.

Examples

Not run:

assaylList <- assays(merckLongTable, withDimnames=TRUE)

rowDataCols <- list(rowIDs(merckLongTable), rowMeta(merckLongTable))

colDataCols <- list(colIDs(merckLongTable), colMeta(merckLongTable))

assayCols <- assayCols(merckLongTable)

longTable <- buildLongTable(from=assaylList, rowDataCols, colDataCols, assayCols)

End(Not run)

c.immutable Intercept concatenation for "immutable"” class objects to return an-
other "immutable" class object.

Description

Ensures that c and append to an "immutable" class object return an immutable class object.

Usage
S3 method for class 'immutable'
c(x, ...)
Arguments
X An R object inheriting from the "immutable" S3-clas
Objects to concatenate to x.
Value

x with one or more values appended to it.

checkColumnCardinality 25

checkColumnCardinality
Search a data.frame for 1:cardinality relationships between a group
of columns (your identifiers) and all other columns.

Description

Search a data.frame for 1:cardinality relationships between a group of columns (your identifiers)
and all other columns.

Usage
checkColumnCardinality(df, group, cardinality =1, ...)
Arguments
df A data.frame to search for l:cardinality mappings with the columns in
group.
group A character vector of one or more column names to check the cardinality of
other columns against.
cardinality The cardinality of to search for (i.e., l:cardinality) relationships with the
combination of columns in group. Defaults to 1 (i.e., 1:1 mappings).
Fall through arguments to data.table::[. For developer use. One use case is
setting verbose=TRUE to diagnose slow data.table operations.
Value

A character vector with the names of the columns with cardinality of 1:cardinality with the
columns listed in group.

Examples

df <- rawdata(exampleDataMapper)
checkColumnCardinality(df, group='treatmentid')

checkCsetStructure A function to verify the structure of a CoreSet

Description

This function checks the structure of a PharamcoSet, ensuring that the correct annotations are in
place and all the required slots are filled so that matching of samples and drugs can be properly
done across different types of data and with other studies.

26 clevelandSmall cSet

Usage

checkCsetStructure(object, plotDist = FALSE, result.dir = tempdir())

Arguments
object A CoreSet to be verified
plotDist Should the function also plot the distribution of molecular data?
result.dir The path to the directory for saving the plots as a string. Defaults to this R
sessions tempdir().
Value

Prints out messages whenever describing the errors found in the structure of the cSet object passed
in.

Examples

checkCsetStructure(clevelandSmall_cSet)

clevelandSmall_cSet Cleaveland_mut RadioSet subsetted and cast as CoreSet

Description

This dataset is just a dummy object derived from the Cleveland_mut RadioSet in the RadioGx R
package. It’s contents should not be interpreted and it is only present to test the functions in this
package and provide examples

Usage

data(clevelandSmall_cSet)

Format

CoreSet object

References

Lamb et al. The Connectivity Map: using gene-expression signatures to connect small molecules,
genes, and disease. Science, 2006.

colData,LongTableDataMapper-method 27

colData,LongTableDataMapper-method
Convenience method to subset the colData out of the rawdata slot
using the assigned colDataMap metadata.

Description
Convenience method to subset the colData out of the rawdata slot using the assigned colDataMap
metadata.

Usage

S4 method for signature 'LongTableDataMapper'
colData(x, key = TRUE)

Arguments
X LongTableDataMapper object with valid data in the rawdata and colDataMap
slots.
key logical(1) Should the table be keyed according to the id_columns of the
colDataMap slot? This will sort the table in memory. Default is TRUE.
Value

data.table The colData as specified in the colDataMap slot.

colData, TREDataMapper-method
Convenience method to subset the colData out of the rawdata slot
using the assigned colDataMap metadata.

Description

Convenience method to subset the colData out of the rawdata slot using the assigned colDataMap
metadata.

Usage

S4 method for signature 'TREDataMapper'’
colData(x, key = TRUE)

Arguments
X TREDataMapper object with valid data in the rawdata and colDataMap slots.
key logical(1) Should the table be keyed according to the id_columns of the

colDataMap slot? This will sort the table in memory. Default is TRUE.

28 collect_fn_params

Value

data.table The colData as specified in the colDataMap slot.

colIDs Generic to access the row identifiers for an object.

Description

Generic to access the row identifiers for an object.

Usage
colIDs(object, ...)
Arguments
object S4 An object to get column id columns from.
ALlow new arguments to this generic
Value

Depends on the implemented method.

Examples

print("Generics shouldn't need examples?")

collect_fn_params Collects all function arguments other than the first into a single list
parameter.

Description
Useful for converting a regular function into a function amenable to optimization via stats: :optim,
which requires all free parameters be passed as a single vector par.

Usage

collect_fn_params(fn)

Arguments

fn function A non-primitive function to refactor such that the first argument be-
comes the second argument and all other parameters must be passed as a vector
to the first argument of the new function via the par parameter.

colMeta 29

Details

Takes a function of the form f(x, ...), where ... is any number of additional function parameters (bot
not literal . ..!) and parses it to a function of the form f(par, x) where par is a vector of values for
... in the same order as the arguments appear in fn.

Value

function A new non-primitive function where the first argument is par, which takes a vector of
parameters being optimized, and the second argument is the old first argument to fn (usually x since
this is the independent variable to optimize the function over).

colMeta Generic to access the column identifiers for a rectangular object.

Description

Generic to access the column identifiers for a rectangular object.

Usage
colMeta(object, ...)
Arguments
object S4 An object to get column metadata columns from.
ALlow new arguments to this generic
Value

Depends on impemented method.

Examples

print("Generics shouldn't need examples?")

30

connectivityScore

connectivityScore

Function computing connectivity scores between two signatures

Description

A function for finding the connectivity between two signatures, using either the GSEA method
based on the KS statistic, or the gwc method based on a weighted spearman statistic. The GSEA
analysis is implemented in the piano package.

Usage

connectivityScore(

X,
Y

method = c("fgsea”, "gwc"),
nperm = 10000,

nthread = 1,
gwc.method = c("spearman”, "pearson"),
)
Arguments

X A matrix with the first gene signature. In the case of GSEA the vector of values
per gene for GSEA in which we are looking for an enrichment. In the case of
gwc, this should be a matrix, with the per gene responses in the first column,
and the significance values in the second.

y A matrix with the second signature. In the case of GSEA, this is the vector
of up and down regulated genes we are looking for in our signature, with the
direction being determined from the sign. In the case of gwc, this should be a
matrix of identical size to x, once again with the per gene responses in the first
column, and their significance in the second.

method character string identifying which method to use, out of ’fgsea’ and *gwc’

nperm numeric, how many permutations should be done to determine significance
through permutation testing? The minimum is 100, default is 1e4.

nthread numeric, how many cores to run parallel processing on.

gwc.method character, should gwc use a weighted spearman or pearson statistic?
Additional arguments passed down to gsea and gwc functions

Value

numeric a numeric

vector with the score and the p-value associated with it

CoreGx-deprecated 31

References

F. Pozzi, T. Di Matteo, T. Aste, 'Exponential smoothing weighted correlations’, The European
Physical Journal B, Vol. 85, No 6, 2012. DOI: 10.1140/epjb/e2012-20697-x

Varemo, L., Nielsen, J. and Nookaew, 1. (2013) Enriching the gene set analysis of genome-wide
data by incorporating directionality of gene expression and combining statistical hypotheses and
methods. Nucleic Acids Research. 41 (8), 4378-4391. doi: 10.1093/nar/gkt111

Examples

xValue <- ¢(1,5,23,4,8,9,2,19,11,12,13)

xSig <- c(0.01, 0.001, .97, 0.01,0.01,0.28,0.7,0.01,0.01,0.01,0.01)

yValue <- ¢(1,5,10,4,8,19,22,19,11,12,13)

ySig <- c(0.01, 0.001, .97,0.01, 0.01,0.78,0.9,0.01,0.01,0.01,0.01)

XX <- cbind(xValue, xSig)

yy <- cbind(yValue, ySig)

rownames (xx) <- rownames(yy) <- c('1','2','3"',"'4' '5' '6','7','8"','9',"'"10','11")
data.cor <- connectivityScore(xx,yy,method="gwc', gwc.method='spearman', nperm=300)

CoreGx-deprecated List of deprecated or defunct methods in the CoreGx R package.

Description

List of deprecated or defunct methods in the CoreGx R package.

Details

deprecated:

CoreSet: The CoreSet constructor is being updated to have a new APIL This API is currently
available via the CoreSet2 constructor. In Bioconductor 3.16, the old constructor will be renamed
CoreSet?2 and the new constructor will be renamed CoreSet.

defunct:

buildLongTable: This function no longer works as building a LongTable or TreatmentResponseExperiment
now uses a DataMapper and the metaConstruct method. See vignette("”LongTable") for a de-
tailed description of how to create a LongTable object.

32 CoreSet

CoreSet CoreSet constructor

Description

A constructor that simplifies the process of creating CoreSets, as well as creates empty objects for
data not provided to the constructor. Only objects returned by this constructor are expected to work
with the CoreSet methods.

Usage

CoreSet(
name,
molecularProfiles = list(),
sample = data.frame(),
sensitivityInfo = data.frame(),
sensitivityRaw = array(dim = c(0, 0, 9)),
sensitivityProfiles = matrix(),
sensitivityN = matrix(nrow = @, ncol = 0),
perturbationN = array(NA, dim = c(@, 0, 0)),
curationSample = data.frame(),
curationTissue = data.frame(),
curationTreatment = data.frame(),
treatment = data.frame(),
datasetType = c("sensitivity"”, "perturbation”, "both"),
verify = TRUE,

)
Arguments

name A character string detailing the name of the dataset

molecularProfiles
A list of SummarizedExperiment objects containing molecular profiles for
each molecular data type.

sample A data. frame containing the annotations for all the sample profiled in the data
set, across all data types. Must contain the mandatory sampleid column which
uniquely identifies each sample in the object.

sensitivityInfo

A data. frame containing the information for the sensitivity experiments. Must
contain a ’sampleid’ column with unique identifiers to each sample, matching
the sample object and a ’treatmentid’ columns with unique indenifiers for each
treatment, matching the treatment object.

sensitivityRaw A 3 Dimensional array contaning the raw drug dose response data for the sen-
sitivity experiments

CoreSet-accessors 33

sensitivityProfiles
data. frame containing drug sensitivity profile statistics such as IC50 and AUC

sensitivityN, perturbationN
A data. frame summarizing the available sensitivity/perturbation data

curationSample, curationTissue, curationTreatment
A data.frame mapping the names for samples, tissues and treatments used in
the data set to universal identifiers used between different CoreSet objects

treatment A data. frame containing annotations for all treatments profiled in the dataset.
Must contain the mandatory treatmentid column which uniquely identifies
each treatment in the object.

datasetType A character (1) string of ’sensitivity’, *preturbation’, or *both’ detailing what
type of data can be found in the CoreSet, for proper processing of the data

verify logical (1)Should the function verify the CoreSet and print out any errors it
finds after construction?

Catch and parse any renamed constructor arguments.

Details

WARNING::
Parameters to this function have been renamed!

* cell is now sample

e drug is now treatment

Value

An object of class CoreSet

Examples

data(clevelandSmall_cSet)
clevelandSmall_cSet

CoreSet-accessors Accessing and modifying information in a CoreSet

Description

Documentation for the various setters and getters which allow manipulation of data in the slots of a
CoreSet object.

34

Usage

S4 method for signature 'CoreSet'
annotation(object)

S4 replacement method for signature
annotation(object) <- value

S4 method for signature 'CoreSet'
dateCreated(object)

S4 replacement method for signature
dateCreated(object) <- value

S4 method for signature 'CoreSet'
name (object)

S4 replacement method for signature
name(object) <- value

S4 method for signature 'CoreSet'
sampleInfo(object)

S4 replacement method for signature
sampleInfo(object) <- value

S4 method for signature 'CoreSet'
sampleNames(object)

S4 replacement method for signature
sampleNames(object) <- value

S4 method for signature 'CoreSet'
treatmentInfo(object)

S4 replacement method for signature
treatmentInfo(object) <- value

S4 method for signature 'CoreSet'
treatmentNames(object)

S4 replacement method for signature
treatmentNames(object) <- value

S4 method for signature 'CoreSet'
curation(object)

S4 replacement method for signature
curation(object) <- value

CoreSet-accessors

'CoreSet,list'’

'CoreSet,character’

'CoreSet'

'CoreSet,data.frame'

'CoreSet,character’

'CoreSet,data.frame'

'CoreSet,character’

'CoreSet,list'’

CoreSet-accessors

S4 method for signature 'CoreSet'
datasetType(object)

S4 replacement method for signature 'CoreSet,character'’
datasetType(object) <- value

S4 method for signature 'CoreSet'
molecularProfiles(object, mDataType, assay)

S4 replacement method for signature 'CoreSet,character,character,matrix’
molecularProfiles(object, mDataType, assay) <- value

S4 replacement method for signature 'CoreSet,character,missing,matrix’
molecularProfiles(object, mDataType, assay) <- value

S4 replacement method for signature 'CoreSet,missing,missing,list_OR_MAE'
molecularProfiles(object, mDataType, assay) <- value

S4 method for signature 'CoreSet'
featureInfo(object, mDataType)

S4 replacement method for signature 'CoreSet,character,data.frame’
featureInfo(object, mDataType) <- value

S4 method for signature 'CoreSet,character’
phenoInfo(object, mDataType)

S4 replacement method for signature 'CoreSet,character,data.frame’
phenoInfo(object, mDataType) <- value

S4 method for signature 'CoreSet,character’
fNames(object, mDataType)

S4 replacement method for signature 'CoreSet,character,character'’
fNames(object, mDataType) <- value

S4 method for signature 'CoreSet'
mDataNames(object)

S4 replacement method for signature 'CoreSet'
mDataNames(object) <- value

S4 method for signature 'CoreSet'
molecularProfilesSlot(object)

S4 replacement method for signature 'CoreSet,list_OR_MAE'
molecularProfilesSlot(object) <- value

35

36 CoreSet-accessors

S4 method for signature 'CoreSet'
sensitivityInfo(object, dimension, ...)

S4 replacement method for signature 'CoreSet,data.frame'
sensitivityInfo(object, dimension, ...) <- value

S4 method for signature 'CoreSet'
sensitivityMeasures(object)

S4 replacement method for signature 'CoreSet,character'’
sensitivityMeasures(object) <- value

S4 method for signature 'CoreSet'
sensitivityProfiles(object)

S4 replacement method for signature 'CoreSet,data.frame'
sensitivityProfiles(object) <- value

S4 method for signature 'CoreSet'
sensitivityRaw(object)

S4 replacement method for signature 'CoreSet,array'’
sensitivityRaw(object) <- value

S4 method for signature 'CoreSet'
treatmentResponse(object)

S4 replacement method for signature 'CoreSet,list_OR_LongTable'
treatmentResponse(object) <- value

S4 method for signature 'CoreSet'
sensNumber (object)

S4 replacement method for signature 'CoreSet,matrix’
sensNumber (object) <- value

S4 method for signature 'CoreSet'
pertNumber (object)

S4 replacement method for signature 'CoreSet,array'’
pertNumber(object) <- value

Arguments
object A CoreSet object.
value See details.

mDataType character (1) The name of a molecular datatype to access from the molecularProfiles

CoreSet-accessors 37

of a CoreSet object.

assay character (1) A valid assay name in the SummarizedExperiment of @molecularProfiles
of a CoreSet object for data type mDataType.

dimension See details.

See details.

Details

@annotation:

annotation: A 1ist of CoreSet annotations with items: 'name’, the name of the object; *dateCre-
ated’, date the object was created; "sessionInfo’, the sessionInfo() when the object was created;
*call’, the R constructor call; and ’version’, the object version.

annotation<-: Setter method for the annotation slot. Arguments:

e value: a list of annotations to update the CoreSet with.

@dateCreated:

dateCreated: character (1) The date the CoreSet object was created, as returned by the date ()
function.

dateCreated<-: Update the ’dateCreated’ item in the annotation slot of a CoreSet object. Argu-
ments:

* value: A character (1) vector, as returned by the date () function.

name: character (1) The name of the CoreSet, retreived from the @annotation slot.

name<-: Update the @nnotation$name value in a CoreSet object.
e value: character (1) The name of the CoreSet object.

celllnfo: data. frame Metadata for all sample in a CoreSet object.

sampleInfo<-: assign updated sample annotations to the CoreSet object. Arguments:
 value: a data. frame object.

sampleNames: character Retrieve the rownames of the data.frame in the sample slot from a
CoreSet object.

sampleNames<-: assign new rownames to the samplelnfo data.frame for a CoreSet object. Ar-
guments:

e value: character vector of rownames for the sampleInfo(object) data. frame.
treatmentInfo: data. frame Metadata for all treatments in a CoreSet object. Arguments:
* object: CoreSet An object to retrieve treatment metadata from.
treatmentInfo<-: CoreSet object with updated treatment metadata. object. Arguments:

* object: CoreSet An object to set treatment metadata for.

¢ value: data.frame A new table of treatment metadata for object.

38 CoreSet-accessors

treatmentNames: character Names for all treatments in a CoreSet object. Arguments:
* object: CoreSet An object to retrieve treatment names from.
treatmentNames<-: CoreSet Object with updates treatment names. object. Arguments:

* object: CoreSet An object to set treatment names from.

* value: character A character vector of updated treatment names.

@curation:
curation: A list of curated mappings between identifiers in the CoreSet object and the original

data publication. Contains two data.frames, ’sample’ with sample ids and ’tissue’ with tissue
ids.

curation<-: Update the curation slot of a CoreSet object. Arugments:

* value: A list of data.frames, one for each type of curated identifier. For a CoreSet object
the slot should contain tissue and sample id data. frames.

datasetType slot:

datasetType: character (1) The type treatment response in the sensitivity slot. Valid values
are ’sensitivity’, ’perturbation’ or both’.

datasetType<-: Update the datasetType slot of a CoreSet object. Arguments:

* value: A character(1) vector with one of ’sensitivity’, *perturbation’ or both’

@molecularProfiles:

molecularProfiles: matrix() Retrieve an assay in a SummarizedExperiment from the molecularProfiles
slot of a CoreSet object with the specified mDataType. Valid mDataType arguments can be found

with mDataNames (object). Exclude mDataType and assay to access the entire slot. Arguments:

* assay: Optional character (1) vector specifying an assay in the SummarizedExperiment of
the molecularProfiles slot of the CoreSet object for the specified mDataType. If excluded,
defaults to modifying the first assay in the SummarizedExperiment for the given mDataType.

molecularProfiles<-: Update an assay in a SummarizedExperiment from the molecularProfiles
slot of a CoreSet object with the specified mDataType. Valid mDataType arguments can be found
with mDataNames(object). Omit mDataType and assay to update the slot.

* assay: Optional character (1) vector specifying an assay in the SummarizedExperiment of
the molecularProfiles slot of the CoreSet object for the specified mDataType. If excluded,
defaults to modifying the first assay in the SummarizedExperiment for the given mDataType.

 value: A matrix of values to assign to the assay slot of the SummarizedExperiment for the
selected mDataType. The rownames and column names must match the associated SummarizedExperiment.

featurelnfo: Retrieve a DataFrame of feature metadata for the specified mDataType from the
molecularProfiles slot of a CoreSet object. More specifically, retrieve the @rowData slot from
the SummarizedExperiment from the @molecularProfiles of a CoreSet object with the name
mDataType.

featureInfo<-: Update the featureInfo(object, mDataType) DataFrame with new feature meta-
data. Arguments:

CoreSet-accessors 39

* value: A data.frame or DataFrame with updated feature metadata for the specified molecular
profile in the molecularProfiles slot of a CoreSet object.

phenolnfo: Return the @colData slot from the SummarizedExperiment of mDataType, containing
sample-level metadata, from a CoreSet object.

phenolnfo<-: Update the @colData slot of the SummarizedExperiment of mDataType in the
@molecularProfiles slot of a CoreSet object. This updates the sample-level metadata in-place.

* value: A data.frame or DataFrame object where rows are samples and columns are sample
metadata.

fNames: character () The features names from the rowData slot of a SummarizedExperiment of
mDataType within a CoreSet object.

fNames: Updates the rownames of the feature metadata (i.e., rowData) for a SummarizedExperiment
of mDataType within a CoreSet object.

¢ value: character() A character vector of new features names for the rowData of the SummarizedExperiment
of mDataType in the @molecularProfiles slot of a CoreSet object. Must be the same length
as nrow(featureInfo(object, mDataType)), the number of rows in the feature metadata.

mDataNames: character Retrieve the names of the molecular data types available in the molecularProfiles
slot of a CoreSet object. These are the options which can be used in the mDataType parameter of
various molecularProfiles slot accessors methods.

mDataNames: Update the molecular data type names of the molecularProfiles slot of a CoreSet
object. Arguments:

* value: character vector of molecular datatype names, with length equal to length(molecularProfilesSlot(object

molecularProfilesSlot: Return the contents of the @molecularProfiles slot of a CoreSet object.
This will either be a 1ist or MultiAssayExperiment of SummarizedExperiments.

molecularProfilesSlot<-: Update the contents of the @molecularProfiles slot of a CoreSet ob-
ject. Arguemnts:

e value: A list orMultiAssayExperiment of SummarizedExperiments. The 1ist and assays
should be named for the molecular datatype in each SummarizedExperiment.

@treatmentResponse:

Arguments::

e dimension: Optional character(1) One of ’treatment’, sample’ or ’assay’ to retrieve
rowData, colData or the "assay_metadata’ assay from the CoreSet @sensitvity LongTable
object, respectively. Ignored with warning if @ reatmentResponse is not a LongTable ob-
ject.

e ...: Additional arguments to the rowData or colData. LongTable methods. Only used
if the sensitivity slot contains a LongTable object instead of a 1ist and the dimension
argument is specified.

Methods::

sensitivityInfo: DataFrame or data. frame of sensitivity treatment combo by sample metadata
for the CoreSet object. When the dimension parameter is used, it allows retrieval of the di-
mension specific metadata from the LongTable object in @treatmentResponse of a CoreSet
object.

40

CoreSet-accessors

sensitivityInfo<-: Update the @treatmentResponse slot metadata for a CoreSet object. When
used without the dimension argument is behaves similar to the old CoreSet implementation, where
the @treatmentResponse slot contained a list with a $info data. frame item. When the dimension
arugment is used, more complicated assignments can occur where ’sample’ modifies the @sensitvity
LongTable colData, ’treatment’ the rowData and "assay’ the ’assay_metadata’ assay. Arguments:

e value: A data.frame of treatment response experiment metadata, documenting experiment
level metadata (mapping to treatments and samples). If the @t reatmentResponse slot doesn’t
contain a LongTable and dimension is not specified, you can only modify existing columns
as returned by sensitivityInfo(object).

sensitivityMeaures: Get the ’sensitivityMeasures’ available in a CoreSet object. Each measure
reprents some summary of sample sensitivity to a given treatment, such as ic50, ec50, AUC, AAC,
etc. The results are returned as a character vector with all available metrics for the PSet object.

sensitivityMeaures: Update the sensitivity meaure in a CoreSet object. Thesee values are the
column names of the ’profiles’ assay and represent various compued sensitviity metrics such as
ic50, ec50, AUC, AAC, etc.

* value: A character vector of new sensitivity measure names, the then length of the character
vector must matcht he number of columns of the ’profiles’ assay, excluding metadata and key
columns.

sensitivityProfiles: Return the sensitivity profile summaries from the sensitivity slot. This data.frame
cotanins vaarious sensitivity summary metrics, such as ic50, amax, EC50, aac, HS, etc as columns,
with rows as treatment by sample experiments.

sensitivityProfiles<-: Update the sensitivity profile summaries the sensitivity slot. Arguments: -
value: A data.frame the the same number of rows as as returned by sensitivityProfiles(object),
but potentially modified columns, such as the computation of additional summary metrics.

sensitivityRaw: Access the raw sensitiity measurents for a CoreSet object. A 3D array where
rows are experiment_ids, columns are doses and the third dimension is metric, either *Dose’ for the
doses used or ’Viability’ for the sample viability at that dose.

sensitvityRaw<-: Update the raw dose and viability data in a CoreSet.

 value: A 3D array object where rows are experiment_ids, columns are replicates and pages
are c('Dose’, ’Viability’), with the corresponding dose or viability measurement for that ex-
periment_id and replicate.

sensNumber: Return a count of viability observations in a CoreSet object for each treatment-
combo by sample combination.

sensNumber<-: Update the ’n’ item, which holds a matrix with a count of treatment by sample-line
experiment counts, in the 1ist in @treatmentResponse slot of a CoreSet object. Will error when
@sensitviity contains a LongTable object, since the counts are computed on the fly. Arguments:

* value: A matrix where rows are samples and columns are treatments, with a count of the
number of experiments for each combination as the values.

pertNumber: array Summary of available perturbation experiments from in a CoreSet object.
Returns a 3D array with the number of perturbation experiments per treatment and sample, and
data type.

CoreSet-accessors 41

pertNumber<-: Update the @perturbation$n value in a CoreSet object, which stores a summary
of the available perturbation experiments. Arguments:

* value: A new 3D array with the number of perturbation experiments per treatment and sam-
ple, and data type

Value

Accessors: See details.

Setters: An updated CoreSet object, returned invisibly.

Examples

data(clevelandSmall_cSet)

@annotation

annotation(clevelandSmall_cSet)

annotation(clevelandSmall_cSet) <- annotation(clevelandSmall_cSet)
dateCreated(clevelandSmall_cSet)

dateCreated
dateCreated(clevelandSmall_cSet) <- date()

name(clevelandSmall_cSet)

name(clevelandSmall_cSet) <- 'new_name'

sampleInfo(clevelandSmall_cSet) <- sampleInfo(clevelandSmall_cSet)
sampleNames(clevelandSmall_cSet)

sampleNames(clevelandSmall_cSet) <- sampleNames(clevelandSmall_cSet)
treatmentInfo(clevelandSmall_cSet)

treatmentInfo(clevelandSmall_cSet) <- treatmentInfo(clevelandSmall_cSet)
treatmentNames(clevelandSmall_cSet)

treatmentNames(clevelandSmall_cSet) <- treatmentNames(clevelandSmall_cSet)

curation
curation(clevelandSmall_cSet)

curation(clevelandSmall_cSet) <- curation(clevelandSmall_cSet)
datasetType(clevelandSmall_cSet)

datasetType(clevelandSmall_cSet) <- 'both'

42

CoreSet-accessors

No assay specified
molecularProfiles(clevelandSmall_cSet, 'rna') <- molecularProfiles(clevelandSmall_cSet, 'rna')

[

Specific assay
molecularProfiles(clevelandSmall_cSet, 'rna', 'exprs') <-
molecularProfiles(clevelandSmall_cSet, 'rna', 'exprs')

Replace the whole slot
molecularProfiles(clevelandSmall_cSet) <- molecularProfiles(clevelandSmall_cSet)

featureInfo(clevelandSmall_cSet, 'rna')

featureInfo(clevelandSmall_cSet, 'rna') <- featureInfo(clevelandSmall_cSet, 'rna')
phenoInfo(clevelandSmall_cSet, 'rna')

phenoInfo(clevelandSmall_cSet, 'rna') <- phenoInfo(clevelandSmall_cSet, 'rna')
fNames(clevelandSmall_cSet, 'rna')

fNames(clevelandSmall_cSet, 'rna') <- fNames(clevelandSmall_cSet, 'rna')
mDataNames(clevelandSmall_cSet)

mDataNames(clevelandSmall_cSet) <- mDataNames(clevelandSmall_cSet)
molecularProfilesSlot(clevelandSmall_cSet)
molecularProfilesSlot(clevelandSmall_cSet) <- molecularProfilesSlot(clevelandSmall_cSet)
sensitivityInfo(clevelandSmall_cSet)

sensitivityInfo(clevelandSmall_cSet) <- sensitivityInfo(clevelandSmall_cSet)
sensitivityMeasures(clevelandSmall_cSet) <- sensitivityMeasures(clevelandSmall_cSet)
sensitivityMeasures(clevelandSmall_cSet) <- sensitivityMeasures(clevelandSmall_cSet)
sensitivityProfiles(clevelandSmall_cSet)

sensitivityProfiles(clevelandSmall_cSet) <- sensitivityProfiles(clevelandSmall_cSet)
head(sensitivityRaw(clevelandSmall_cSet))

sensitivityRaw(clevelandSmall_cSet) <- sensitivityRaw(clevelandSmall_cSet)
treatmentResponse(clevelandSmall_cSet)

treatmentResponse(clevelandSmall_cSet) <- treatmentResponse(clevelandSmall_cSet)

sensNumber (clevelandSmall_cSet)

CoreSet-class 43

sensNumber (clevelandSmall_cSet) <- sensNumber(clevelandSmall_cSet)
pertNumber(clevelandSmall_cSet)

pertNumber (clevelandSmall_cSet) <- pertNumber(clevelandSmall_cSet)

CoreSet-class CoreSet - A generic data container for molecular profiles and treat-
ment response data

Description

CoreSet - A generic data container for molecular profiles and treatment response data

Details

The CoreSet (cSet) class was developed as a superclass for pSets in the PharmacoGx and RadioGx
packages to contain the data generated in screens of cancer sample lines for their genetic profile and
sensitivities to therapy (Pharmacological or Radiation). This class is meant to be a superclass which
is contained within the PharmacoSet (pSet) and RadioSet (rSet) objects exported by PharmacoGx
and RadioGx. The format of the data is similar for both pSets and rSets, allowing much of the
code to be abstracted into the CoreSet super-class. However, the models involved with quantifying
sampleular response to Pharmacological and Radiation therapy are widely different, and extension
of the cSet class allows the packages to apply the correct model for the given data.

Slots

annotation See Slots section.
molecularProfiles See Slots section.
sample See Slots section.

treatment See Slots section.
treatmentResponse See Slots section.
perturbation See Slots section.
curation See Slots section.

datasetType See Slots section.

Slots

 annotation: A list of annotation data about the CoreSet, including the $name and the ses-
sion information for how the object was created, detailing the exact versions of R and all the
packages used.

* molecularProfiles: A 1list or MultiAssayExperiment containing CoreSet object.

* sample: A data.frame containg the annotations for all the samples profiled in the data set,
across all molecular data types and treatment response experiments.

44

CoreSet-utils

treatment: A data.frame containing the annotations for all treatments in the dataset, includ-
ing the mandatory ’treatmentid’ column to uniquely identify each treatment.

treatmentResponse: A 1list or LongTable containing all the data for the treatment response
experiment, including $info, a data.frame containing the experimental info, $raw a 3D
array containing raw data, $profiles, adata. frame containing sensitivity profiles statistics,
and $n, adata. frame detailing the number of experiments for each sample-drug/radiationInfo
pair

perturbation: 1ist containing $n, a data. frame summarizing the available perturbation data.
This slot is currently being deprecated.

curation: list containing mappings for treatment, sample and tissue names used in the
data set to universal identifiers used between different CoreSet objects.

datasetType: character string of ’sensitivity’, “perturbation’, or both detailing what type of

data can be found in the CoreSet, for proper processing of the data

See Also

CoreSet-accessors

CoreSet-utils

Utility methods for a CoreSet object.

Description

Documentation for utility methods for a CoreSet object, such as set operations like subset and
intersect. See @details for information on different types of methods and their implementations.

Usage

S4 method for signature 'CoreSet'
subsetBySample(x, samples)

S4 method for signature 'CoreSet'
subsetByTreatment(x, treatments)

S4 method for signature 'CoreSet'
subsetByFeature(x, features, mDataTypes)

Arguments

X
samples

treatments
features

mDataTypes

A CoreSet object.
character () vector of sample names. Must be valid rownames from sampleInfo(x).

character () vector of treatment names. Must be valid rownames from treatmentInfo(x).
This method does not work with CoreSet objects yet.

character () vector of feature names. Must be valid feature names for a given

mDataType

character() One or more molecular data types to to subset features by. Must
be valid rownames for the selected SummarizedExperiment mDataTypes.

CoreSet-utils

Details

subset methods:
subsetBySample: Subset a CoreSet object by sample identifier.

¢ value: a CoreSet object containing only samples.

subset methods:

subsetByTreatment: Subset a CoreSet object by treatment identifier.

* value: a CoreSet object containing only treatments.

subset methods:

subsetByFeature: Subset a CoreSet object by molecular feature identifier.

* value: a CoreSet object containing only features.

Value

See details.

Examples
data(clevelandSmall_cSet)
subset methods
subsetBySample
samples <- sampleInfo(clevelandSmall_cSet)$sampleid[seq_len(10)]
clevelandSmall_cSet_sub <- subsetBySample(clevelandSmall_cSet, samples)
subset methods
subsetByTreatment
#treatments <- treatmentInfo(clevelandSmall_cSet)$treatmentid[seq_len(10)]
#clevelandSmall_cSet_sub <- subsetByTreatment(clevelandSmall_cSet, treatments)
subset methods
#i## subsetByFeature

features <- fNames(clevelandSmall_cSet, 'rna')[seq_len(5)]
clevelandSmall_cSet_sub <- subsetByFeature(clevelandSmall_cSet, features, 'rna')

46

CoreSet2

CoreSet2

Make a CoreSet with the updated class structure

Description

New implementation of the CoreSet constructor to support MAE and TRE. This constructor will be
swapped with the original CoreSet constructor as part of an overhaul of the CoreSet class structure.

Usage

CoreSet2(

name = "emptySet”,

treatment = data.frame(),

sample = data.frame(),

molecularProfiles = MultiAssayExperiment(),
treatmentResponse = LongTable(),

perturbation = list(),
datasetType = "sensitivity”,
curation = list(sample = data.frame(), treatment = data.frame())
)
Arguments
name A character (1) vector with the CoreSet objects name.
treatment A data. frame with treatment level metadata.
sample A data. frame with sample level metadata for the union of samples in treatmentResponse
and molecularProfiles.
molecularProfiles
A MultiAssayExperiment containing one SummarizedExperiment object for
each molecular data type.
treatmentResponse
A LongTable or LongTableDataMapper object containing all treatment response
data associated with the CoreSet object.
perturbation A deprecated slot in a CoreSet object included for backwards compatibility.
This may be removed in future releases.
datasetType A deprecated slot in a CoreSet object included for backwards compatibility.
This may be removed in future releases.
curation A list(2) object with two items named treatment and sample with mappings
from publication identifiers to standardized identifiers for both annotations, re-
spectively.
Value

A CoreSet object storing standardized and curated treatment response and multiomic profile data
associated with a given publication.

cosinePerm 47

Examples

data(clevelandSmall_cSet)
clevelandSmall_cSet

cosinePerm Cosine Permutations

Description

Computes the cosine similarity and significance using permutation test. This function uses random
numbers, to ensure reproducibility please call set.seed() before running the function.

Usage
cosinePerm(
X,
Y,
nperm = 1000,
alternative = c("two.sided"”, "less"”, "greater"”),
include.perm = FALSE,
nthread = 1,
)
Arguments
X factor is the factors for the first variable
y factor is the factors for the second variable
nperm integer is the number of permutations to compute the null distribution of MCC
estimates
alternative string indicates the alternative hypothesis and must be one of “’two.sided”,

“greater” or “’less”. You can specify just the initial letter. ‘’ greater” corresponds
to positive association, “’less” to negative association. Options are ’two.sided’,
’less’, or ’greater’

include.perm boolean indicates whether the estimates for the null distribution should be re-
turned. Default set to "FALSE’

nthread integer is the number of threads to be used to perform the permutations in
parallel

A list of fallthrough parameters

Value

A list estimate of the cosine similarity, p-value and estimates after random permutations (null
distribution) in include.perm is set to "TRUE’

48 DataMapper-accessors

Examples

x <- factor(c(1,2,1,2,1))
y <- factor(c(2,2,1,1,1))
cosinePerm(x, y)

DataMapper-accessors Accessing and modifying data in a DataMapper object.

Description

Documentation for the various setters and getters which allow manipulation of data in the slots of a
DataMapper object.

Usage

S4 method for signature 'DataMapper’
rawdata(object)

S4 replacement method for signature 'DataMapper,ANY'
rawdata(object) <- value

Arguments
object A DataMapper object to get or set data from.
value A list-like object to assign to the rawdata slot. Should be a data.frame or
data. table with the current implementation.
Details

rawdata: Get the raw data slot from a DataMapper object. Returns a list-like containing one or
more raw data inputs to the DataMapper object.

rawdata: Set the raw data slot from a DataMapper object. value: The list-like object to set for
the rawdata slot. Note: this currently only supports data.frame or data. table objects.
Value

Accessors: See details

Setters: An update DataMapper object, returned invisibly.

See Also

Other DataMapper-accessors: LongTableDataMapper-accessors, TREDataMapper-accessors

DataMapper-class 49

DataMapper-class An S4 Class For Mapping from Raw Experimental Data to a Specific
S4 Object

Description

This object will be used as a way to abstract away data preprocessing.

Slots

» rawdata: A list-like object containing one or more pieces of raw data that will be processed
and mapped to the slots of an S4 object.

* metadata: A List of object level metadata.

drop_fn_params Drop parameters from a function and replace them with constants in-
side the function body.

Description

Drop parameters from a function and replace them with constants inside the function body.

Usage

drop_fn_params(fn, args)

Arguments
fn function A non-primitive function to remove parameters from (via base: : formals(fn)).
args list A list where names are the function arguments (parameters) to remove and
the values are the appopriate value to replace the parameter with in the function
body.
Value

function A new non-primitize function with the parameters named in args deleted and their values
fixed with the values from args in the function body.

50 endoaggregate,longTable-method

endoaggregate Perform aggregation over an S4 object, but return an object of the
same class.

Description

Perform aggregation over an S4 object, but return an object of the same class.

Usage
endoaggregate(x, ...)
Arguments
X An S4 object to endomorphically aggregate over.
pairlist Allow definition of new parameters for implementations of this generic.
Value

An object with the same class as x.

Examples

print("Generics shouldn't need examples?")

endoaggregate,LongTable-method
Functional API for endomorphic aggregation over a LongTable or
inheriting class

Description

Compute a group-by operation over a LongTable object or its inhering classes.

Usage

S4 method for signature 'LongTable'
endoaggregate(

X,

assay,

target = assay,

by,

subset = TRUE,

nthread = 1,

endoaggregate,longTable-method 51

progress = TRUE,
BPPARAM = NULL,

enlist

TRUE,

moreArgs = list()

Arguments

X

assay

target

by
subset

nthread

progress

BPPARAM

enlist

moreArgs

Details

LongTable or inheriting class to compute aggregation on.

call One or more aggregations to compute for each group by in x. If you name
aggregation calls, that will be the column name of the value in the resulting
data.table otherwise a default name will be parsed from the function name
and its first argument, which is assumed to be the name of the column being
aggregated over.

character (1) The assay to aggregate over.
character (1) The assay to assign the results to. Defaults to assay.
character One or more valid column names in x to compute groups using.

call An R call to evaluate before perfoming an aggregate. This allows you to
aggregate over a subset of columns in an assay but have it be assigned to the
parent object. Default is TRUE, which includes all rows. Passed through as the
i argument in [.data. table.

numeric(1) Number of threads to use for split-apply-combine parallelization.
Uses BiocParllel: :bplapply if nthread > 1 or you pass in BPPARAM. Does not
modify data.table threads, so be sure to use setDTthreads for reasonable nested
parallelism. See details for performance considerations.

logical(1) Display a progress bar for parallelized computations? Only works
if bpprogressbar<- is defined for the current BiocParallel back-end.

BiocParallelParam object. Use to customized the the parallization back-end
of bplapply. Note, nthread over-rides any settings from BPPARAM as long as
bpworkers<- is defined for that class.

logical (1) Default is TRUE. Set to FALSE to evaluate the first call in . . . within
data. table groups. See details for more information.

list() A named list where each item is an argument one of the calls in ...
which is not a column in the table being aggregated. Use to further parameterize
you calls. Please note that these are not added to your aggregate calls unless you
specify the names in the call.

Use of Non-Standard Evaluation:

Arguments in . . . are substituted and wrapped in a list, which is passed through to the j argument
of [.data. table internally. The function currently tries to build informative column names for
unnamed arguments in . . . by appending the name of each function call with the name of its first
argument, which is assumed to be the column name being aggregated over. If an argument to . . .
is named, that will be the column name of its value in the resulting data. table.

52 exampleDataMapper

Enlisting:

The primary use case for en1ist=FALSE is to allow computation of dependent aggregations, where
the output from a previous aggregation is required in a subsequent one. For this case, wrap your
call in { and assign intermediate results to variables, returning the final results as a list where each
list item will become a column in the final table with the corresponding name. Name inference is
disabled for this case, since it is assumed you will name the returned list items appropriately. A
major advantage over multiple calls to aggregate is that the overhead of parallelization is paid
only once even for complex multi-step computations like fitting a model, capturing its paramters,
and making predictions using it. It also allows capturing arbitrarily complex calls which can be
recomputed later using the update, TreatmentResponseExperiment-method A potential disad-
vantage is increased RAM usage per thread due to storing intermediate values in variables, as well
as any memory allocation overhead associate therewith.

Value

Object with the same class as x, with the aggregation results assigned to target, using strategy
if target is an existing assay in Xx.

See Also
data.table::[.data.table, BiocParallel: :bplapply

exampleDataMapper Example LongTableDataMapper

Description

A dummy LongTableDataMapper object to be used in package examples.

Usage

data(exampleDataMapper)

Format

LongTableDataMapper object

getlntern 53

getIntern Retrieve the specified item from object internal metadata.

Description

Internal slot for storing metadata relevant to the internal operation of an S4 object.

Usage
getIntern(object, x, ...)
Arguments
object S4 An object with an @.itern slot containing an environment.
X character One or more symbol names to retrieve from the object@.intern en-
vironment.
Allow new parmeters to be defined for this generic.
Details

Warning: This method is intended for developer use and can be ignored by users.

Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

guessMapping Generic for Guessing the Mapping Between Some Raw Data and an
S4 Object

Description

Generic for Guessing the Mapping Between Some Raw Data and an S4 Object

Usage

guessMapping(object, ...)

54 guessMapping,LongTableDataMapper-method

Arguments
object An S4 object containing so raw data to guess data to object slot mappings for.
Allow new arguments to be defined for this generic.
Value

A list with mapping guesses as items.

Examples

"Generics shouldn't need examples!”

guessMapping,LongTableDataMapper-method

Guess which columns in raw experiment data map to which dimen-
sions.

Description

Checks for columns which are uniquely identified by a group of identifiers. This should be used to
help identify the columns required to uniquely identify the rows, columns, assays and metadata of
a DataMapper class object.

Usage

S4 method for signature 'LongTableDataMapper'
guessMapping(object, groups, subset, data = FALSE)

Arguments

object A LongTableDataMapper object.

groups A list containing one or more vector of column names to group-by. The func-
tion uses these to determine 1:1 mappings between the combination of columns
in each vector and unique values in the raw data columns.

subset A logical vector indicating whether to to subset out mapped columns after each
grouping. Must be a single TRUE or FALSE or have the same length as groups,
indicating whether to subset out mapped columns after each grouping. This will
prevent mapping a column to two different groups.

data A logical vector indicating whether you would like the data for mapped columns

to be returned instead of their column names. Defaults to FALSE for easy use as-
signing mapped columns to a DataMapper object.

gwce 55

Details

Any unmapped columns will be added to the end of the returned 1ist in an item called unmapped.

The function automatically guesses metadata by checking if any columns have only a single value.
This is returned as an additional item in the list.

Value

A list, where each item is named for the associated groups item the guess is for. The character
vector in each item are columns which are uniquely identified by the identifiers from that group.

Examples

guessMapping(exampleDataMapper, groups=list(rows='treatmentid', cols='sampleid'),
subset=FALSE)

gwc GWC Score

Description

Calculate the gwc score between two vectors, using either a weighted spearman or pearson correla-
tion

Usage

gwe(
x1,
p1,
X2,
P2,
method.cor = c("pearson”, "spearman"),
nperm = 10000,
truncate.p = 1e-16,

)
Arguments

x1 numeric vector of effect sizes (e.g., fold change or t statitsics) for the first ex-
periment

p1 numeric vector of p-values for each corresponding effect size for the first ex-
periment

X2 numeric effect size (e.g., fold change or t statitsics) for the second experiment

p2 numeric vector of p-values for each corresponding effect size for the second

experiment

56 idCols

method. cor character string identifying if a pearson or spearman correlation should be
used

nperm numeric how many permutations should be done to determine

truncate.p numeric Truncation value for extremely low p-values

Other passed down to internal functions

Value

numeric a vector of two values, the correlation and associated p-value.

Examples

data(clevelandSmall_cSet)

x <- molecularProfiles(clevelandSmall_cSet, 'rna')[,1]
y <- molecularProfiles(clevelandSmall_cSet, 'rna')[,2]
X_p <- rep(0.05, times=length(x))

y_p <- rep(0.05, times=length(y))

names(x_p) <- names(x)

names(y_p) <- names(y)

gwc(x,X_p,Yy,y_p, nperm=100)

idCols Generic to access the unique id columns in an S4 object used to

Description

Generic to access the unique id columns in an S4 object used to

Usage
idCols(object, ...)
Arguments
object An S4 object to get id columns from.
Allow new arguments to this generic.
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

immutable 57

immutable Constructor for "immutable" S3-class property

Description

This method should allow any S3 object in R to become immutable by intercepting [<-, [[<-, $<-
and c during S3-method dispatch and returning an error.

Reverse with call to the mutable function.
Usage

immutable(object)

is.immutable(object)

S3 method for class 'immutable'
print(x, ...)

show. immutable(x)

Arguments
object, x Any R object which uses S3 method dispatch
Fallthrough arguments to print.default.
Details

The motivation for this class was to create pseudo-private slots in an R S4 object by preventing
mutation of those slots outside of the accessors written for the class. It should behave as expected
for R object which operate with ’copy-on-modify’ semantics, including most base R functions and
S3 objects.

An environment was not suitable for this case due to the ’copy-by-reference’ semantics, such that
normal R assignment, which users assume makes a copy of the object, actually references the same
environment in both the original and copy of the object.

WARNING: This implementation is unable to intercept modifications to a data. table via the setx
group of methods. This is because these methods are not S3 generics and therefore no mechanism
exists for hooking into them to extend their functionality. In general, this helper class will only
work for objects with an S3 interface.

Value
The object with "immutable" prepended to its class attribute.
logical(1) Does the object inherit from the "immutable" S3-class?

None, invisible(NULL)

58 is.items

See Also

assignment-immutable, setOps-immutable

Examples

immutable_list <- immutable(as.list(1:5))
class(immutable_list)

errors during assignment operations

tryCatch({ immutable_list$new <- 1 3}, error=print)

immutable_list <- immutable(as.list(1:5))
is.immutable(immutable_list)

is.items Get the types of all items in a list

Description

Get the types of all items in a list

Usage
is.items(list, ..., FUN = is)
Arguments
list A list to get the types from
pairlist Additional arguments to FUN
FUN function or character Either a function, or the name of a function which
returns a single logical value. The default function uses is, specify the desired
type in You can also use other type checking functions such as is.character,
is.numeric, or is.data.frame.
Value

logical A vector indicating if the list item is the specified type.

Examples

list <- list(c(1,2,3), c('a','b','c"))
is.items(list, 'character')

is_optim_compatible 59

is_optim_compatible Check whether a function signature is amenable to optimization via
stats::optim.

Description
Functions compatible with optim have the parameter named par as their first formal argument
where each value is a respective free parameter to be optimized.

Usage

is_optim_compatible(fn)

Arguments

fn function A non-primitive function.

Value

logical (1) TRUE if the first value of formalArg(fn) is "par", otherwise FALSE.

lapply,MultiAssayExperiment-method
lapply lapply method for MultiAssayExperiment

Description

lapply lapply method for MultiAssayExperiment

Usage
S4 method for signature 'MultiAssayExperiment'’
lapply(X, FUN, ...)
Arguments
X A MultiAssayExperiment object.
FUN A function to be applied to each SummarizedExperiment in a in X.

Fall through parameters to FUN

Value

A MultiAssayExperiment object, modifed such that experiments(X) <- endoapply(experiments(X),
FUN, ...).s

60

LongTable

list_OR_LongTable-class

A class union to allow multiple types in a CoreSet slot

Description

A class union to allow multiple types in a CoreSet slot

LongTable

LongTable constructor method

Description

LongTable constructor method

Usage

LongTable(
rowData,
rowlDs,
colData,
collDs,
assays,
assaylIDs,

metadata = list(),

keep.rownames

Arguments

rowData
rowIDs

colData
colIDs

assays
assaylIDs
metadata

keep.rownames

= FALSE

data.frame A rectangular object coercible to a data. table.

character A vector of rowData column names needed to uniquely identify each
row in a LongTable.

data.frame A rectangular object coercible to a data. table.

chacter A vector of colData column names needed to uniquely identify each
column in a LongTable.

list A list of rectangular objects, each coercible to a data.table. Must be
named and item names must match the assayIDs list.

list A list of character vectors specifying the columns needed to uniquely
identify each row in an assay. Names must match the assays list.

list A list of one or more metadata items associated with a LongTable experi-
ment.

logical(1) or character(1) Should rownames be retained when coercing
to data.table inside the constructor. Default is FALSE. If TRUE, adds a
rn’ column to each rectangular object that gets coerced from data.frame to
data. table. If a string, that becomes the name of the rownames column.

LongTable-accessors 61
Value

A LongTable object containing the data for a treatment response experiment and configured ac-
cording to the rowIDs and colIDs arguments.

Examples

"See vignette('The LongTable Class', package='CoreGx')"

LongTable-accessors Accessing and modifying information in a LongTable

Description

Documentation for the various setters and getters which allow manipulation of data in the slots of a
LongTable object.

Value

Accessors: See details.
Setters: An updated LongTable object, returned invisibly.

Examples

data(merckLongTable)

LongTableDataMapper Constructor for the LongTableDataMapper class, which maps from
one or more raw experimental data files to the slots of a LongTable

object.

Description

Constructor for the LongTableDataMapper class, which maps from one or more raw experimental
data files to the slots of a LongTable object.

Usage

LongTableDataMapper (
rawdata = data.frame(),
rowDataMap = list(character(), character()),
colDataMap = list(character(), character()),
assayMap = list(list(character(), character())),
metadataMap = list(character())

62

Arguments

rawdata

rowDataMap

colDataMap

assayMap

metadataMap

Details

LongTableDataMapper

A data.frame of raw data from a treatment response experiment. This will be
coerced to a data.table internally. We recommend using joins to aggregate
your raw data if it is not present in a single file.

A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each row, the second is additional columns
which map to rows, but are not required to uniquely identify them. Rows should
be drugs.

A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each column, the second is additional
columns which map to rows, but are not required to uniquely identify them.
Columns should be samples.

A list-like where each item is a 1ist with two character vectors defining an
assay, the first containing the identifier columns in rawdata needed to uniquely
identify each row an assay, and the second the rawdata columns to be mapped
to that assay. The names of assayMap will be the names of the assays in the
LongTable that is created when calling metaConstruct on this DataMapper
object. If the character vectors have names, the value columns will be renamed
accordingly.

A list-like where each item is a character vector of rawdata column names to
assign to the @metadata of the LongTable, where the name of that assay is the
name of the list item. If names are omitted, assays will be numbered by their
index in the list.

The guessMapping method can be used to test hypotheses about the cardinality of one or more sets
of identifier columns. This is helpful to determine the id columns for rowDataMap and colDataMap,
as well as identify columns mapping to assays or metadata.

To attach metadata

not associated with rawdata, please use the metadata assignment method on

your LongTableDataMapper. This metadata will be merged with any metadata from metadataMap
and added to the LongTable which this object ultimately constructs.

Value

A LongTable object, with columns mapped to it’s slots according to the various maps in the
LongTableDataMapper object.

See Also

guessMapping

Examples

data(exampleDataMapper)

exampleDataMapper

LongTableDataMapper-accessors 63

LongTableDataMapper-accessors
Accessing and modifying data in a LongTableDataMapper object.

Description
Documentation for the various setters and getters which allow manipulation of data in the slots of a
LongTableDataMapper object.

Usage

S4 replacement method for signature 'LongTableDataMapper,list'
rawdata(object) <- value

S4 method for signature 'LongTableDataMapper'
rowDataMap(object)

S4 replacement method for signature 'LongTableDataMapper,list_OR_List'
rowDataMap(object) <- value

S4 method for signature 'LongTableDataMapper'
colDataMap(object)

S4 replacement method for signature 'LongTableDataMapper,list_OR_List'
colDataMap(object) <- value

S4 method for signature 'LongTableDataMapper'
assayMap(object)

S4 replacement method for signature 'LongTableDataMapper,list_OR_List'
assayMap(object) <- value

S4 method for signature 'LongTableDataMapper'
metadataMap(object)

S4 replacement method for signature 'LongTableDataMapper,list_OR_List'
metadataMap(object) <- value

Arguments
object A LongTableDataMapper object to get or set data from.
value See details.

Details

rawdata: Get the raw data slot from a LongTableDataMapper object. Returns a list-like containing
one or more raw data inputs to the LongTableDataMapper object.

64 LongTableDataMapper-accessors

rawdata: Set the raw data slot from a LongTableDataMapper object. value: The 1ist-like object
to set for the rawdata slot. Note: this currently only supports data. frame or data.table objects.

rowDataMap: list of two character vectors, the first are the columns required to uniquely
identify each row of a LongTableDataMapper and the second any additional row-level metadata.
If the character vectors have names, the resulting columns are automatically renamed to the item
name of the specified column.

rowDataMap<-: Update the @rowDataMap slot of a LongTableDataMapper object, returning an
invisible NULL. Arguments:

e value: A list or List where the first item is the names of the identifier columns — columns
needed to uniquely identify each row in rowData — and the second item is the metadata associ-
ated with those the identifier columns, but not required to uniquely identify rows in the object
rowData.

colDataMap: list of two character vectors, the first are the columns required to uniquely iden-
tify each row of a LongTableDataMapper and the second any additional col-level metadata. If the
character vectors have names, the resulting columns are automatically renamed to the item name of
the specified column.

colDataMap<-: Update the @colDataMap slot of a LongTableDataMapper object, returning an
invisible NULL. Arguments:

* value: A list or List where the first item is the names of the identifier columns — columns
needed to uniquely identify each row in colData — and the second item is the metadata associ-
ated with those the identifier columns, but not required to uniquely identify rows in the object
rowData.

assayMap: A list of character vectors. The name of each list item will be the assay in a
LongTableDataMapper object that the columns in the character vector will be assigned to. Col-
umn renaming occurs automatically when the character vectors have names (from the value to the
name).

assayMap<-: Updates the @assayMap slot of a LongTableDataMapper object, returning an invisi-
ble NULL. Arguments:

* value: A list of character vectors, where the name of each list item is the name of an assay
and the values of each character vector specify the columns mapping to the assay in the S4
object the LongTableDataMapper constructs.

metadataMap: A list of character vectors. Each item is an element of the constructed objects
@metadata slot.

metadataMap<-: Updates LongTableDataMapper object in-place, then returns an invisible (NULL).
Arguments:

¢ value: A list of character vectors. The name of each list item is the name of the item in the
@metadata slot of the LongTableDataMapper object created when metaConstruct is called
on the DataMapper, and a character vector specifies the columns of @rawdata to assign to
each item.

Value

Accessors: See details

Setters: An update LongTableDataMapper object, returned invisibly.

LongTableDataMapper-class 65

See Also

Other DataMapper-accessors: DataMapper-accessors, TREDataMapper-accessors

Examples

rowDataMap (exampleDataMapper)

rowDataMap (exampleDataMapper) <- list(c('treatmentid'), c())
colDataMap(exampleDataMapper)

colDataMap(exampleDataMapper) <- list(c('sampleid'), c())

assayMap (exampleDataMapper)

assayMap(exampleDataMapper) <- list(sensitivity=c(viabilityl="'viability'))
metadataMap (exampleDataMapper)

metadataMap(exampleDataMapper) <- list(object_metadata=c('metadata'))

LongTableDataMapper-class
A Class for Mapping Between Raw Data and an LongTable Object

Description

A Class for Mapping Between Raw Data and an LongTable Object

Usage
S4 method for signature 'LongTableDataMapper'
show(object)

Arguments

object A LongTableDataMapper to display in the console.

Value

invisible Prints to console.

Functions

* show, LongTableDataMapper-method: Show method for LongTableDataMapper. Determines
how the object is displayed in the console.

66 make_optim_function

Slots

rawdata See Slots section.
rowDataMap See Slots section.
colDataMap See Slots section.
assayMap See Slots section.

metadataMap See Slots section.

Slots

» rowDataMap: A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each row, the second is additional columns which map
to rows, but are not required to uniquely identify them. Rows should be drugs.

* colDataMap: A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each column, the second is additional columns which
map to rows, but are not required to uniquely identify them. Columns should be samples.

» assayMap A list-like where each item is a 1ist with two elements specifying an assay, the
first being the identifier columns in rawdata needed to uniquely identify each row an assay,
and the second a list of rawdata columns to be mapped to that assay. The names of assayMap
will be the names of the assays in the LongTable that is created when calling metaConstruct
on this DataMapper object.

» metadataMap: A list-like where each item is a character vector of rawdata column names
to assign to the @metadata of the LongTable, where the name of that assay is the name of the
list item. If names are omitted, assays will be numbered by their index in the list.

» rawdata: A list-like object containing one or more pieces of raw data that will be processed
and mapped to the slots of an S4 object.

* metadata: A List of object level metadata.

Examples

show(exampleDataMapper)

make_optim_function Takes a non-primitive R function and refactors it to be compatible with
optimization via stats: :optim.

Description

Takes a non-primitive R function and refactors it to be compatible with optimization via stats: :optim.

Usage

make_optim_function(fn, ...)

mcc 67

Arguments
fn function A non-primitive function
Arguments to fn to fix for before building the function to be optimized. Use-
ful for reducing the number of free parameters in an optimization if there are
insufficient degrees of freedom.
See Also

drop_fn_params, collect_fn_params

mcc Compute a Mathews Correlation Coefficient

Description

The function computes a Matthews correlation coefficient for two factors provided to the function.
It assumes each factor is a factor of class labels, and the enteries are paired in order of the vectors.

Usage
mcc (
X ’
Y,
nperm = 1000,
nthread = 1,
alternative = c("two.sided”, "less"”, "greater”),
)
Arguments
X,y factor of the same length with the same number of levels
nperm numeric number of permutations for significance estimation. If 0, no permuta-
tion testing is done
nthread numeric can parallelize permutation texting using BiocParallels bplapply
alternative indicates the alternative hypothesis and must be one of ‘"two.sided"’, ‘"greater"’
or “"less". You can specify just the initial letter. ‘"greater"’ corresponds to
positive association, ‘"less"’ to negative association.
list Additional arguments
Details

Please note: we recommend you call set.seed() before using this function to ensure the reproducibil-
ity of your results. Write down the seed number or save it in a script if you intend to use the results
in a publication.

68 mergeAssays

Value

A list with the MCC as the $estimate, and p value as $p.value

Examples

x <- factor(c(1,2,
y <- factor(c(2,1,
mcc(x,y)

14

3
’2’

—_
- N

)

merckLongTable Merck Drug Combination Data LongTable

Description

This is a LongTable object created from some drug combination data provided to our lab by Merck.

Usage

data(merckLongTable)

Format

LongTable object

References

TODO:: Include a reference

mergeAssays Merge assays with an S4 object.

Description

Merge assays with an S4 object.

Usage
mergeAssays(object, ...)
Arguments
object S4 An S4 object a list-like slot containing assays for the object.

Allow new arguments to be defined for this generic.

mergeAssays,LongTable-method 69

Value

A modified version of object.

Examples

"This is a generic method!”

mergeAssays,LongTable-method
Endomorphically merge assays within a LongTable or inheriting class

Description

Endomorphically merge assays within a LongTable or inheriting class

Usage
S4 method for signature 'LongTable'
mergeAssays(object, x, y, target = x, ..., metadata = FALSE)
Arguments
object A LongTable or inheriting class.
X character (1) A valid assay name in object.
y character (1) A valid assay name in object.
target character (1) Name of the assay to assign the result to. Can be a new or

existing assay. Defaults to x.

Fallthrough arguments to merge.data.table to specify the join type. Use this to

specify which columns to merge on. If excluded, defaults to by=assayKeys(objecty,

y)-

metadata logical A logical vector indicating whether to attach metadata to either assay
before the merge occurs. If only one value is passed that value is used for both
assays. Defaults to FALSE.

Value

A copy of object with assays x and y merged and assigned to target.

Author(s)
Christopher Eeles

See Also

merge.data.table

70 metaConstruct

metaConstruct Generic for preprocessing complex data before being used in the con-
structor of an S4 container object.

Description

This method is intended to abstract away complex constructor arguments and data preprocessing
steps needed to transform raw data, such as that produced in a treatment-response or next-gen
sequencing experiment, and automate building of the appropriate S4 container object. This is is in-
tended to allow mapping between different experimental designs, in the form of an S4 configuration
object, and various S4 class containers in the Bioconductor community and beyond.

Usage

metaConstruct(mapper, ...)

S4 method for signature 'LongTableDataMapper'
metaConstruct (mapper)

S4 method for signature 'TREDataMapper'
metaConstruct (mapper)

Arguments
mapper An TREDataMapper object abstracting arguments to an the TreatmentResponseExperiment
constructor.
Allow new arguments to be defined for this generic.
Value

An S4 object for which the class corresponds to the type of the build configuration object passed to
this method.

A LongTable object, as specified in the mapper.

A TreatmentResponseExperiment object, as specified in the mapper.

Examples

data(exampleDataMapper)

rowDataMap (exampleDataMapper) <- list(c('treatmentid'), c())

colDataMap(exampleDataMapper) <- list(c('sampleid'), c())

assayMap(exampleDataMapper) <- list(sensitivity=list(c("treatmentid”, "sampleid”), c('viability')))
metadataMap(exampleDataMapper) <- list(experiment_metadata=c('metadata'))

longTable <- metaConstruct(exampleDataMapper)

longTable

data(exampleDataMapper)
exampleDataMapper <- as(exampleDataMapper, "TREDataMapper™)

metadata,LongTable-method 71

rowDataMap (exampleDataMapper) <- list(c('treatmentid'), c())

colDataMap(exampleDataMapper) <- list(c('sampleid'), c())

assayMap(exampleDataMapper) <- list(sensitivity=list(c("treatmentid”, "sampleid”), c('viability')))
metadataMap(exampleDataMapper) <- list(experiment_metadata=c('metadata'))

tre <- metaConstruct(exampleDataMapper)

tre

metadata,LongTable-method
Getter method for the metadata slot of a LongTable object

Description

Getter method for the metadata slot of a LongTable object

Usage

S4 method for signature 'LongTable'
metadata(x)

Arguments

X The LongTable object from which to retrieve the metadata list.

Value

list The contents of the metadata slot of the LongTable object.

metadata<-,LongTable-method
Setter method for the metadata slot of a LongTable object

Description

Setter method for the metadata slot of a LongTable object

Usage

S4 replacement method for signature 'LongTable'
metadata(x) <- value

Arguments

X LongTable The LongTable to update

value list A list of new metadata associated with a LongTable object.

72 nci_TRE_small

Value

LongTable A copy of the LongTable object with the value in the metadata slot.

mutable Remove the "immutable" S3-class from an R object, allowing it to be
modified normally again.

Description

Remove the "immutable" S3-class from an R object, allowing it to be modified normally again.

Usage

mutable(object)

Arguments

object An R object inheriting from the "immutable" class.

Value

The object with the "immutable" class stripped from it.

Examples

immut_list <- immutable(list())
mutable(immut_list)

nci_TRE_small NCI-ALMANAC Drug Combination Data TreatmentResponseExperi-
ment Subset

Description

This is a TreatmentResponseExperiment object containing a subset of NCI-ALMANAC drug
combination screening data, with 2347 unique treatment combinations on 10 cancer cell lines se-
lected.

Usage
data(nci_TRE_small)

Format

TreatmentResponseExperiment object

optimizeCoreGx 73

References

Susan L. Holbeck, Richard Camalier, James A. Crowell, Jeevan Prasaad Govindharajulu, Melinda
Hollingshead, Lawrence W. Anderson, Eric Polley, Larry Rubinstein, Apurva Srivastava, Debo-
rah Wilsker, Jerry M. Collins, James H. Doroshow; The National Cancer Institute ALMANAC:
A Comprehensive Screening Resource for the Detection of Anticancer Drug Pairs with Enhanced
Therapeutic Activity. Cancer Res 1 July 2017; 77 (13): 3564-3576. https://doi.org/10.1158/0008-
5472.CAN-17-0489

optimizeCoreGx A helper method to find the best multithreading configuration for your
computer

Description

A helper method to find the best multithreading configuration for your computer

Usage

optimizeCoreGx(sample_data, set = FALSE, report = !set)

Arguments
sample_data TreatmentResponseExperiment
set logical (1) Should the function modify your R environment with the predicted
optimal settings? This changes the global state of your R session!
report logical(1) Should a data. frame of results be returned by number of threads
and operation be returned? Defaults to !set.
Value

If set=TRUE, modifies data.table threads via setDTthreads(), otherwise displays a message
indicating the optimal number of threads. If report=TRUE, also returns a data. frame of the bench-
mark results.

Examples

data(merckLongTable)
optimizeCoreGx(merckLongTable)

74 reindex,LongTable-method

reindex Generic method for resetting indexing in an S4 object

Description

This method allows integer indexes used to maintain referential integrity internal to an S4 object to
be reset. This is useful particularly after subsetting an object, as certain indexes may no longer be
present in the object data. Reindexing removes gaps integer indexes and ensures that the smallest
contiguous integer values are used in an objects indexes.

Usage
reindex(object, ...)
Arguments
object S4 An object to redo indexing for
pairlist Allow definition of new parameters to this generic.
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

reindex,LongTable-method
Redo indexing for a LongTable object to remove any gaps in integer
indexes

Description

After subsetting a LongTable, it is possible that values of rowKey or colKey could no longer be
present in the object. As a result there the indexes will no longer be contiguous integers. This
method will calcualte a new set of rowKey and colKey values such that integer indexes are the
smallest set of contiguous integers possible for the data.

Usage

S4 method for signature 'LongTable'
reindex(object)

rowData,LongTableDataMapper-method 75

Arguments

object The LongTable object to recalcualte indexes (rowKey and colKey values) for.

Value

A copy of the LongTable with all keys as the smallest set of contiguous integers possible given the
current data.

rowData,LongTableDataMapper-method
Convenience method to subset the rowData out of the rawdata slot
using the assigned rowDataMap metadata.

Description
Convenience method to subset the rowData out of the rawdata slot using the assigned rowDataMap
metadata.

Usage

S4 method for signature 'LongTableDataMapper'
rowData(x, key = TRUE)

Arguments
X LongTableDataMapper object with valid data in the rawdata and colDataMap
slots.
key logical(1) Should the table be keyed according to the id_columns of the
rowDataMap slot? This will sort the table in memory. Default is TRUE.
Value

data.table The rowData as specified in the rowDataMap slot.

rowData, TREDataMapper-method
Convenience method to subset the rowData out of the rawdata slot
using the assigned rowDataMap metadata.

Description

Convenience method to subset the rowData out of the rawdata slot using the assigned rowDataMap
metadata.

76 rowlIDs

Usage

S4 method for signature 'TREDataMapper'
rowData(x, key = TRUE)

Arguments
X TREDataMapper object with valid data in the rawdata and colDataMap slots.
key logical(1) Should the table be keyed according to the id_columns of the
rowDataMap slot? This will sort the table in memory. Default is TRUE.
Value

data. table The rowData as specified in the rowDataMap slot.

rowIDs Generic to access the row identifiers from

Description

Generic to access the row identifiers from

Usage
rowIDs(object, ...)
Arguments
object S4 An object to get row id columns from.
Allow new arguments to this generic.
Value

Depends on the implemented method.

Examples

print("Generics shouldn't need examples?")

rowMeta 77

rowMeta Generic to access the row identifiers from

Description

Generic to access the row identifiers from

Usage
rowMeta(object, ...)
Arguments
object S4 An object to get row metadata columns from.
Allow new arguments to this generic.
Value

Depends on the implemented method.

Examples

print("Generics shouldn't need examples?")

sensitivityInfo Generic function to get the annotations for a treatment response ex-
periment from an S4 class

Description

Generic function to get the annotations for a treatment response experiment from an S4 class

Usage
sensitivityInfo(object, ...)
Arguments
object An S4 object to get treatment response experiment annotations from.
Allow new arguments to be defined for this generic.
Value

Depends on the implemented method

78 sensitivityMeasures

Examples

print("Generics shouldn't need examples?")

sensitivityInfo<- sensitivitylnfo<- Generic Method

Description

Generic function to get the annotations for a treatment response experiment from an S4 class.

Usage
sensitivityInfo(object, ...) <- value
Arguments
object An S4 object to set treatment response experiment annotations for.
Allow new arguments to be defined for this generic.
value The new treatment response experiment annotations.
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

sensitivityMeasures sensitivityMeasures Generic

Description

Get the names of the sensitivity summary metrics available in an S4 object.

Usage
sensitivityMeasures(object, ...)
Arguments
object An S4 object to retrieve the names of sensitivty summary measurements for.

Fallthrough arguements for defining new methods

sensitivityMeasures<-

Value

Depends on the implemented method

Examples

sensitivityMeasures(clevelandSmall_cSet)

79

sensitivityMeasures<- sensitivityMeasures<- Generic

Description

Set the names of the sensitivity summary metrics available in an S4 object.

Usage
sensitivityMeasures(object, ...) <- value
Arguments
object An S4 object to update.
Allow new methods to be defined for this generic.
value A set of names for sensitivity measures to use to update the object with.
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

80 sensitivityProfiles<-

sensitivityProfiles sensitivityProfiles Generic

Description

A generic for sensitivityProfiles getter method

Usage
sensitivityProfiles(object, ...)
Arguments
object The S4 object to retrieve sensitivity profile summaries from.
pairlist Allow defining new arguments for this generic.
Value

Depends on the implemented method

Examples

print(”"Generics shouldn't need examples?")

sensitivityProfiles<- sensitivityProfiles<- Generic

Description

A generic for the sensitivityProfiles replacement method

Usage
sensitivityProfiles(object, ...) <- value
Arguments
object An S4 object to update the sensitivity profile summaries for.
Fallthrough arguments for defining new methods
value An object with the new sensitivity profiles. If a matrix object is passed in, con-
verted to data.frame before assignment
Value

Updated CoreSet

sensitivityRaw 81

sensitivityRaw sensitivityRaw Generic Method

Description

Generic function to get the raw data array for a treatment response experiment from an S4 class.

Usage
sensitivityRaw(object, ...)
Arguments
object An S4 object to extract the raw sensitivity experiment data from.
pairlist Allow new parameters to be defined for this generic.
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

sensitivityRaw<- sensitivityRaw<- Generic

Description

Generic function to set the raw data array for a treatment response experiment in an S4 class.

Usage
sensitivityRaw(object, ...) <- value
Arguments
object An S4 object to extract the raw sensitivity data from.
pairlist Allow new parameters to be defined for this generic.
value An object containing dose and viability metrics to update the object with.
Value

Depends on the implemented method

82 setOps-immutable

sensitivitySlotTolLongTable
sensitivitySlotToLongTable Generic

Description

Convert the sensitivity slot in an object inheriting from a CoreSet from a list to a LongTable.

Usage
sensitivitySlotToLongTable(object, ...)
Arguments
object CoreSet Object inheriting from CoreSet.
Allow new arguments to be defined on this generic.
Value

A LongTable object containing the data in the sensitivity slot.

Examples

print("Generics shouldn't need examples?")

setOps-immutable Subset an immutable object, returning another immutable object.

Description

Subset an immutable object, returning another immutable object.
Usage
subset.immutable(x, ...)

S3 method for class 'immutable'
x[...]

S3 method for class 'immutable'
x[[...1]

S3 method for class 'immutable'
x$...

show,CoreSet-method 83

Arguments
X An R object inheriting from the "immutable" S3-class.
Catch any additional parameters. Lets objects with arbitrary dimensions be
made immutable.
Value

An immutable subset of x.

Examples

immut_mat <- immutable(matrix(1:100, 10, 10))
immut_mat[1:5, 1:5]

show, CoreSet-method Show a CoreSet

Description

Show a CoreSet

Usage
S4 method for signature 'CoreSet'
show(object)

Arguments

object CoreSet object to show via cat.

Value

Prints the CoreSet object to the output stream, and returns invisible NULL.

See Also

cat

Examples

show(clevelandSmall_cSet)

84 showSigAnnot

show, LongTable-method Show method for the LongTable class

Description

Show method for the LongTable class

Usage
S4 method for signature 'LongTable'
show(object)

Arguments

object A LongTable object to print the results for.

Value

invisible Prints to console.

Examples
show(merckLongTable)
showSigAnnot Get the annotations for a Signature class object, as returned by
drugSensitivitysig or radSensitivtySig functions available in
PharmacoGx and RadioGx, respectively.
Description

Get the annotations for a Signature class object, as returned by drugSensitivitysigor radSensitivtySig
functions available in PharmacoGx and RadioGx, respectively.

Usage
showSigAnnot (object, ...)
Arguments
object A Signature class object
Allow definition of new arguments to this generic
Value

NULL Prints the signature annotations to console

subset,LongTable-method 85

Examples

print("Generics shouldn't need examples?")

subset,LongTable-method

Subset method for a LongTable object.

Description

Allows use of the colData and rowData data. table objects to query based on rowID and colID,
which is then used to subset all assay data.tables stored in the assays slot. This function is
endomorphic, it always returns a LongTable object.

Usage

S4 method for signature 'LongTable'
subset(x, i, j, assays = assayNames(x), reindex = TRUE)

Arguments

X

i

assays

reindex

Value

LongTable The object to subset.

character, numeric, logical or call Character: pass in a character vector
of rownames for the LongTable object or a valid regex query which will be
evaluated against the rownames. Numeric or Logical: vector of indices or a
logical vector to subset the rows of a LongTable. Call: Accepts valid query
statements to the data.table i parameter, this can be used to make complex
queries using the data. table API for the rowData data.table.

character, numeric, logical or call Character: pass in a character vector
of colnames for the LongTable object or a valid regex query which will be
evaluated against the colnames. Numeric or Logical: vector of indices or a
logical vector to subset the columns of a LongTable. Call: Accepts valid query
statements to the data.table i parameter, this can be used to make complex
queries using the data. table API for the colData data.table.

character, numeric or logical Optional list of assay names to subset. Can
be used to subset the assays list further, returning only the selected items in the
new LongTable.

logical(1) Should index values be reset such that they are the smallest possible
set of consecutive integers. Modifies the "rowKey", "colKey", and all assayKey
columns. Initial benchmarks indicate reindex=FALSE saves ~20% of both exe-
cution time and memory allocation. The cost of reindexing decreases the smaller

your subset gets.

LongTable A new LongTable object subset based on the specified parameters.

86 summarizeMolecularProfiles

Examples

Character
subset(merckLongTable, 'ABT-888', 'CAOV3')

Numeric

subset(merckLongTable, 1, c(1, 2))

Logical

subset(merckLongTable, , colData(merckLongTable)$sampleid == 'A2058')
Call

subset(merckLongTable, druglid == 'Dasatinib' & drug2id != '5-FU',

sampleid == 'A2058')

summarizeMolecularProfiles
Summarize molecular profile data such that there is a single entry for
each sample line/treatment combination

Description

Summarize molecular profile data such that there is a single entry for each sample line/treatment

combination
Usage
summarizeMolecularProfiles(object, ...)
Arguments
object An S4 object to summarize the molecular profiles for.
Allow definition of new arguments to this generic
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

summarizeSensitivityProfiles 87

summarizeSensitivityProfiles
Summarize across replicates for a sensitivity dose-response experi-
ment

Description

Summarize across replicates for a sensitivity dose-response experiment

Usage
summarizeSensitivityProfiles(object, ...)
Arguments
object An S4 object to summarize sensitivity profiles for.
Allow definition of new arguments to this generic
Value

Depends on the implemented method

Examples

print("Generics shouldn't need examples?")

TreatmentResponseExperiment
TreatmentResponseExperiment constructor method

Description

Builds a TreatmentResponseExperiment object from rectangular objects. The rowData argument
should contain row level metadata, while the colData argument should contain column level meta-
data, for the experimental assays in the assays list. The rowIDs and colIDs lists are used to
configure the internal keys mapping rows or columns to rows in the assays. Each list should contain
at minimum one character vector, specifying which columns in rowData or colData are required
to uniquely identify each row. An optional second character vector can be included, specifying any
metadata columns for either dimension. These should contain information about each row but NOT
be required to uniquely identify a row in the colData or rowData objects. Additional metadata can
be attached to a TreatmentResponseExperiment by passing a list to the metadata argument.

88

Usage

TreatmentResponseExperiment

TreatmentResponseExperiment (

rowData,
rowlDs,
colData,
collDs,
assays,
assaylDs,
metadata =

Arguments

rowData

rowIDs

colData

colIDs

assays

assaylIDs

metadata

keep.rownames

Details

list(),
keep.rownames

= FALSE

data.table, data.frame, matrix A table like object coercible to adata. table
containing the a unique rowID column which is used to key assays, as well as
additional row metadata to subset on.

character, integer A vector specifying the names or integer indexes of the
row data identifier columns. These columns will be pasted together to make up
the rownames of the TreatmentResponseExperiment object.

data.table, data.frame, matrix A table like object coercible to a data. table
containing the a unique colID column which is used to key assays, as well as
additional column metadata to subset on.

character, integer A vector specifying the names or integer indexes of the
column data identifier columns. These columns will be pasted together to make
up the colnames of the TreatmentResponseExperiment object.

A list containing one or more objects coercible to a data. table, and keyed by
rowIDs and colIDs corresponding to the rowID and colID columns in colData
and rowData.

list A list of character vectors specifying the columns needed to uniquely
identify each row in an assay. Names must match the assays list.

A list of metadata associated with the TreatmentResponseExperiment object
being constructed

logical, character Logical: whether rownames should be added as a column
if coercing to a data. table, default is FALSE. If TRUE, rownames are added
to the column ’'rn’. Character: specify a custom column name to store the row-
names in.

For now this class is simply a wrapper around a LongTable class. In the future we plan to refac-
tor CoreGx such that the LongTable class is in a separate pacakge. We can then specialize the
implementation of TreatmentResponseExperiment to better capture the biomedical nature of this

object.

TREDataMapper

Value

89

A TreatmentResponseExperiment object containing the data for a treatment response experiment
configured according to the rowIDs and collDs arguments.

TREDataMapper

Constructor for the TREDataMapper class, which maps from one or
more raw experimental data files to the slots of a LongTable object.

Description

Constructor for the TREDataMapper class, which maps from one or more raw experimental data
files to the slots of a LongTable object.

Usage

TREDataMapper (

rawdata = data.frame(),

rowDataMap = list(character(), character()),
colDataMap = list(character(), character()),
assayMap = list(list(character(), character())),
metadataMap = list(character())

Arguments

rawdata

rowDataMap

colDataMap

assayMap

metadataMap

A data.frame of raw data from a treatment response experiment. This will be
coerced to a data.table internally. We recommend using joins to aggregate
your raw data if it is not present in a single file.

A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each row, the second is additional columns
which map to rows, but are not required to uniquely identify them. Rows should
be treatments.

A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each column, the second is additional
columns which map to rows, but are not required to uniquely identify them.
Columns should be samples.

A list-like where each item is a 1ist with two character vectors defining an
assay, the first containing the identifier columns in rawdata needed to uniquely
identify each row an assay, and the second the rawdata columns to be mapped
to that assay. The names of assayMap will be the names of the assays in the
TreatmentResponseExperiment that is created when calling metaConstruct
on this DataMapper object. If the character vectors have names, the value
columns will be renamed accordingly.

A list-like where each item is a character vector of rawdata column names to
assign to the @metadata of the LongTable, where the name of that assay is the
name of the list item. If names are omitted, assays will be numbered by their
index in the list.

90 TREDataMapper-accessors

Details

The guessMapping method can be used to test hypotheses about the cardinality of one or more sets
of identifier columns. This is helpful to determine the id columns for rowDataMap and colDataMap,
as well as identify columns mapping to assays or metadata.

To attach metadata not associated with rawdata, please use the metadata assignment method on
your TREDataMapper. This metadata will be merge with any metadata from metadataMap and
added to the LongTable which this object ultimately constructs.

Value

A TREDataMapper object, with columns mapped to it’s slots according to the various maps in the
LongTableDataMapper object.

See Also

guessMapping

TREDataMapper-accessors
Accessing and modifying data in a TREDataMapper object.

Description

Documentation for the various setters and getters which allow manipulation of data in the slots of a
TREDataMapper object.

Usage
S4 replacement method for signature 'TREDataMapper,list'’

rawdata(object) <- value

S4 method for signature 'TREDataMapper'
rowDataMap(object)

S4 replacement method for signature 'TREDataMapper,list_OR_List'
rowDataMap(object) <- value

S4 method for signature 'TREDataMapper'
colDataMap(object)

S4 replacement method for signature 'TREDataMapper,list_OR_List'
colDataMap(object) <- value

S4 method for signature 'TREDataMapper'
assayMap(object)

TREDataMapper-accessors 91

S4 replacement method for signature 'TREDataMapper,list_OR_List'
assayMap(object) <- value

S4 method for signature 'TREDataMapper'
metadataMap(object)

S4 replacement method for signature 'TREDataMapper,list_OR_List'
metadataMap(object) <- value

Arguments
object A TREDataMapper object to get or set data from.
value See details.

Details

rawdata: Get the raw data slot from a TREDataMapper object. Returns a list-like containing one or
more raw data inputs to the TREDataMapper object.

rawdata: Set the raw data slot from a TREDataMapper object. value: The 1ist-like object to set
for the rawdata slot. Note: this currently only supports data. frame or data.table objects.

rowDataMap: list of two character vectors, the first are the columns required to uniquely
identify each row of a TREDataMapper and the second any additional row-level metadata. If the
character vectors have names, the resulting columns are automatically renamed to the item name of
the specified column.

rowDataMap<-: Update the @rowDataMap slot of a TREDataMapper object, returning an invisible
NULL. Arguments:

e value: A list or List where the first item is the names of the identifier columns — columns
needed to uniquely identify each row in rowData — and the second item is the metadata associ-
ated with those the identifier columns, but not required to uniquely identify rows in the object
rowData.

colDataMap: list of two character vectors, the first are the columns required to uniquely iden-
tify each row of a TREDataMapper and the second any additional col-level metadata. If the character
vectors have names, the resulting columns are automatically renamed to the item name of the spec-
ified column.

colDataMap<-: Update the @colDataMap slot of a TREDataMapper object, returning an invisible
NULL. Arguments:

* value: A list or List where the first item is the names of the identifier columns — columns
needed to uniquely identify each row in colData — and the second item is the metadata associ-
ated with those the identifier columns, but not required to uniquely identify rows in the object
rowData.

assayMap: A list of character vectors. The name of each list item will be the assay in a
LongTableDataMapper object that the columns in the character vector will be assigned to. Col-
umn renaming occurs automatically when the character vectors have names (from the value to the
name).

92 TREDataMapper-accessors

assayMap<-: Updates the @assayMap slot of a TREDataMapper object, returning an invisible NULL.
Arguments:

* value: A list of character vectors, where the name of each list item is the name of an assay
and the values of each character vector specify the columns mapping to the assay in the S4
object the TREDataMapper constructs.

metadataMap: A list of character vectors. Each item is an element of the constructed objects
@metadata slot.

metadataMap<-: Updates TREDataMapper object in-place, then returns an invisible (NULL). Ar-
guments:

¢ value: A list of character vectors. The name of each list item is the name of the item in the
@metadata slot of the TREDataMapper object created when metaConstruct is called on the
DataMapper, and a character vector specifies the columns of @rawdata to assign to each item.

Value

Accessors: See details

Setters: An update TREDataMapper object, returned invisibly.

See Also

Other DataMapper-accessors: DataMapper-accessors, LongTableDataMapper-accessors

Examples
rowDataMap (exampleDataMapper)
rowDataMap(exampleDataMapper) <- list(c('treatmentid'), c())
colDataMap(exampleDataMapper)
colDataMap(exampleDataMapper) <- list(c('sampleid'), c())
assayMap (exampleDataMapper)
assayMap(exampleDataMapper) <- list(sensitivity=c(viabilityl='viability'))
metadataMap (exampleDataMapper)

metadataMap(exampleDataMapper) <- list(object_metadata=c('metadata’'))

TREDataMapper-class 93

TREDataMapper-class A Class for Mapping Between Raw Data and an

TreatmentResponseExperiment Object

Description

A Class for Mapping Between Raw Data and an TreatmentResponseExperiment Object

Slots

rawdata See Slots section.

rowDataMap See Slots section.

colDataMap See Slots section.

assayMap See Slots section.

metadataMap See Slots section.

Slots

rowDataMap: A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each row, the second is additional columns which map
to rows, but are not required to uniquely identify them. Rows should be drugs.

colDataMap: A list-like object containing two character vectors. The first is column names
in rawdata needed to uniquely identify each column, the second is additional columns which
map to rows, but are not required to uniquely identify them. Columns should be samples.

assayMap A list-like where each item is a 1ist with two elements specifying an assay, the
first being the identifier columns in rawdata needed to uniquely identify each row an assay,
and the second a list of rawdata columns to be mapped to that assay. The names of assayMap
will be the names of the assays in the LongTable that is created when calling metaConstruct
on this DataMapper object.

metadataMap: A list-like where each item is a character vector of rawdata column names
to assign to the @metadata of the LongTable, where the name of that assay is the name of the
list item. If names are omitted, assays will be numbered by their index in the list.

rawdata: A list-like object containing one or more pieces of raw data that will be processed
and mapped to the slots of an S4 object.

metadata: A List of object level metadata.

94 updateObject,LongTable-method

updateObject,CoreSet-method
Update the CoreSet class after changes in it struture or API

Description

Update the CoreSet class after changes in it struture or API

Usage

S4 method for signature 'CoreSet'
updateObject(object, verify = FALSE)

Arguments
object A CoreSet object to update the class structure for.
verify A logical(1) indicating is validObject should be called after updating the
object. Defaults to TRUE, only set FALSE for debugging.
Value

CoreSet with update class structure.

updateObject,LongTable-method
Update the LongTable class after changes in it struture or API

Description

Update the LongTable class after changes in it struture or API

Usage

S4 method for signature 'LongTable'
updateObject(object, verify = FALSE)

Arguments
object A LongTable object to update the class structure for.
verify A logical(1) indicating is validObject should be called after updating the
object. Defaults to TRUE, only set FALSE for debugging.
Value

LongTable with update class structure.

[,LongTable, ANY,ANY,ANY-method 95

[,LongTable, ANY,ANY,ANY-method

[LongTable Method

Description

Single bracket subsetting for a LongTable object. See subset for more details.

Usage

S4 method for signature 'LongTable,ANY,ANY,ANY'

x[i, j, assays

Arguments

X

i

assays

drop

Details

= assayNames(x), ..., drop = FALSE]

LongTable The object to subset.

character, numeric, logical or call Character: pass in a character vector
of drug names, which will subset the object on all row id columns matching
the vector. This parameter also supports valid R regex query strings which will
match on the colnames of x. For convenience, * is converted to .* automatically.
Colon can be to denote a specific part of the colnames string to query. Numeric
or Logical: these select based on the rowKey from the rowData method for the
LongTable. Call: Accepts valid query statements to the data. table i parameter
as a call object. We have provided the function .() to conveniently convert raw
R statements into a call for use in this function.

character, numeric, logical or call Character: pass in a character vector of
drug names, which will subset the object on all drug id columns matching the
vector. This parameter also supports regex queries. Colon can be to denote a
specific part of the colnames string to query. Numeric or Logical: these select
based on the rowID from the rowData method for the LongTable. Call: Accepts
valid query statements to the data. table i parameter as a call object. We have
provided the function .() to conveniently convert raw R statements into a call for
use in this function.

character Names of assays which should be kept in the LongTable after sub-
setting.

Included to ensure drop can only be set by name.

logical Included for compatibility with the ’[* primitive, it defaults to FALSE
and changing it does nothing.

This function is endomorphic, it always returns a LongTable object.

Value

A LongTable containing only the data specified in the function parameters.

96 [[<-,LongTable,ANY,ANY-method

Examples

Character
merckLongTable['ABT-888"', 'CAOV3']

Numeric
merckLongTable[1, c(1, 2)]
Logical
merckLongTable[, colData(merckLongTable)$sampleid == 'A2058']
Call
merckLongTable[
.(druglid == 'Dasatinib' & drug2id != '5-FU'),

. (sampleid == 'A2058"'),

[[<-,LongTable, ANY,ANY-method
L[<- Method for LongTable Class

Description

Just a wrapper around assay<- for convenience. See ?'assay<-,LongTable, character-method'.

Usage

S4 replacement method for signature 'LongTable,ANY,ANY'
x[[i]] <- value

Arguments
X A LongTable to update.
i The name of the assay to update, must be in assayNames(object).
value A data.frame

Value

A LongTable object with the assay i updated using value.

Examples

merckLongTable[['sensitivity']] <- merckLongTable[['sensitivity']]

$,LongTable-method

97

$,LongTable-method Select an assay from a LongTable object

Description

Select an assay from a LongTable object

Usage

S4 method for signature 'LongTable'
x$name

Arguments

X A LongTable object to retrieve an assay from

name character The name of the assay to get.

Value

data.frame The assay object.

Examples

merckLongTable$sensitivity

$<-,LongTable-method Update an assay from a LongTable object

Description

Update an assay from a LongTable object

Usage

S4 replacement method for signature 'LongTable'
x$name <- value

Arguments
X A LongTable to update an assay for.
name character (1) The name of the assay to update

value A data.frame or data. table to update the assay with.

98 $<-,LongTable-method

Value

Updates the assay name in x with value, returning an invisible NULL.

Examples

merckLongTable$sensitivity <- merckLongTable$sensitivity

Index

x DatalMapper-accessors
DataMapper-accessors, 48
LongTableDataMapper-accessors, 63
TREDataMapper-accessors, 90

x datasets
clevelandSmall_cSet, 26
exampleDataMapper, 52
merckLongTable, 68
nci_TRE_small, 72

5

.CoreSet (CoreSet-class), 43

.DataMapper (DataMapper-class), 49

.LongTableDataMapper

(LongTableDataMapper-class), 65

.TREDataMapper (TREDataMapper-class), 93

.assayToBumpyMatrix, 5

.fitCurve2, 6

.longTableToSummarizedExperiment, 8

[(setOps-immutable), 82

[,LongTable, ANY,ANY, ANY-method, 95

[<- (assignment-immutable), 19

[[(setOps-immutable), 82

[[<-,LongTable, ANY,ANY-method, 96

[[<- (assignment-immutable), 19

$ (setOps-immutable), 82

$,LongTable-method, 97

$<-,LongTable-method, 97

$<- (assignment-immutable), 19

aggregate,data.table-method, 9

aggregate,LongTable-method, 10

aggregate2, 12

amcc, 14

annotation (CoreSet-accessors), 33

annotation,CoreSet-method
(CoreSet-accessors), 33

annotation<- (CoreSet-accessors), 33

annotation<-,CoreSet,list-method
(CoreSet-accessors), 33

as, 15

99

as.long.table, 16
assayCols, 17
assaylndex, 18
assayKeys, 18
assayMap (TREDataMapper-accessors), 90
assayMap, LongTableDataMapper,List-method
(LongTableDataMapper-accessors),
63
assayMap, LongTableDataMapper, list-method
(LongTableDataMapper-accessors),
63
assayMap, LongTableDataMapper-method
(LongTableDataMapper-accessors),
63
assayMap, TREDataMapper,List-method
(TREDataMapper-accessors), 90
assayMap, TREDataMapper, list-method
(TREDataMapper-accessors), 90
assayMap, TREDataMapper-method
(TREDataMapper-accessors), 90
assayMap<- (TREDataMapper-accessors), 90
assayMap<-,LongTableDataMapper,List-methhod
(LongTableDataMapper-accessors),
63
assayMap<-,LongTableDataMapper,list-method
(LongTableDataMapper-accessors),
63
assayMap<-,LongTableDataMapper,list_OR_List-method
(LongTableDataMapper-accessors),
63
assayMap<-, TREDataMapper,List-methhod
(TREDataMapper-accessors), 90
assayMap<-, TREDataMapper, list-method
(TREDataMapper-accessors), 90
assayMap<-, TREDataMapper,list_OR_List-method
(TREDataMapper-accessors), 90
assignment-immutable, 19

buildComboProfiles, 20

100

buildComboProfiles,LongTable-method,
20

buildLongTable, 21

buildLongTable, character-method, 22

buildLongTable,data. frame-method, 22

buildLongTable,list-method, 23

BumpyMatrix: :BumpyMatrix, 16

c.immutable, 24
cardinality (checkColumnCardinality), 25
cat, 83
cellInfo (CoreSet-accessors), 33
cellInfo,CoreSet-method
(CoreSet-accessors), 33
cellInfo<- (CoreSet-accessors), 33
cellInfo<-,CoreSet,data.frame-method
(CoreSet-accessors), 33
cellName, CoreSet-method
(CoreSet-accessors), 33
cellNames (CoreSet-accessors), 33
cellNames<- (CoreSet-accessors), 33
cellNames<-,CoreSet,list-method
(CoreSet-accessors), 33
checkColumnCardinality, 25
checkCsetStructure, 25
clevelandSmall_cSet, 26
colData,LongTableDataMapper-method, 27
colData, TREDataMapper-method, 27
colDataMap (TREDataMapper-accessors), 90
colDataMap,LongTableDataMapper-method
(LongTableDataMapper-accessors),
63
colDataMap, TREDataMapper-method
(TREDataMapper-accessors), 90
colDataMap<- (TREDataMapper-accessors),
90

INDEX

colnames<- (assignment-immutable), 19

connectivityScore, 30

CoreGx-defunct (CoreGx-deprecated), 31

CoreGx-deprecated, 31

CoreSet, 32

CoreSet-accessors, 33

CoreSet-class, 43

CoreSet-utils, 44

CoreSet2, 46

cosinePerm, 47

curation (CoreSet-accessors), 33

curation,CoreSet-method
(CoreSet-accessors), 33

curation<- (CoreSet-accessors), 33

curation<-,CoreSet,list-method
(CoreSet-accessors), 33

DataMapper-accessors, 48
DataMapper-class, 49
datasetType (CoreSet-accessors), 33
datasetType, CoreSet-method
(CoreSet-accessors), 33
datasetType<- (CoreSet-accessors), 33
datasetType<-,CoreSet,character-method
(CoreSet-accessors), 33
dateCreated (CoreSet-accessors), 33
dateCreated, CoreSet-method
(CoreSet-accessors), 33
dateCreated<- (CoreSet-accessors), 33
dateCreated<-,CoreSet,character-method
(CoreSet-accessors), 33
dateCreated<-,CoreSet-method
(CoreSet-accessors), 33
dimnames<- (assignment-immutable), 19
drop_fn_params, 49, 67

colDataMap<-,LongTableDataMapper, list_OR_Listemgdhgdregate, 50

(LongTableDataMapper-accessors),
63

endoaggregate, LongTable-method, 50
exampleDataMapper, 52

colDataMap<-,TREDataMapper,list_OR_List-method

(TREDataMapper-accessors), 90

colDataMap<-LongTableDataMapper,List-method

(LongTableDataMapper-accessors),
63
colDataMap<-TREDataMapper,List-method
(TREDataMapper-accessors), 90
collIDs, 28
collect_fn_params, 28, 67
colMeta, 29

featureInfo (CoreSet-accessors), 33

featureInfo,CoreSet-method
(CoreSet-accessors), 33

featureInfo<- (CoreSet-accessors), 33

featureInfo<-,CoreSet,character,data.frame-method

(CoreSet-accessors), 33

featureInfo<-,CoreSet,character,DataFrame-method

(CoreSet-accessors), 33
fNames (CoreSet-accessors), 33

INDEX

fNames, CoreSet, character-method
(CoreSet-accessors), 33
fNames<- (CoreSet-accessors), 33

fNames<-,CoreSet, character, character-method

(CoreSet-accessors), 33

getIntern, 53
guessMapping, 53, 62, 90

guessMapping,LongTableDataMapper-method,

54
gwe, 55

idCols, 56

immutable, 57

immutable_list-class (immutable), 57
is.immutable (immutable), 57
is.items, 58
is_optim_compatible, 59

lapply,MultiAssayExperiment-method, 59
list_OR_LongTable-class, 60
LongTable, 60

LongTable-accessors, 61
LongTableDataMapper, 61
LongTableDataMapper-accessors, 63
LongTableDataMapper-class, 65

make_optim_function, 66
mcc, 67
mDataNames (CoreSet-accessors), 33
mDataNames, CoreSet-method
(CoreSet-accessors), 33
mDataNames<- (CoreSet-accessors), 33
mDataNames<-,CoreSet,ANY-method
(CoreSet-accessors), 33
mDataNames<-,CoreSet-method
(CoreSet-accessors), 33
merckLongTable, 68
merge.data.table, 69
mergeAssays, 68
mergeAssays,LongTable-method, 69
metaConstruct, 70

metaConstruct,LongTableDataMapper-method

(metaConstruct), 70
metaConstruct, TREDataMapper-method
(metaConstruct), 70
metadata,LongTable-method, 71
metadata<-,LongTable-method, 71
metadataMap (TREDataMapper-accessors),
90

101

metadataMap,LongTableDataMapper-method
(LongTableDataMapper-accessors),
63
metadataMap, TREDataMapper-method
(TREDataMapper-accessors), 90
metadataMap<-
(TREDataMapper-accessors), 90
metadataMap<-,LongTableDataMapper,list_OR_List-method
(LongTableDataMapper-accessors),
63
metadataMap<-,LongTableDataMapper-method
(LongTableDataMapper-accessors),
63
metadataMap<-, TREDataMapper,list_OR_List-method
(TREDataMapper-accessors), 90
metadataMap<-, TREDataMapper-method
(TREDataMapper-accessors), 90
molecularProfiles (CoreSet-accessors),
33
molecularProfiles,CoreSet-method
(CoreSet-accessors), 33
molecularProfiles<-
(CoreSet-accessors), 33
molecularProfiles<-,CoreSet,character,character,matrix-met
(CoreSet-accessors), 33
molecularProfiles<-,CoreSet,character,missing,matrix-metho
(CoreSet-accessors), 33
molecularProfiles<-,CoreSet,missing,missing,list-method
(CoreSet-accessors), 33
molecularProfiles<-,CoreSet,missing,missing,list_OR_MAE-me
(CoreSet-accessors), 33
molecularProfiles<-,CoreSet,missing,missing,MutliAssayExpe
(CoreSet-accessors), 33
molecularProfilesSlot
(CoreSet-accessors), 33
molecularProfilesSlot,CoreSet-method
(CoreSet-accessors), 33
molecularProfilesSlot<-
(CoreSet-accessors), 33
molecularProfilesSlot<-,CoreSet,list-method
(CoreSet-accessors), 33
molecularProfilesSlot<-,CoreSet,list_OR_MAE-method
(CoreSet-accessors), 33
molecularProfilesSlot<-CoreSet,MultiAssayExperiment-method
(CoreSet-accessors), 33
moleculerProfilesSlot,CoreSet-method
(CoreSet-accessors), 33
mutable, 72

102

name (CoreSet-accessors), 33
name, CoreSet-method
(CoreSet-accessors), 33
name<- (CoreSet-accessors), 33
name<-,CoreSet,character-method
(CoreSet-accessors), 33
name<-,CoreSet-method
(CoreSet-accessors), 33
names<- (assignment-immutable), 19
nci_TRE_small, 72

optimizeCoreGx, 73

pertNumber (CoreSet-accessors), 33
pertNumber,CoreSet-method
(CoreSet-accessors), 33
pertNumber<- (CoreSet-accessors), 33
pertNumber<-,CoreSet,array-method
(CoreSet-accessors), 33
phenoInfo (CoreSet-accessors), 33
phenoInfo,CoreSet, character-method
(CoreSet-accessors), 33
phenoInfo<- (CoreSet-accessors), 33

INDEX

rowDataMap (TREDataMapper-accessors), 90
rowDataMap, LongTableDataMapper-method
(LongTableDataMapper-accessors),
63
rowDataMap, TREDataMapper-method
(TREDataMapper-accessors), 90
rowDataMap<- (TREDataMapper-accessors),
90
rowDataMap<-,LongTableDataMapper, list-method
(LongTableDataMapper-accessors),
63
rowDataMap<-,LongTableDataMapper,list_OR_List-method
(LongTableDataMapper-accessors),
63
rowDataMap<-, TREDataMapper, list-method
(TREDataMapper-accessors), 90
rowDataMap<-, TREDataMapper,list_OR_List-method
(TREDataMapper-accessors), 90
rowDataMap<-LongTableDataMapper,List-method
(LongTableDataMapper-accessors),
63
rowDataMap<-TREDataMapper,List-method
(TREDataMapper-accessors), 90

phenoInfo<—,CoreSet,character,data.frame—methngIDs 76

(CoreSet-accessors), 33

phenoInfo<-,CoreSet,character,DataFrame-method

(CoreSet-accessors), 33
print.immutable (immutable), 57

rawdata (DataMapper-accessors), 48

rawdata,DataMapper-method
(DataMapper-accessors), 48

rawdata,LongTableDataMapper-method
(LongTableDataMapper-accessors),
63

rawdata, TREDataMapper-method
(TREDataMapper-accessors), 90

rawdata<- (DataMapper-accessors), 48

rawdata<-,DataMapper, ANY-method
(DataMapper-accessors), 48

rawdata<-,LongTableDataMapper,list-method
(LongTableDataMapper-accessors),
63

rawdata<-, TREDataMapper,list-method
(TREDataMapper-accessors), 90

reindex, 74

reindex,LongTable-method, 74

rowData,lLongTableDataMapper-method, 75

rowData, TREDataMapper-method, 75

rowMeta, 77
rownames<- (assignment-immutable), 19

sampleInfo (CoreSet-accessors), 33
samplelInfo,CoreSet-method
(CoreSet-accessors), 33
sampleInfo<- (CoreSet-accessors), 33
sampleInfo<-,CoreSet,data.frame-method
(CoreSet-accessors), 33
sampleName, CoreSet-method
(CoreSet-accessors), 33
sampleNames (CoreSet-accessors), 33
sampleNames, CoreSet-method
(CoreSet-accessors), 33
sampleNames<- (CoreSet-accessors), 33
sampleNames<-,CoreSet,character-method
(CoreSet-accessors), 33
sampleNames<-,CoreSet,list-method
(CoreSet-accessors), 33
sensitivityInfo, 77
sensitivityInfo,CoreSet,character-method
(CoreSet-accessors), 33
sensitivityInfo,CoreSet,missing-method
(CoreSet-accessors), 33

INDEX 103

sensitivityInfo,CoreSet-method (assignment-immutable), 19
(CoreSet-accessors), 33 subset<-.immutable,
sensitivityInfo<-, 78 (assignment-immutable), 19
sensitivityInfo<-,CoreSet,data.frame-method subsetByFeature (CoreSet-utils), 44
(CoreSet-accessors), 33 subsetByFeature,CoreSet-method
sensitivityInfo<-,CoreSet,missing,data.frame-method (CoreSet-utils), 44
(CoreSet-accessors), 33 subsetBySample (CoreSet-utils), 44
sensitivityMeasures, 78 subsetBySample,CoreSet-method
sensitivityMeasures,CoreSet-method (CoreSet-utils), 44
(CoreSet-accessors), 33 subsetByTreatment (CoreSet-utils), 44
sensitivityMeasures<-, 79 subsetByTreatment,CoreSet-method
sensitivityMeasures<-,CoreSet,character-method (CoreSet-utils), 44
(CoreSet-accessors), 33 summarizeMolecularProfiles, 86
sensitivityProfiles, 80 summarizeSensitivityProfiles, 87

sensitivityProfiles,CoreSet-method)
treamentResponse<-,CoreSet,list-method

(CoreSet-accessors), 33
(CoreSet-accessors), 33

sensitivityProfiles<-, 80 treatmentInfo (CoreSet 3
sensitivityProfiles<—,CoreSet,data.frame—metho'aea mentInfo (CoreSet-accessors),
treatmentInfo,CoreSet-method
(CoreSet-accessors), 33
o (CoreSet-accessors), 33
sensitivityRaw, 81
.. treatmentInfo<- (CoreSet-accessors), 33
sensitivityRaw,CoreSet-method
treatmentInfo<-,CoreSet,data.frame-method
(CoreSet-accessors), 33
.. (CoreSet-accessors), 33
sensitivityRaw<-, 81
L treatmentNames (CoreSet-accessors), 33
sensitivityRaw<-,CoreSet,array-method
treatmentNames,CoreSet-method
(CoreSet-accessors), 33

 tivitvSlot (CoreSet- 3 (CoreSet-accessors), 33
senS} %V} ySlot (CoreSet-accessors), treatmentNames<- (CoreSet-accessors), 33
sensitivitySlot<- (CoreSet-accessors),

3 treatmentNames<-,CoreSet, character-method

T (CoreSet-accessors), 33
sensitivitySlotTolongTable, 82 treatmentResponse (CoreSet-accessors),
sensitvityInfo<-,CoreSet,character,data.frame-method 33

(CoreSet-accessors), 33
sensNumber (CoreSet-accessors), 33

sensNumber, CoreSet-method

treatmentResponse,CoreSet-method
(CoreSet-accessors), 33

treatmentResponse<-
(CoreSet-accessors), 33 (CoreSet-accessors), 33
sensNumber<- (CoreSet-accessors), 33 treatmentResponse<-,CoreSet,list_OR_LongTable-method
sensNumber<-,CoreSet,matrix-method (CoreSet-accessors), 33
.(CoreSet—accessors),33 treatmentResponse<-,CoreSet,LongTable-method
setOps-immutable, 82 (CoreSet-accessors), 33
show, CoreSet-method, 83 TreatmentResponseExperiment, /6, 87
show, LongTable-method, 84 TREDataMapper, 89
show, LongTableDataMapper-method TREDataMapper-accessors, 90
(LongTableDataMapper-class), 65 TREDataMapper-class, 93
show.immutable (immutable), 57
showSigAnnot, 84 updateObject,CoreSet-method, 94
subset, (setOps-immutable), 82 updateObject,LongTable-method, 94

subset,LongTable-method, 85
subset.immutable (setOps-immutable), 82
subset<-.immutable

	.
	.assayToBumpyMatrix
	.fitCurve2
	.longTableToSummarizedExperiment
	aggregate,data.table-method
	aggregate,LongTable-method
	aggregate2
	amcc
	as
	as.long.table
	assayCols
	assayIndex
	assayKeys
	assignment-immutable
	buildComboProfiles
	buildComboProfiles,LongTable-method
	buildLongTable
	buildLongTable,character-method
	buildLongTable,data.frame-method
	buildLongTable,list-method
	c.immutable
	checkColumnCardinality
	checkCsetStructure
	clevelandSmall_cSet
	colData,LongTableDataMapper-method
	colData,TREDataMapper-method
	colIDs
	collect_fn_params
	colMeta
	connectivityScore
	CoreGx-deprecated
	CoreSet
	CoreSet-accessors
	CoreSet-class
	CoreSet-utils
	CoreSet2
	cosinePerm
	DataMapper-accessors
	DataMapper-class
	drop_fn_params
	endoaggregate
	endoaggregate,LongTable-method
	exampleDataMapper
	getIntern
	guessMapping
	guessMapping,LongTableDataMapper-method
	gwc
	idCols
	immutable
	is.items
	is_optim_compatible
	lapply,MultiAssayExperiment-method
	list_OR_LongTable-class
	LongTable
	LongTable-accessors
	LongTableDataMapper
	LongTableDataMapper-accessors
	LongTableDataMapper-class
	make_optim_function
	mcc
	merckLongTable
	mergeAssays
	mergeAssays,LongTable-method
	metaConstruct
	metadata,LongTable-method
	metadata<-,LongTable-method
	mutable
	nci_TRE_small
	optimizeCoreGx
	reindex
	reindex,LongTable-method
	rowData,LongTableDataMapper-method
	rowData,TREDataMapper-method
	rowIDs
	rowMeta
	sensitivityInfo
	sensitivityInfo<-
	sensitivityMeasures
	sensitivityMeasures<-
	sensitivityProfiles
	sensitivityProfiles<-
	sensitivityRaw
	sensitivityRaw<-
	sensitivitySlotToLongTable
	setOps-immutable
	show,CoreSet-method
	show,LongTable-method
	showSigAnnot
	subset,LongTable-method
	summarizeMolecularProfiles
	summarizeSensitivityProfiles
	TreatmentResponseExperiment
	TREDataMapper
	TREDataMapper-accessors
	TREDataMapper-class
	updateObject,CoreSet-method
	updateObject,LongTable-method
	[,LongTable,ANY,ANY,ANY-method
	[[<-,LongTable,ANY,ANY-method
	$,LongTable-method
	$<-,LongTable-method
	Index

