
Package ‘AnnotationDbi’
April 10, 2023

Title Manipulation of SQLite-based annotations in Bioconductor

Description
Implements a user-friendly interface for querying SQLite-based annotation data packages.

biocViews Annotation, Microarray, Sequencing, GenomeAnnotation

URL https://bioconductor.org/packages/AnnotationDbi

Video https://www.youtube.com/watch?v=8qvGNTVz3Ik

BugReports https://github.com/Bioconductor/AnnotationDbi/issues

Version 1.60.2

License Artistic-2.0

Encoding UTF-8

Author Hervé Pagès, Marc Carlson, Seth Falcon, Nianhua Li

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Depends R (>= 2.7.0), methods, utils, stats4, BiocGenerics (>=
0.29.2), Biobase (>= 1.17.0), IRanges

Imports DBI, RSQLite, S4Vectors (>= 0.9.25), stats, KEGGREST

Suggests hgu95av2.db, GO.db, org.Sc.sgd.db, org.At.tair.db, RUnit,
TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db, reactome.db,
AnnotationForge, graph, EnsDb.Hsapiens.v75, BiocStyle, knitr

VignetteBuilder knitr

Collate 00RTobjs.R AllGenerics.R AllClasses.R unlist2.R utils.R SQL.R
FlatBimap.R AnnDbObj-lowAPI.R Bimap.R GOTerms.R
BimapFormatting.R Bimap-envirAPI.R flatten.R
methods-AnnotationDb.R methods-SQLiteConnection.R
methods-geneCentricDbs.R methods-geneCentricDbs-keys.R
methods-ReactomeDb.R methods-OrthologyDb.R loadDb.R
createAnnObjs-utils.R createAnnObjs.NCBIORG_DBs.R
createAnnObjs.NCBICHIP_DBs.R createAnnObjs.ORGANISM_DB.R
createAnnObjs.YEASTCHIP_DB.R createAnnObjs.COELICOLOR_DB.R
createAnnObjs.ARABIDOPSISCHIP_DB.R createAnnObjs.MALARIA_DB.R
createAnnObjs.YEAST_DB.R createAnnObjs.YEASTNCBI_DB.R
createAnnObjs.ARABIDOPSIS_DB.R createAnnObjs.GO_DB.R

1

https://bioconductor.org/packages/AnnotationDbi
https://github.com/Bioconductor/AnnotationDbi/issues

2 R topics documented:

createAnnObjs.KEGG_DB.R createAnnObjs.PFAM_DB.R
AnnDbPkg-templates-common.R AnnDbPkg-checker.R
print.probetable.R makeMap.R inpIDMapper.R
test_AnnotationDbi_package.R

git_url https://git.bioconductor.org/packages/AnnotationDbi

git_branch RELEASE_3_16

git_last_commit eebebb2

git_last_commit_date 2023-03-09

Date/Publication 2023-04-10

R topics documented:

ACCNUM . 3
AnnDbObj-objects . 5
AnnDbPkg-checker . 7
AnnotationDb-objects . 7
Bimap . 10
Bimap-direction . 14
Bimap-envirAPI . 17
Bimap-keys . 18
Bimap-toTable . 20
BimapFormatting . 23
createSimpleBimap . 24
GOFrame . 25
GOID . 26
GOTerms-class . 27
inpIDMapper . 28
KEGGFrame . 31
makeGOGraph . 32
make_eg_to_go_map . 32
organismKEGGFrame . 33
orgPackageName . 34
print.probetable . 34
toggleProbes . 35
toSQLStringSet . 36
unlist2 . 37

Index 39

ACCNUM 3

ACCNUM Descriptions of available values for columns and keytypes.

Description

This manual page enumerates the kinds of data represented by the values returned when the user
calls columns or keytypes

Details

All the possible values for columns and keytypes are listed below. Users will have to actually use
these methods to learn which of the following possible values actually apply in their case.

ACCNUM: GenBank accession numbers

ALIAS: Commonly used gene symbols

ARACYC: KEGG Identifiers for arabidopsis as indicated by aracyc

ARACYCENZYME: Aracyc enzyme names as indicated by aracyc

CHR: Chromosome (deprecated for Bioc > 3.1) For this information you should look at a TxDb or
OrganismDb object and search for an appropriate field like TXCHROM, EXONCHROM or
CDSCHROM. This information can also be retrieved from these objects using an appropriate
range based accesor like transcripts, transcriptsBy etc.

CHRLOC: Chromosome and starting base of associated gene (deprecated for Bioc > 3.1) For this
information you should look at a TxDb or OrganismDb object and search for an appropriate
field like TXSTART etc. or even better use the associated range based accessors like tran-
scripts or transcriptsBy to get back GRanges objects.

CHRLOCEND: Chromosome and ending base of associated gene (deprecated for Bioc > 3.1)
For this information you should look at a TxDb or OrganismDb object and search for an
appropriate field like TXEND etc. or even better use the associated range based accessors like
transcripts or transcriptsBy to get back GRanges objects.

COMMON: Common name

DESCRIPTION: The description of the associated gene

ENSEMBL: The ensembl ID as indicated by ensembl

ENSEMBLPROT: The ensembl protein ID as indicated by ensembl

ENSEMBLTRANS: The ensembl transcript ID as indicated by ensembl

ENTREZID: Entrez gene Identifiers

ENZYME: Enzyme Commission numbers

EVIDENCE: Evidence codes for GO associations with a gene of interest

EVIDENCEALL: Evidence codes for GO (includes less specific terms)

GENENAME: The full gene name

GO: GO Identifiers associated with a gene of interest

GOALL: GO Identifiers (includes less specific terms)

4 ACCNUM

INTERPRO: InterPro identifiers

IPI: IPI accession numbers

MAP: cytoband locations

OMIM: Online Mendelian Inheritance in Man identifiers

ONTOLOGY: For GO Identifiers, which Gene Ontology (BP, CC, or MF)

ONTOLOGYALL: Which Gene Ontology (BP, CC, or MF), (includes less specific terms)

ORF: Yeast ORF Identifiers

PATH: KEGG Pathway Identifiers

PFAM: PFAM Identifiers

PMID: Pubmed Identifiers

PROBEID: Probe or manufacturer Identifiers for a chip package

PROSITE: Prosite Identifiers

REFSEQ: Refseq Identifiers

SGD: Saccharomyces Genome Database Identifiers

SMART: Smart Identifiers

SYMBOL: The official gene symbol

TAIR: TAIR Identifiers

UNIGENE: Unigene Identifiers

UNIPROT: Uniprot Identifiers

To get the latest information about the date stamps and source URLS for the data used to make an
annotation package, please use the metadata method as shown in the example below.

Unless otherwise indicated above, the majority of the data for any one package is taken from the
source indicated by either it’s name (if it’s an org package) OR from the name of it’s associated
org package. So for example, org.Hs.eg.db is using "eg" in the name to indicate that most of the
data in that package comes from NCBI entrez gene based data. And org.At.tair.db uses data that
primarily comes from tair. For chip packages, the relevant information is the organism package that
they depend on. So for example, hgu95av2.db depends on org.Hs.eg.db, and is thus primarily based
on NCBI entrez gene ID information.

Author(s)

Marc Carlson

Examples

library(hgu95av2.db)
List the possible values for columns
columns(hgu95av2.db)
List the possible values for keytypes
keytypes(hgu95av2.db)
get some values back
keys <- head(keys(hgu95av2.db))
keys

AnnDbObj-objects 5

select(hgu95av2.db, keys=keys, columns=c("SYMBOL","PFAM"),
keytype="PROBEID")

More infomation about the dates and original sources for these data:
metadata(hgu95av2.db)

AnnDbObj-objects AnnDbObj objects

Description

The AnnDbObj class is the most general container for storing any kind of SQLite-based annotation
data.

Details

Many classes in AnnotationDbi inherit directly or indirectly from the AnnDbObj class. One impor-
tant particular case is the AnnDbBimap class which is the lowest class in the AnnDbObj hierarchy
to also inherit the Bimap interface.

Accessor-like methods

In the code snippets below, x is an AnnDbObj object.

dbconn(x): Return a connection object to the SQLite DB containing x’s data.

dbfile(x): Return the path (character string) to the SQLite DB (file) containing x’s data.

dbmeta(x, name): Print the value of metadata whose name is ’name’. Also works if x is a DBI-
Connection object.

dbschema(x, file="", show.indices=FALSE): Print the schema definition of the SQLite DB.
Also works if x is a DBIConnection object.
The file argument must be a connection, or a character string naming the file to print to (see
the file argument of the cat function for the details).
The CREATE INDEX statements are not shown by default. Use show.indices=TRUE to get
them.

dbInfo(x): Prints other information about the SQLite DB. Also works if x is a DBIConnection
object.

See Also

dbConnect, dbListTables, dbListFields, dbGetQuery, Bimap

6 AnnDbObj-objects

Examples

library("hgu95av2.db")

dbconn(hgu95av2ENTREZID) # same as hgu95av2_dbconn()
dbfile(hgu95av2ENTREZID) # same as hgu95av2_dbfile()

dbmeta(hgu95av2_dbconn(), "ORGANISM")
dbmeta(hgu95av2_dbconn(), "DBSCHEMA")
dbmeta(hgu95av2_dbconn(), "DBSCHEMAVERSION")

library("DBI")
dbListTables(hgu95av2_dbconn()) #lists all tables on connection

If you use dbSendQuery instead of dbGetQuery
(NOTE: for ease of use, this is defintitely NOT reccomended)
Then you may need to know how to list results objects
dbListResults(hgu95av2_dbconn()) #for listing results objects

You can also list the fields by using this connection
dbListFields(hgu95av2_dbconn(), "probes")
dbListFields(hgu95av2_dbconn(), "genes")
dbschema(hgu95av2ENTREZID) # same as hgu95av2_dbschema()
According to the schema, the probes._id column references the genes._id
column. Note that in all tables, the "_id" column is an internal id with
no biological meaning (provided for allowing efficient joins between
tables).
The information about the probe to gene mapping is in probes:
dbGetQuery(hgu95av2_dbconn(), "SELECT * FROM probes LIMIT 10")
This mapping is in fact the ENTREZID map:
toTable(hgu95av2ENTREZID)[1:10,] # only relevant columns are retrieved

dbInfo(hgu95av2GO) # same as hgu95av2_dbInfo()

##Advanced example:
##Sometimes you may wish to join data from across multiple databases at
##once:
In the following example we will attach the GO database to the
hgu95av2 database, and then grab information from separate tables
in each database that meet a common criteria.
library(hgu95av2.db)
library("GO.db")
attachSql <- paste('ATTACH "', GO_dbfile(), '" as go;', sep = "")
dbGetQuery(hgu95av2_dbconn(), attachSql)
sql <- 'SELECT DISTINCT a.go_id AS "hgu95av2.go_id",

a._id AS "hgu95av2._id",
g.go_id AS "GO.go_id", g._id AS "GO._id",
g.term, g.ontology, g.definition
FROM go_bp_all AS a, go.go_term AS g
WHERE a.go_id = g.go_id LIMIT 10;'

data <- dbGetQuery(hgu95av2_dbconn(), sql)
data

AnnDbPkg-checker 7

For illustration purposes, the internal id "_id" and the "go_id"
from both tables is included in the output. This makes it clear
that the "go_ids" can be used to join these tables but the internal
ids can NOT. The internal IDs (which are always shown as _id) are
suitable for joins within a single database, but cannot be used
across databases.

AnnDbPkg-checker Check the SQL data contained in an SQLite-based annotation package

Description

Check the SQL data contained in an SQLite-based annotation package.

Usage

checkMAPCOUNTS(pkgname)

Arguments

pkgname The name of the SQLite-based annotation package to check.

Author(s)

H. Pagès

See Also

AnnDbPkg-maker

Examples

checkMAPCOUNTS("org.Sc.sgd.db")

AnnotationDb-objects AnnotationDb objects and their progeny, methods etc.

8 AnnotationDb-objects

Description

AnnotationDb is the virtual base class for all annotation packages. It contain a database connection
and is meant to be the parent for a set of classes in the Bioconductor annotation packages. These
classes will provide a means of dispatch for a widely available set of select methods and thus
allow the easy extraction of data from the annotation packages.

select, columns and keys are used together to extract data from an AnnotationDb object (or any
object derived from the parent class). Examples of classes derived from the AnnotationDb object
include (but are not limited to): ChipDb, OrgDb GODb, OrthologyDb and ReactomeDb.

columns shows which kinds of data can be returned for the AnnotationDb object.

keytypes allows the user to discover which keytypes can be passed in to select or keys and the
keytype argument.

keys returns keys for the database contained in the AnnotationDb object . This method is already
documented in the keys manual page but is mentioned again here because it’s usage with select is
so intimate. By default it will return the primary keys for the database, but if used with the keytype
argument, it will return the keys from that keytype.

select will retrieve the data as a data.frame based on parameters for selected keys columns and
keytype arguments. Users should be warned that if you call select and request columns that
have multiple matches for your keys, select will return a data.frame with one row for each possible
match. This has the effect that if you request multiple columns and some of them have a many to
one relationship to the keys, things will continue to multiply accordingly. So it’s not a good idea to
request a large number of columns unless you know that what you are asking for should have a one
to one relationship with the initial set of keys. In general, if you need to retrieve a column (like GO)
that has a many to one relationship to the original keys, it is most useful to extract that separately.

mapIds gets the mapped ids (column) for a set of keys that are of a particular keytype. Usually
returned as a named character vector.

saveDb will take an AnnotationDb object and save the database to the file specified by the path
passed in to the file argument.

loadDb takes a .sqlite database file as an argument and uses data in the metadata table of that file to
return an AnnotationDb style object of the appropriate type.

species shows the genus and species label currently attached to the AnnotationDb objects database.

dbfile gets the database file associated with an object.

dbconn gets the datebase connection associated with an object.

taxonomyId gets the taxonomy ID associated with an object (if available).

Usage

columns(x)
keytypes(x)
keys(x, keytype, ...)
select(x, keys, columns, keytype, ...)
mapIds(x, keys, column, keytype, ..., multiVals)
saveDb(x, file)
loadDb(file, packageName=NA)

AnnotationDb-objects 9

Arguments

x the AnnotationDb object. But in practice this will mean an object derived from
an AnnotationDb object such as a OrgDb or ChipDb object.

keys the keys to select records for from the database. All possible keys are returned
by using the keys method.

columns the columns or kinds of things that can be retrieved from the database. As with
keys, all possible columns are returned by using the columns method.

keytype the keytype that matches the keys used. For the select methods, this is used to
indicate the kind of ID being used with the keys argument. For the keys method
this is used to indicate which kind of keys are desired from keys

column the column to search on (for mapIds). Different from columns in that it can only
have a single element for the value

... other arguments. These include:

pattern: the pattern to match (used by keys)
column: the column to search on. This is used by keys and is for when the

thing you want to pattern match is different from the keytype, or when you
want to simply want to get keys that have a value for the thing specified by
the column argument.

fuzzy: TRUE or FALSE value. Use fuzzy matching? (this is used with pattern
by the keys method)

multiVals What should mapIds do when there are multiple values that could be returned?
Options include:

first: This value means that when there are multiple matches only the 1st thing
that comes back will be returned. This is the default behavior

list: This will just returns a list object to the end user
filter: This will remove all elements that contain multiple matches and will

therefore return a shorter vector than what came in whenever some of the
keys match more than one value

asNA: This will return an NA value whenever there are multiple matches
CharacterList: This just returns a SimpleCharacterList object
FUN: You can also supply a function to the multiVals argument for custom

behaviors. The function must take a single argument and return a single
value. This function will be applied to all the elements and will serve a
’rule’ that for which thing to keep when there is more than one element. So
for example this example function will always grab the last element in each
result: last <- function(x){x[[length(x)]]}

file an sqlite file path. A string the represents the full name you want for your
sqlite database and also where to put it.

packageName for internal use only

Value

keys,columns and keytypes each return a character vector or possible values. select returns a
data.frame.

10 Bimap

Author(s)

Marc Carlson

See Also

keys, dbConnect, dbListTables, dbListFields, dbGetQuery, Bimap

Examples

require(hgu95av2.db)
display the columns
columns(hgu95av2.db)
get the 1st 6 possible keys
keys <- head(keys(hgu95av2.db))
keys
lookup gene symbol and gene type for the 1st 6 keys
select(hgu95av2.db, keys=keys, columns = c("SYMBOL","GENETYPE"))

get keys based on RefSeq
keyref <- head(keys(hgu95av2.db, keytype="REFSEQ"))
keyref
list supported key types
keytypes(hgu95av2.db)
lookup gene symbol and refseq ID based on refseq IDs by setting
the keytype to "REFSEQ" and passing in refseq keys:
select(hgu95av2.db, keys=keyref, columns = c("SYMBOL","REFSEQ"),

keytype="REFSEQ")

keys <- head(keys(hgu95av2.db, 'ENTREZID'))
get a default result (captures only the 1st element)
mapIds(hgu95av2.db, keys=keys, column='ALIAS', keytype='ENTREZID')
or use a different option
mapIds(hgu95av2.db, keys=keys, column='ALIAS', keytype='ENTREZID',

multiVals="CharacterList")
Or define your own function
last <- function(x){x[[length(x)]]}
mapIds(hgu95av2.db, keys=keys, column='ALIAS', keytype='ENTREZID',

multiVals=last)

For other ways to access the DB, you can use dbfile() or dbconn() to extract
dbconn(hgu95av2.db)
dbfile(hgu95av2.db)

Try to retrieve an associated taxonomyId
taxonomyId(hgu95av2.db)

Bimap Bimap objects and the Bimap interface

Bimap 11

Description

What we usually call "annotation maps" are in fact Bimap objects. In the following sections we
present the bimap concept and the Bimap interface as it is defined in AnnotationDbi.

Display methods

In the code snippets below, x is a Bimap object.

show(x): Display minimal information about Bimap object x.

summary(x): Display a little bit more information about Bimap object x.

The bimap concept

A bimap is made of:

- 2 sets of objects: the left objects and the right objects.
All the objects have a name and this name is unique in
each set (i.e. in the left set and in the right set).
The names of the left (resp. right) objects are called the
left (resp. right) keys or the Lkeys (resp. the Rkeys).

- Any number of links (edges) between the left and right
objects. Note that the links can be tagged. In our model,
for a given bimap, either none or all the links are tagged.

In other words, a bimap is a bipartite graph.

Here are some examples:

1. bimap B1:

4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"

Links (edges):
"a" <--> "A"
"a" <--> "B"
"b" <--> "A"
"d" <--> "C"

Note that:
- There can be any number of links starting from or ending
at a given object.

- The links in this example are untagged.

12 Bimap

2. bimap B2:

4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"

Tagged links (edges):
"a" <-"x"-> "A"
"a" <-"y"-> "B"
"b" <-"x"-> "A"
"d" <-"x"-> "C"
"d" <-"y"-> "C"

Note that there are 2 links between objects "d" and "C":
1 with tag "x" and 1 with tag "y".

Flat representation of a bimap

The flat representation of a bimap is a data frame. For example, for B1, it is:

left right
a A
a B
b A
d C

If in addition the right objects have 1 multivalued attribute, for example, a numeric vector:

A <-- c(1.2, 0.9)
B <-- character(0)
C <-- -1:1

then the flat representation of B1 becomes:

left right Rattrib1
a A 1.2
a A 0.9
a B NA
b A 1.2
b A 0.9
d C -1
d C 0
d C 1

Note that now the number of rows is greater than the number of links!

Bimap 13

AnnDbBimap and FlatBimap objects

An AnnDbBimap object is a bimap whose data are stored in a data base. A FlatBimap object is
a bimap whose data (left keys, right keys and links) are stored in memory (in a data frame for
the links). Conceptually, AnnDbBimap and FlatBimap objects are the same (only their internal
representation differ) so it’s natural to try to define a set of methods that make sense for both (so
they can be manipulated in a similar way). This common interface is the Bimap interface.

Note that both AnnDbBimap and FlatBimap objects have a read-only semantic: the user can subset
them but cannot change their data.

The "flatten" generic

flatten(x) converts AnnDbBimap object x into FlatBimap
object y with no loss of information

Note that a FlatBimap object can’t be converted into an AnnDbBimap object (well, in theory maybe
it could be, but for now the data bases we use to store the data of the AnnDbBimap objects are
treated as read-only). This conversion from AnnDbBimap to FlatBimap is performed by the "flat-
ten" generic function (with methods for AnnDbBimap objects only).

Property0

The "flatten" generic plays a very useful role when we need to understand or explain exactly what
a given Bimap method f will do when applied to an AnnDbBimap object. It’s generally easier to
explain what it does on a FlatBimap object and then to just say "and it does the same thing on an
AnnDbBimap object". This is exactly what Property0 says:

for any AnnDbBimap object x, f(x) is expected to be
indentical to f(flatten(x))

Of course, this implies that the f method for AnnDbBimap objects return the same type of object
than the f method for FlatBimap objects. In this sense, the "revmap" and "subset" Bimap methods
are particular because they are expected to return an object of the same class as their argument x, so
f(x) can’t be identical to f(flatten(x)). For these methods, Property0 says:

for any AnnDbBimap object x, flatten(f(x)) is expected to
be identical to f(flatten(x))

Note to the AnnotationDbi maintainers/developpers: the checkProperty0 function (AnnDbPkg-
checker.R file) checks that Property0 is satisfied on all the AnnDbBimap objects defined in a given
package (FIXME: checkProperty0 is currently broken).

The Bimap interface in AnnotationDbi

The full documentation for the methods of the Bimap interface is splitted into 4 man pages: Bimap-
direction, Bimap-keys and Bimap-toTable.

14 Bimap-direction

See Also

Bimap-direction, Bimap-keys, Bimap-toTable, BimapFormatting, Bimap-envirAPI

Examples

library(hgu95av2.db)
ls(2)
hgu95av2GO # calls the "show" method
summary(hgu95av2GO)
hgu95av2GO2PROBE # calls the "show" method
summary(hgu95av2GO2PROBE)

Bimap-direction Methods for getting/setting the direction of a Bimap object, and undi-
rected methods for getting/counting/setting its keys

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

They are divided in 2 groups: (1) methods for getting or setting the direction of a Bimap object and
(2) methods for getting, counting or setting the left or right keys (or mapped keys only) of a Bimap
object. Note that all the methods in group (2) are undirected methods i.e. what they return does
NOT depend on the direction of the map (more on this below).

Usage

Getting or setting the direction of a Bimap object
direction(x)
direction(x) <- value
revmap(x, ...)

Getting, counting or setting the left or right keys (or mapped
keys only) of a Bimap object
Lkeys(x)
Rkeys(x)
Llength(x)
Rlength(x)
mappedLkeys(x)
mappedRkeys(x)
count.mappedLkeys(x)
count.mappedRkeys(x)
Lkeys(x) <- value
Rkeys(x) <- value
S4 method for signature 'Bimap'
subset(x, Lkeys = NULL, Rkeys = NULL, drop.invalid.keys = FALSE)
S4 method for signature 'AnnDbBimap'

Bimap-direction 15

subset(x, Lkeys = NULL, Rkeys = NULL, drop.invalid.keys = FALSE,
objName = NULL)

Arguments

x A Bimap object.

value A single integer or character string indicating the new direction in direction(x)
<- value. A character vector containing the new keys (must be a subset of the
current keys) in Lkeys(x) <- value and Rkeys(x) <- value.

Lkeys, Rkeys, drop.invalid.keys, objName, ...

Extra arguments for revmap and subset.
Extra argument for revmap can be:

objName The name to give to the reversed map (only supported if x is an An-
nDbBimap object).

Extra arguments for subset can be:

Lkeys The new Lkeys.
Rkeys The new Rkeys.
drop.invalid.keys If drop.invalid.keys=FALSE (the default), an error will

be raised if the new Lkeys or Rkeys contain invalid keys i.e. keys that
don’t belong to the current Lkeys or Rkeys. If drop.invalid.keys=TRUE,
invalid keys are silently dropped.

objName The name to give to the submap (only supported if x is an AnnDb-
Bimap object).

Details

All Bimap objects have a direction which can be left-to-right (i.e. the mapping goes from the left
keys to the right keys) or right-to-left (i.e. the mapping goes from the right keys to the left keys).
A Bimap object x that maps from left to right is considered to be a direct map. Otherwise it is
considered to be an indirect map (when it maps from right to left).

direction returns 1 on a direct map and -1 otherwise.

The direction of x can be changed with direction(x) <- value where value must be 1 or -1. An
easy way to reverse a map (i.e. to change its direction) is to do direction(x) <- - direction(x),
or, even better, to use revmap(x) which is actually the recommended way for doing it.

The Lkeys and Rkeys methods return respectively the left and right keys of a Bimap object. Unlike
the keys method (see ?keys for more information), these methods are direction-independent i.e.
what they return does NOT depend on the direction of the map. Such methods are also said to be
"undirected methods" and methods like the keys method are said to be "directed methods".

All the methods described below are also "undirected methods".

Llength(x) and Rlength(x) are equivalent to (but more efficient than) length(Lkeys(x)) and
length(Rkeys(x)), respectively.

The mappedLkeys (or mappedRkeys) method returns the left keys (or right keys) that are mapped to
at least one right key (or one left key).

16 Bimap-direction

count.mappedLkeys(x) and count.mappedRkeys(x) are equivalent to (but more efficient than)
length(mappedLkeys(x)) and length(mappedRkeys(x)), respectively. These functions give
overall summaries, if you want to know how many Rkeys correspond to a given Lkey you can
use the nhit function.

Lkeys(x) <- value and Rkeys(x) <- value are the undirected versions of keys(x) <- value (see
?keys for more information) and subset(x, Lkeys=new_Lkeys, Rkeys=new_Rkeys) is provided
as a convenient way to reduce the sets of left and right keys in one single function call.

Value

1L or -1L for direction.

A Bimap object of the same subtype as x for revmap and subset.

A character vector for Lkeys, Rkeys, mappedLkeys and mappedRkeys.

A single non-negative integer for Llength, Rlength, count.mappedLkeys and count.mappedRkeys.

Author(s)

H. Pagès

See Also

Bimap, Bimap-keys, BimapFormatting, Bimap-envirAPI, nhit

Examples

library(hgu95av2.db)
ls(2)
x <- hgu95av2GO
x
summary(x)
direction(x)

length(x)
Llength(x)
Rlength(x)

keys(x)[1:4]
Lkeys(x)[1:4]
Rkeys(x)[1:4]

count.mappedkeys(x)
count.mappedLkeys(x)
count.mappedRkeys(x)

mappedkeys(x)[1:4]
mappedLkeys(x)[1:4]
mappedRkeys(x)[1:4]

y <- revmap(x)
y

Bimap-envirAPI 17

summary(y)
direction(y)

length(y)
Llength(y)
Rlength(y)

keys(y)[1:4]
Lkeys(y)[1:4]
Rkeys(y)[1:4]

etc...

Get rid of all unmapped keys (left and right)
z <- subset(y, Lkeys=mappedLkeys(y), Rkeys=mappedRkeys(y))

Bimap-envirAPI Environment-like API for Bimap objects

Description

These methods allow the user to manipulate any Bimap object as if it was an environment. This
environment-like API is provided for backward compatibility with the traditional environment-
based maps.

Usage

ls(name, pos = -1L, envir = as.environment(pos), all.names = FALSE,
pattern, sorted = TRUE)

exists(x, where, envir, frame, mode, inherits)
get(x, pos, envir, mode, inherits)
#x[[i]]
#x$name

Converting to a list
mget(x, envir, mode, ifnotfound, inherits)
eapply(env, FUN, ..., all.names, USE.NAMES)

Additional convenience method
sample(x, size, replace=FALSE, prob=NULL, ...)

Arguments

name A Bimap object for ls. A key as a literal character string or a name (possibly
backtick quoted) for x$name.

pos, all.names, USE.NAMES, where, frame, mode, inherits

Ignored.

18 Bimap-keys

envir Ignored for ls. A Bimap object for mget, get and exists.

pattern An optional regular expression. Only keys matching ’pattern’ are returned.

x The key(s) to search for for exists, get and mget. A Bimap object for [[and
x$name. A Bimap object or an environment for sample.

i Single key specifying the map element to extract.

ifnotfound A value to be used if the key is not found. Only NA is currently supported.

env A Bimap object.

FUN The function to be applied (see original eapply for environments for the details).

... Optional arguments to FUN.

size Non-negative integer giving the number of map elements to choose.

replace Should sampling be with replacement?

prob A vector of probability weights for obtaining the elements of the map being
sampled.

sorted logical(1). When TRUE (default), return primary keys in sorted order.

See Also

ls, exists, get, mget, eapply, sample, BimapFormatting, Bimap

Examples

library(hgu95av2.db)
x <- hgu95av2CHRLOC

ls(x)[1:3]
exists(ls(x)[1], x)
exists("titi", x)
get(ls(x)[1], x)
x[[ls(x)[1]]]
x$titi # NULL

mget(ls(x)[1:3], x)
eapply(x, length)

sample(x, 3)

Bimap-keys Methods for manipulating the keys of a Bimap object

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

Bimap-keys 19

Usage

#length(x)
isNA(x)
mappedkeys(x)
count.mappedkeys(x)
keys(x) <- value
#x[i]

Arguments

x A Bimap object. If the method being caled is keys(x), then x can also be a
AnnotationDb object or one of that objects progeny.

value A character vector containing the new keys (must be a subset of the current
keys).

i A character vector containing the keys of the map elements to extract.

Details

keys(x) returns the set of all valid keys for map x. For example, keys(hgu95av2GO) is the set of
all probe set IDs for chip hgu95av2 from Affymetrix.

Please Note that in addition to Bimap objest, keys(x) will also work for AnnotationDb objects and
related objects such as OrgDb and ChipDb objects.

Note also that the double bracket operator [[for Bimap objects is guaranteed to work only with a
valid key and will raise an error if the key is invalid. (See ?`Bimap-envirAPI` for more information
about this operator.)

length(x) is equivalent to (but more efficient than) length(keys(x)).

A valid key is not necessarily mapped ([[will return an NA on an unmapped key).

isNA(x) returns a logical vector of the same length as x where the TRUE value is used to mark keys
that are NOT mapped and the FALSE value to mark keys that ARE mapped.

mappedkeys(x) returns the subset of keys(x) where only mapped keys were kept.

count.mappedkeys(x) is equivalent to (but more efficient than) length(mappedkeys(x)).

Two (almost) equivalent forms of subsetting a Bimap object are provided: (1) by setting the keys
explicitely and (2) by using the single bracket operator [for Bimap objects. Let’s say the user wants
to restrict the mapping to the subset of valid keys stored in character vector mykeys. This can be
done either with keys(x) <- mykeys (form (1)) or with y <- x[mykeys] (form (2)). Please note
that form (1) alters object x in an irreversible way (the original keys are lost) so form (2) should be
preferred.

All the methods described on this pages are "directed methods" i.e. what they return DOES depend
on the direction of the Bimap object that they are applied to (see ?direction for more information
about this).

Value

A character vector for keys and mappedkeys.

A single non-negative integer for length and count.mappedkeys.

20 Bimap-toTable

A logical vector for isNA.

A Bimap object of the same subtype as x for x[i].

Author(s)

H. Pagès

See Also

Bimap, Bimap-envirAPI, Bimap-toTable, BimapFormatting, AnnotationDb, select, columns

Examples

library(hgu95av2.db)
x <- hgu95av2GO
x
length(x)
count.mappedkeys(x)
x[1:3]
links(x[1:3])

Keep only the mapped keys
keys(x) <- mappedkeys(x)
length(x)
count.mappedkeys(x)
x # now it is a submap

The above subsetting can also be achieved with
x <- hgu95av2GO[mappedkeys(hgu95av2GO)]

mappedkeys() and count.mappedkeys() also work with an environment
or a list
z <- list(k1=NA, k2=letters[1:4], k3="x")
mappedkeys(z)
count.mappedkeys(z)

retrieve the set of primary keys for the ChipDb object named 'hgu95av2.db'
keys <- keys(hgu95av2.db)
head(keys)

Bimap-toTable Methods for manipulating a Bimap object in a data-frame style

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

Bimap-toTable 21

Usage

Extract all the columns of the map (links + right attributes)
toTable(x, ...)
nrow(x)
ncol(x)
#dim(x)
S4 method for signature 'FlatBimap'

head(x, ...)
S4 method for signature 'FlatBimap'

tail(x, ...)

Extract only the links of the map
links(x)
count.links(x)
nhit(x)

Col names and col metanames
colnames(x, do.NULL=TRUE, prefix="col")
colmetanames(x)
Lkeyname(x)
Rkeyname(x)
keyname(x)
tagname(x)
Rattribnames(x)
Rattribnames(x) <- value

Arguments

x A Bimap object (or a list or an environment for nhit).

... Further arguments to be passed to or from other methods (see head or tail for
the details).

do.NULL Ignored.

prefix Ignored.

value A character vector containing the names of the new right attributes (must be a
subset of the current right attribute names) or NULL.

Details

toTable(x) turns Bimap object x into a data frame (see section "Flat representation of a bimap"
in ?Bimap for a short introduction to this concept). For simple maps (i.e. no tags and no right
attributes), the resulting data frame has only 2 columns, one for the left keys and one for the right
keys, and each row in the data frame represents a link (or edge) between a left and a right key.
For maps with tagged links (i.e. a tag is associated to each link), toTable(x) has one additional
colmun for the tags and there is still one row per link. For maps with right attributes (i.e. a set of
attributes is associated to each right key), toTable(x) has one additional colmun per attribute. So
for example if x has tagged links and 2 right attributes, toTable(x) will have 5 columns: one for
the left keys, one for the right keys, one for the tags, and one for each right attribute (always the

22 Bimap-toTable

rightmost columns). Note that if at least one of the right attributes is multivalued then more than 1
row can be needed to represent the same link so the number of rows in toTable(x) can be strictly
greater than the number of links in the map.

nrow(x) is equivalent to (but more efficient than) nrow(toTable(x)).

ncol(x) is equivalent to (but more efficient than) ncol(toTable(x)).

colnames(x) is equivalent to (but more efficient than) colnames(toTable(x)). Columns are
named accordingly to the names of the SQL columns where the data are coming from. An im-
portant consequence of this that they are not necessarily unique.

colmetanames(x) returns the metanames for the column of x that are not right attributes. Valid
column metanames are "Lkeyname", "Rkeyname" and "tagname".

Lkeyname, Rkeyname, tagname and Rattribnames return the name of the column (or columns)
containing the left keys, the right keys, the tags and the right attributes, respectively.

Like toTable(x), links(x) turns x into a data frame but the right attributes (if any) are dropped.
Note that dropping the right attributes produces a data frame that has eventually less columns than
toTable(x) and also eventually less rows because now exactly 1 row is needed to represent 1 link.

count.links(x) is equivalent to (but more efficient than) nrow(links(x)).

nhit(x) returns a named integer vector indicating the number of "hits" for each key in x i.e. the
number of links that start from each key.

Value

A data frame for toTable and links.

A single integer for nrow, ncol and count.links.

A character vector for colnames, colmetanames and Rattribnames.

A character string for Lkeyname, Rkeyname and tagname.

A named integer vector for nhit.

Author(s)

H. Pagès

See Also

Bimap, BimapFormatting, Bimap-envirAPI

Examples

library(GO.db)
x <- GOSYNONYM
x
toTable(x)[1:4,]
toTable(x["GO:0007322"])
links(x)[1:4,]
links(x["GO:0007322"])

nrow(x)

BimapFormatting 23

ncol(x)
dim(x)
colnames(x)
colmetanames(x)
Lkeyname(x)
Rkeyname(x)
tagname(x)
Rattribnames(x)

links(x)[1:4,]
count.links(x)

y <- GOBPCHILDREN
nhy <- nhit(y) # 'nhy' is a named integer vector
identical(names(nhy), keys(y)) # TRUE
table(nhy)
sum(nhy == 0) # number of GO IDs with no children
names(nhy)[nhy == max(nhy)] # the GO ID(s) with the most direct children

Some sanity check
sum(nhy) == count.links(y) # TRUE

Changing the right attributes of the GOSYNONYM map (advanced
users only)
class(x) # GOTermsAnnDbBimap
as.list(x)[1:3]
colnames(x)
colmetanames(x)
tagname(x) # untagged map
Rattribnames(x)
Rattribnames(x) <- Rattribnames(x)[3:1]
colnames(x)
class(x) # AnnDbBimap
as.list(x)[1:3]

BimapFormatting Formatting a Bimap as a list or character vector

Description

These functions format a Bimap as a list or character vector.

Usage

Formatting as a list
as.list(x, ...)

Formatting as a character vector
#as.character(x, ...)

24 createSimpleBimap

Arguments

x A Bimap object.

... Further arguments are ignored.

Author(s)

H. Pagès

See Also

Bimap, Bimap-envirAPI

Examples

library(hgu95av2.db)
as.list(hgu95av2CHRLOC)[1:9]
as.list(hgu95av2ENTREZID)[1:9]
as.character(hgu95av2ENTREZID)[1:9]

createSimpleBimap Creates a simple Bimap from a SQLite database in an situation that is
external to AnnotationDbi

Description

This function allows users to easily make a simple Bimap object for extra tables etc that they may
wish to add to their annotation packages. For most Bimaps, their definition is stored inside of
AnnotationDbi. The addition of this function is to help ensure that this does not become a limitation,
by allowing simple extra Bimaps to easily be defined external to AnnotationDbi. Usually, this
will be done in the zzz.R source file of a package so that these extra mappings can be seemlessly
integrated with the rest of the package. For now, this function assumes that users will want to use
data from just one table.

Usage

createSimpleBimap(tablename, Lcolname, Rcolname, datacache, objName,
objTarget)

Arguments

tablename The name of the database table to grab the mapping information from.

Lcolname The field name from the database table. These will become the Lkeys in the
final mapping.

Rcolname The field name from the database table. These will become the Rkeys in the
final mapping.

GOFrame 25

datacache The datacache object should already exist for every standard Annotation pack-
age. It is not exported though, so you will have to access it with ::: . It is needed
to provide the connection information to the function.

objName This is the name of the mapping.

objTarget This is the name of the thing the mapping goes with. For most uses, this will
mean the package name that the mapping belongs with.

Examples

##You simply have to call this function to create a new mapping. For
##example, you could have created a mapping between the gene_name and
##the symbols fields from the gene_info table contained in the hgu95av2
##package by doing this:
library(hgu95av2.db)
hgu95av2NAMESYMBOL <- createSimpleBimap("gene_info",

"gene_name",
"symbol",
hgu95av2.db:::datacache,
"NAMESYMBOL",
"hgu95av2.db")

GOFrame GOFrame and GOAllFrame objects

Description

These objects each contain a data frame which is required to be composed of 3 columns. The 1st
column are GO IDs. The second are evidence codes and the 3rd are the gene IDs that match to
the GO IDs using those evidence codes. There is also a slot for the organism that these anotations
pertain to.

Details

The GOAllFrame object can only be generated from a GOFrame object and its contructor method
does this automatically from a GOFrame argument. The purpose of these objects is to create a safe
way for annotation data about GO from non-traditional sources to be used for analysis packages
like GSEABase and eventually GOstats.

Examples

Make up an example
genes = c(1,10,100)
evi = c("ND","IEA","IDA")
GOIds = c("GO:0008150","GO:0008152","GO:0001666")
frameData = data.frame(cbind(GOIds,evi,genes))

library(AnnotationDbi)

26 GOID

frame=GOFrame(frameData,organism="Homo sapiens")
allFrame=GOAllFrame(frame)

getGOFrameData(allFrame)

GOID Descriptions of available values for columns and keytypes for
GO.db.

Description

This manual page enumerates the kinds of data represented by the values returned when the user
calls columns or keytypes

Details

All the possible values for columns and keytypes are listed below.

GOID: GO Identifiers

DEFINITION: The definition of a GO Term

ONTOLOGY: Which of the three Gene Ontologies (BP, CC, or MF)

TERM: The actual GO term

To get the latest information about the date stamps and source URLS for the data used to make an
annotation package, please use the metadata method as shown in the example below.

Author(s)

Marc Carlson

Examples

library(GO.db)
List the possible values for columns
columns(GO.db)
List the possible values for keytypes
keytypes(GO.db)
get some values back
keys <- head(keys(GO.db))
keys
select(GO.db, keys=keys, columns=c("TERM","ONTOLOGY"),
keytype="GOID")

More infomation about the dates and original sources for these data:
metadata(GO.db)

GOTerms-class 27

GOTerms-class Class "GOTerms"

Description

A class to represent Gene Ontology nodes

Objects from the Class

Objects can be created by calls of the form GOTerms(GOId, term, ontology, definition, synonym,
secondary). GOId, term, and ontology are required.

Slots

GOID: Object of class "character" A character string for the GO id of a primary node.

Term: Object of class "character" A character string that defines the role of gene product corre-
sponding to the primary GO id.

Ontology: Object of class "character" Gene Ontology category. Can be MF - molecular func-
tion, CC - cellular component, or BP - biological process.

Definition: Object of class "character" Further definition of the ontology of the primary GO
id.

Synonym: Object of class "character" other ontology terms that are considered to be synonymous
to the primary term attached to the GO id (e.g. "type I programmed cell death" is a synonym
of "apoptosis"). Synonymous here can mean that the synonym is an exact synonym of the
primary term, is related to the primary term, is broader than the primary term, is more precise
than the primary term, or name is related to the term, but is not exact, broader or narrower.

Secondary: Object of class "character" GO ids that are secondary to the primary GO id as results
of merging GO terms so that One GO id becomes the primary GO id and the rest become the
secondary.

Methods

GOID signature(object = "GOTerms"): The get method for slot GOID.

Term signature(object = "GOTerms"): The get method for slot Term.

Ontology signature(object = "GOTerms"): The get method for slot Ontology.

Definition signature(object = "GOTerms"): The get method for slot Definition.

Synonym signature(object = "GOTerms"): The get method for slot Synonym.

Secondary signature(object = "GOTerms"): The get method for slot Secondary.

show signature(x = "GOTerms"): The method for pretty print.

Note

GOTerms objects are used to represent primary GO nodes in the SQLite-based annotation data
package GO.db

28 inpIDMapper

References

http://www.geneontology.org/

See Also

makeGOGraph shows how to make GO mappings into graphNEL objects.

Examples

gonode <- new("GOTerms", GOID="GO:1234567", Term="Test", Ontology="MF",
Definition="just for testing")

GOID(gonode)
Term(gonode)
Ontology(gonode)

##Or you can just use these methods on a GOTermsAnnDbBimap
Not run: ##I want to show an ex., but don't want to require GO.db

require(GO.db)
FirstTenGOBimap <- GOTERM[1:10] ##grab the 1st ten
Term(FirstTenGOBimap)

##Or you can just use GO IDs directly
ids = keys(FirstTenGOBimap)
Term(ids)

End(Not run)

inpIDMapper Convenience functions for mapping IDs through an appropriate set of
annotation packages

Description

These are a set of convenience functions that attempt to take a list of IDs along with some addional
information about what those IDs are, what type of ID you would like them to be, as well as some
information about what species they are from and what species you would like them to be from and
then attempts to the simplest possible conversion using the organism and possible inparanoid anno-
tation packages. By default, this function will drop ambiguous matches from the results. Please see
the details section for more information about the parameters that can affect this. If a more com-
plex treatment of how to handle multiple matches is required, then it is likely that a less convenient
approach will be necessary.

Usage

inpIDMapper(ids, srcSpecies, destSpecies, srcIDType="UNIPROT",
destIDType="EG", keepMultGeneMatches=FALSE, keepMultProtMatches=FALSE,
keepMultDestIDMatches = TRUE)

http://www.geneontology.org/

inpIDMapper 29

intraIDMapper(ids, species, srcIDType="UNIPROT", destIDType="EG",
keepMultGeneMatches=FALSE)

idConverter(ids, srcSpecies, destSpecies, srcIDType="UNIPROT",
destIDType="EG", keepMultGeneMatches=FALSE, keepMultProtMatches=FALSE,
keepMultDestIDMatches = TRUE)

Arguments

ids a list or vector of original IDs to match

srcSpecies The original source species in in paranoid format. In other words, the 3 letters
of the genus followed by 2 letters of the species in all caps. Ie. ’HOMSA’ is for
Homo sapiens etc.

destSpecies the destination species in inparanoid format

species the species involved

srcIDType The source ID type written exactly as it would be used in a mapping name for
an eg package. So for example, ’UNIPROT’ is how the uniprot mappings are
always written, so we keep that convention here.

destIDType the destination ID, written the same way as you would write the srcIDType. By
default this is set to "EG" for entrez gene IDs

keepMultGeneMatches

Do you want to try and keep the 1st ID in those ambiguous cases where more
than one protein is suggested? (You probably want to filter them out - hence the
default is FALSE)

keepMultProtMatches

Do you want to try and keep the 1st ID in those ambiguous cases where more
than one protein is suggested? (default = FALSE)

keepMultDestIDMatches

If you have mapped to a destination ID OTHER than an entrez gene ID, then it
is possible that there may be multiple answers. Do you want to keep all of these
or only return the 1st one? (default = TRUE)

Details

inpIDMapper - This is a convenience function for getting an ID from one species mapped to an ID
type of your choice from another organism of your choice. The only mappings used to do this are the
mappings that are scored as 100 according to the inparanoid algorithm. This function automatically
tries to join IDs by using FIVE different mappings in the sequence that follows:

1) initial IDs -> src organism Entrez Gene IDs 2) src organism Entrez Gene IDs -> sre organism
Inparanoid ID 3) src organism Inparanoid ID -> dest organism Inparanoid ID 4) dest organism
Inparanoid ID -> dest organism Entrez Gene ID 5) dest organism Entrez Gene ID -> final destination
organism ID

You can simplify this mapping as a series of steps like this:

srcIDs —> srcEGs —> srcInp —> destInp —> destEGs —> destIDs (1) (2) (3) (4) (5)

There are two steps in this process where multiple mappings can really interfere with getting a clear
answer. It’s no coincidence that these are also adjacent to the two places where we have to tie the

30 inpIDMapper

identity to a single gene for each organism. When this happens, any ambiguity is confounding.
Preceding step \#2, it is critical that we only have ONE entrez gene ID per initial ID, and the
parameter keepMultGeneMatches can be used to toggle whether to drop any ambiguous matches
(the default) or to keep the 1st one in the hope of getting an additional hit. A similar thing is done
preceding step \#4, where we have to be sure that the protein IDs we are getting back have all
mapped to only one gene. We allow you to use the keepMultProtMatches parameter to make the
same kind of decision as in step \#2, again, the default is to drop anything that is ambiguous.

intraIDMapper - This is a convenience function to map within an organism and so it has a much
simpler job to do. It will either map through one mapping or two depending whether the source ID
or destination ID is a central ID for the relevant organism package. If the answer is neither, then
two mappings will be needed.

idConverter - This is mostly for convenient usage of these functions by developers. It is just a
wrapper function that can pass along all the parameters to the appropriate function (intraIDMapper
or inpIDMapper). It decides which function to call based on the source and destination organism.
The disadvantage to using this function all the time is just that more of the parameters have to be
filled out each time.

Value

a list where the names of each element are the elements of the original list you passed in, and the
values are the matching results. Elements that do not have a match are not returned. If you want
things to align you can do some bookeeping.

Author(s)

Marc Carlson

Examples

Not run:
This has to be in a dontrun block because otherwise I would have to
expand the DEPENDS field for AnnotationDbi
library("org.Hs.eg.db")
library("org.Mm.eg.db")
library("org.Sc.eg.db")
library("hom.Hs.inp.db")
library("hom.Mm.inp.db")
library("hom.Sc.inp.db")

##Some IDs just for the example
library("org.Hs.eg.db")
ids = as.list(org.Hs.egUNIPROT)[10000:10500] ##get some ragged IDs
Get entrez gene IDs (default) for uniprot IDs mapping from human to mouse.
MouseEGs = inpIDMapper(ids, "HOMSA", "MUSMU")
##Get yeast uniprot IDs in exchange for uniprot IDs from human
YeastUPs = inpIDMapper(ids, "HOMSA", "SACCE", destIDType="UNIPROT")
##Get yeast uniprot IDs but only return one ID per initial ID
YeastUPSingles = inpIDMapper(ids, "HOMSA", "SACCE", destIDType="UNIPROT", keepMultDestIDMatches = FALSE)

##Test out the intraIDMapper function:

KEGGFrame 31

HumanEGs = intraIDMapper(ids, species="HOMSA", srcIDType="UNIPROT",
destIDType="EG")
HumanPATHs = intraIDMapper(ids, species="HOMSA", srcIDType="UNIPROT",
destIDType="PATH")

##Test out the wrapper function
MousePATHs = idConverter(MouseEGs, srcSpecies="MUSMU", destSpecies="MUSMU",
srcIDType="EG", destIDType="PATH")
##Convert from Yeast uniprot IDs to Human entrez gene IDs.
HumanEGs = idConverter(YeastUPSingles, "SACCE", "HOMSA")

End(Not run)

KEGGFrame KEGGFrame objects

Description

These objects each contain a data frame which is required to be composed of 2 columns. The 1st
column are KEGG IDs. The second are the gene IDs that match to the KEGG IDs. There is also a
slot for the organism that these anotations pertain to. getKEGGFrameData is just an accessor method
and returns the data.frame contained in the KEGGFrame object and is mostly used by other code
internally.

Details

The purpose of these objects is to create a safe way for annotation data about KEGG from non-
traditional sources to be used for analysis packages like GSEABase and eventually Category.

Examples

Make up an example
genes = c(2,9,9,10)
KEGGIds = c("04610","00232","00983","00232")
frameData = data.frame(cbind(KEGGIds,genes))

library(AnnotationDbi)
frame=KEGGFrame(frameData,organism="Homo sapiens")

getKEGGFrameData(frame)

32 make_eg_to_go_map

makeGOGraph A convenience function to generate graphs based on the GO.db pack-
age

Description

makeGOGraph is a function to quickly convert any of the three Gene Ontologies in GO.db into a
graphNEL object where each edge is given a weight of 1.

Usage

makeGOGraph(ont = c("bp","mf","cc"))

Arguments

ont Specifies the ontology: "cc", "bp" or "mf".

Author(s)

Marc Carlson

See Also

GOTerms

Examples

makes a GO graph from the CC ontology
f <- makeGOGraph("cc")

make_eg_to_go_map Create GO to Entrez Gene maps for chip-based packages

Description

Create a new map object mapping Entrez ID to GO (or vice versa) given a chip annotation data
package.

This is a temporary solution until a more general pluggable map solution comes online.

Usage

make_eg_to_go_map(chip)

Arguments

chip The name of the annotation data package.

organismKEGGFrame 33

Value

Either a Go3AnnDbMap or a RevGo3AnnDbMap.

Author(s)

Seth Falcon and Hervé Pagès

Examples

library("hgu95av2.db")

eg2go = make_eg_to_go_map("hgu95av2.db")
sample(eg2go, 2)

go2eg = make_go_to_eg_map("hgu95av2.db")
sample(go2eg, 2)

organismKEGGFrame A data frame that maps species names to KEGG organisms

Description

Create a data.frame that maps a species name (e.g. Homo sapeins) to the KEGG organsim notation
(e.g. hsa).

Usage

organismKEGGFrame()

Value

A data.frame with 2 columns, species and organsim.

Author(s)

Kayla Interdonato

Examples

query <- organismKEGGFrame()
head(query)

34 print.probetable

orgPackageName Org package contained in annotation object

Description

Get the name of the org package used by an annotation resource object.

NOTE: This man page is for the orgPackageName S4 generic function defined in the Annota-
tionDbi package. Bioconductor packages can define specific methods for annotation objects not
supported by the default method.

Usage

orgPackageName(x, ...)

Arguments

x An annotation resource object.

... Additional arguments.

Value

A character(1) vector indicating the org package name.

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default method.

print.probetable Print method for probetable objects

Description

Prints class(x), nrow(x) and ncol(x), but not the elements of x. The motivation for having this
method is that methods from the package base such as print.data.frame will try to print the
values of all elements of x, which can take inconveniently much time and screen space if x is large.

Usage

S3 method for class 'probetable'
print(x, maxrows, ...)

Arguments

x an object of S3-class probetable.

maxrows maximum number of rows to print.

... further arguments that get ignored.

toggleProbes 35

See Also

print.data.frame

Examples

a = as.data.frame(matrix(runif(1e6), ncol=1e3))
class(a) = c("probetable", class(a))
print(a)
print(as.matrix(a[2:3, 4:6]))

toggleProbes Methods for getting/setting the filters on a Bimap object

Description

These methods are part of the Bimap interface (see ?Bimap for a quick overview of the Bimap
objects and their interface).

Some of these methods are for getting or setting the filtering status on a Bimap object so that the
mapping object can toggle between displaying all probes, only single probes (the defualt) or only
multiply matching probes.

Other methods are for viewing or setting the filter threshold value on a InpAnnDbBimap object.

Usage

Making a Bimap object that does not prefilter to remove probes that
match multiple genes:
toggleProbes(x, value)
hasMultiProbes(x) ##T/F test for exposure of single probes
hasSingleProbes(x) ##T/F test for exposure of mulitply matched probes

Looking at the SQL filter values for a Bimap
getBimapFilters(x)

Arguments

x A Bimap object.

value A character vector containing the new value that the Bimap should use as the
filter. Or the value to toggle a probe mapping to: "all", "single", or "multiple".

Details

toggleProbes(x) is a methods for creating Bimaps that have an alternate filter for which probes
get exposed based upon whether these probes map to multiple genes or not.

hasMultiProbes(x) and hasSingleProbes(x) are provided to give a quick test about whether or
not such probes are exposed in a given mapping.

getBimapFilters(x) will list all the SQL filters applied to a Bimap object.

36 toSQLStringSet

Value

A Bimap object of the same subtype as x for exposeAllProbes(x), maskMultiProbes(x) and
maskSingleProbes(x).

A TRUE or FALSE value in the case of hasMultiProbes(x) and hasSingleProbes(x).

Author(s)

M. Carlson

See Also

Bimap, Bimap-keys, Bimap-direction, BimapFormatting, Bimap-envirAPI, nhit

Examples

Make a Bimap that contains all the probes
require("hgu95av2.db")
mapWithMultiProbes <- toggleProbes(hgu95av2ENTREZID, "all")
count.mappedLkeys(hgu95av2ENTREZID)
count.mappedLkeys(mapWithMultiProbes)

Check that it has both multiply and singly matching probes:
hasMultiProbes(mapWithMultiProbes)
hasSingleProbes(mapWithMultiProbes)

Make it have Multi probes ONLY:
OnlyMultiProbes = toggleProbes(mapWithMultiProbes, "multiple")
hasMultiProbes(OnlyMultiProbes)
hasSingleProbes(OnlyMultiProbes)

Convert back to a default map with only single probes exposed
OnlySingleProbes = toggleProbes(OnlyMultiProbes, "single")
hasMultiProbes(OnlySingleProbes)
hasSingleProbes(OnlySingleProbes)

toSQLStringSet Convert a vector to a quoted string for use as a SQL value list

Description

Given a vector, this function returns a string with each element of the input coerced to character,
quoted, and separated by ",".

Usage

toSQLStringSet(names)

unlist2 37

Arguments

names A vector of values to quote

Details

If names is a character vector with elements containing single quotes, these quotes will be doubled
so as to escape the quote in SQL.

Value

A character vector of length one that represents the input vector as a SQL value list. Each element
is single quoted and elements are comma separated.

Note

Do not use sQuote for generating SQL as that function is intended for display purposes only. In
some locales, sQuote will generate fancy quotes which will break your SQL.

Author(s)

Hervé Pagès

Examples

toSQLStringSet(letters[1:4])
toSQLStringSet(c("'foo'", "ab'cd", "bar"))

unlist2 A replacement for unlist() that does not mangle the names

Description

unlist2 is a replacement for base::unlist() that does not mangle the names.

Usage

unlist2(x, recursive=TRUE, use.names=TRUE, what.names="inherited")

Arguments

x, recursive, use.names

See ?unlist.

what.names "inherited" or "full".

38 unlist2

Details

Use this function if you don’t like the mangled names returned by the standard unlist function from
the base package. Using unlist with annotation data is dangerous and it is highly recommended
to use unlist2 instead.

Author(s)

Hervé Pagès

See Also

unlist

Examples

x <- list(A=c(b=-4, 2, b=7), B=3:-1, c(a=1, a=-2), C=list(c(2:-1, d=55), e=99))
unlist(x)
unlist2(x)

library(hgu95av2.db)
egids <- c("10", "100", "1000")
egids2pbids <- mget(egids, revmap(hgu95av2ENTREZID))
egids2pbids

unlist(egids2pbids) # 1001, 1002, 10001 and 10002 are not real
Entrez ids but are the result of unlist()
mangling the names!

unlist2(egids2pbids) # much cleaner! yes the names are not unique
but at least they are correct...

Index

∗ classes
AnnDbObj-objects, 5
AnnotationDb-objects, 7
Bimap, 10
GOFrame, 25
GOTerms-class, 27
KEGGFrame, 31

∗ interface
Bimap, 10
Bimap-envirAPI, 17
GOFrame, 25
KEGGFrame, 31

∗ manip
ACCNUM, 3
GOID, 26
inpIDMapper, 28
makeGOGraph, 32
toSQLStringSet, 36
unlist2, 37

∗ methods
AnnDbObj-objects, 5
AnnotationDb-objects, 7
Bimap-direction, 14
Bimap-envirAPI, 17
Bimap-keys, 18
Bimap-toTable, 20
BimapFormatting, 23
GOTerms-class, 27
toggleProbes, 35

∗ print
print.probetable, 34

∗ utilities
ACCNUM, 3
AnnDbPkg-checker, 7
createSimpleBimap, 24
GOID, 26
makeGOGraph, 32
toSQLStringSet, 36
unlist2, 37

[,Bimap-method (Bimap-keys), 18
[[,Bimap-method (Bimap-envirAPI), 17
$,Bimap-method (Bimap-envirAPI), 17

ACCNUM, 3
AgiAnnDbMap (Bimap), 10
AgiAnnDbMap-class (Bimap), 10
ALIAS (ACCNUM), 3
AnnDbBimap, 5, 15
AnnDbBimap (Bimap), 10
AnnDbBimap-class (Bimap), 10
AnnDbMap (Bimap), 10
AnnDbMap-class (Bimap), 10
AnnDbObj (AnnDbObj-objects), 5
AnnDbObj-class (AnnDbObj-objects), 5
AnnDbObj-objects, 5
AnnDbPkg-checker, 7
AnnotationDb, 20
AnnotationDb (AnnotationDb-objects), 7
AnnotationDb-class

(AnnotationDb-objects), 7
AnnotationDb-objects, 7
ARACYC (ACCNUM), 3
ARACYCENZYME (ACCNUM), 3
as.character,AnnDbBimap-method

(BimapFormatting), 23
as.character,FlatBimap-method

(BimapFormatting), 23
as.data.frame,Bimap-method

(Bimap-toTable), 20
as.data.frame.Bimap (Bimap-toTable), 20
as.list (BimapFormatting), 23
as.list,AgiAnnDbMap-method

(BimapFormatting), 23
as.list,Bimap-method (BimapFormatting),

23
as.list,FlatBimap-method

(BimapFormatting), 23
as.list,GoAnnDbBimap-method

(BimapFormatting), 23

39

40 INDEX

as.list,GOTermsAnnDbBimap-method
(BimapFormatting), 23

as.list,IpiAnnDbMap-method
(BimapFormatting), 23

as.list.Bimap (BimapFormatting), 23

Bimap, 5, 10, 10, 14–22, 24, 35, 36
Bimap-class (Bimap), 10
Bimap-direction, 13, 14, 14, 36
Bimap-envirAPI, 14, 16, 17, 20, 22, 24, 36
Bimap-keys, 13, 14, 16, 18, 36
Bimap-toTable, 13, 14, 20, 20
BimapFormatting, 14, 16, 18, 20, 22, 23, 36

cat, 5
checkMAPCOUNTS (AnnDbPkg-checker), 7
ChipDb-class (AnnotationDb-objects), 7
CHR (ACCNUM), 3
CHRLOC (ACCNUM), 3
CHRLOCEND (ACCNUM), 3
class:AgiAnnDbMap (Bimap), 10
class:AnnDbBimap (Bimap), 10
class:AnnDbMap (Bimap), 10
class:AnnDbObj (AnnDbObj-objects), 5
class:AnnotationDb

(AnnotationDb-objects), 7
class:Bimap (Bimap), 10
class:Go3AnnDbBimap (Bimap), 10
class:GOAllFrame (GOFrame), 25
class:GoAnnDbBimap (Bimap), 10
class:GOFrame (GOFrame), 25
class:GOTerms (GOTerms-class), 27
class:GOTermsAnnDbBimap (Bimap), 10
class:IpiAnnDbMap (Bimap), 10
class:KEGGFrame (KEGGFrame), 31
class:ProbeAnnDbBimap (Bimap), 10
class:ProbeAnnDbMap (Bimap), 10
class:ProbeGo3AnnDbBimap (Bimap), 10
class:ProbeIpiAnnDbMap (Bimap), 10
colmetanames (Bimap-toTable), 20
colmetanames,AnnDbBimap-method

(Bimap-toTable), 20
colmetanames,FlatBimap-method

(Bimap-toTable), 20
colnames (Bimap-toTable), 20
colnames,AnnDbBimap-method

(Bimap-toTable), 20
colnames,FlatBimap-method

(Bimap-toTable), 20

cols (AnnotationDb-objects), 7
columns, 20
columns (AnnotationDb-objects), 7
columns,AnnotationDb-method

(AnnotationDb-objects), 7
columns,ChipDb-method

(AnnotationDb-objects), 7
columns,GODb-method

(AnnotationDb-objects), 7
columns,Inparanoid8Db-method

(AnnotationDb-objects), 7
columns,InparanoidDb-method

(AnnotationDb-objects), 7
columns,OrgDb-method

(AnnotationDb-objects), 7
columns,OrthologyDb-method

(AnnotationDb-objects), 7
columns,ReactomeDb-method

(AnnotationDb-objects), 7
COMMON (ACCNUM), 3
contents,Bimap-method (Bimap-envirAPI),

17
count.links (Bimap-toTable), 20
count.links,Bimap-method

(Bimap-toTable), 20
count.links,Go3AnnDbBimap-method

(Bimap-toTable), 20
count.mappedkeys (Bimap-keys), 18
count.mappedkeys,ANY-method

(Bimap-keys), 18
count.mappedkeys,Bimap-method

(Bimap-keys), 18
count.mappedLkeys (Bimap-direction), 14
count.mappedLkeys,AgiAnnDbMap-method

(Bimap-direction), 14
count.mappedLkeys,AnnDbBimap-method

(Bimap-direction), 14
count.mappedLkeys,Bimap-method

(Bimap-direction), 14
count.mappedLkeys,Go3AnnDbBimap-method

(Bimap-direction), 14
count.mappedRkeys (Bimap-direction), 14
count.mappedRkeys,AnnDbBimap-method

(Bimap-direction), 14
count.mappedRkeys,AnnDbMap-method

(Bimap-direction), 14
count.mappedRkeys,Bimap-method

(Bimap-direction), 14

INDEX 41

count.mappedRkeys,Go3AnnDbBimap-method
(Bimap-direction), 14

createSimpleBimap, 24

dbconn (AnnDbObj-objects), 5
dbconn,AnnDbObj-method

(AnnDbObj-objects), 5
dbconn,AnnotationDb-method

(AnnotationDb-objects), 7
dbconn,environment-method

(AnnDbObj-objects), 5
dbconn,SQLiteConnection-method

(AnnDbObj-objects), 5
dbConnect, 5, 10
dbfile (AnnDbObj-objects), 5
dbfile,AnnDbObj-method

(AnnDbObj-objects), 5
dbfile,AnnotationDb-method

(AnnotationDb-objects), 7
dbfile,environment-method

(AnnDbObj-objects), 5
dbfile,SQLiteConnection-method

(AnnDbObj-objects), 5
dbGetQuery, 5, 10
dbInfo (AnnDbObj-objects), 5
dbInfo,AnnDbObj-method

(AnnDbObj-objects), 5
dbInfo,DBIConnection-method

(AnnDbObj-objects), 5
dbInfo,environment-method

(AnnDbObj-objects), 5
dbListFields, 5, 10
dbListTables, 5, 10
dbmeta (AnnDbObj-objects), 5
dbmeta,AnnDbObj-method

(AnnDbObj-objects), 5
dbmeta,DBIConnection-method

(AnnDbObj-objects), 5
dbmeta,environment-method

(AnnDbObj-objects), 5
dbschema (AnnDbObj-objects), 5
dbschema,AnnDbObj-method

(AnnDbObj-objects), 5
dbschema,DBIConnection-method

(AnnDbObj-objects), 5
dbschema,environment-method

(AnnDbObj-objects), 5
DEFINITION (GOID), 26
Definition (GOTerms-class), 27

Definition,character-method
(GOTerms-class), 27

Definition,GOTerms-method
(GOTerms-class), 27

Definition,GOTermsAnnDbBimap-method
(GOTerms-class), 27

DESCRIPTION (ACCNUM), 3
dim,Bimap-method (Bimap-toTable), 20
direction, 19
direction (Bimap-direction), 14
direction,AnnDbBimap-method

(Bimap-direction), 14
direction,FlatBimap-method

(Bimap-direction), 14
direction<- (Bimap-direction), 14
direction<-,AnnDbBimap-method

(Bimap-direction), 14
direction<-,AnnDbMap-method

(Bimap-direction), 14
direction<-,FlatBimap-method

(Bimap-direction), 14

eapply, 18
eapply (Bimap-envirAPI), 17
eapply,Bimap-method (Bimap-envirAPI), 17
ENSEMBL (ACCNUM), 3
ENSEMBLPROT (ACCNUM), 3
ENSEMBLTRANS (ACCNUM), 3
ENTREZID (ACCNUM), 3
ENZYME (ACCNUM), 3
EVIDENCE (ACCNUM), 3
EVIDENCEALL (ACCNUM), 3
exists, 18
exists (Bimap-envirAPI), 17
exists,ANY,ANY,Bimap-method

(Bimap-envirAPI), 17
exists,ANY,Bimap,missing-method

(Bimap-envirAPI), 17

GENENAME (ACCNUM), 3
get, 18
get (Bimap-envirAPI), 17
get,ANY,ANY,Bimap-method

(Bimap-envirAPI), 17
get,ANY,Bimap,missing-method

(Bimap-envirAPI), 17
getBimapFilters (toggleProbes), 35
getBimapFilters,AnnDbBimap-method

(toggleProbes), 35

42 INDEX

getGOFrameData (GOFrame), 25
getGOFrameData,GOAllFrame-method

(GOFrame), 25
getGOFrameData,GOFrame-method

(GOFrame), 25
getKEGGFrameData (KEGGFrame), 31
getKEGGFrameData,KEGGAllFrame-method

(KEGGFrame), 31
getKEGGFrameData,KEGGFrame-method

(KEGGFrame), 31
GO (ACCNUM), 3
Go3AnnDbBimap (Bimap), 10
Go3AnnDbBimap-class (Bimap), 10
GOALL (ACCNUM), 3
GOAllFrame (GOFrame), 25
GOAllFrame,GOFrame-method (GOFrame), 25
GOAllFrame-class (GOFrame), 25
GoAnnDbBimap (Bimap), 10
GoAnnDbBimap-class (Bimap), 10
GODb-class (AnnotationDb-objects), 7
GOFrame, 25
GOFrame,data.frame,character-method

(GOFrame), 25
GOFrame,data.frame,missing-method

(GOFrame), 25
GOFrame-class (GOFrame), 25
GOID, 26
GOID,character-method (GOTerms-class),

27
GOID,GOTerms-method (GOTerms-class), 27
GOID,GOTermsAnnDbBimap-method

(GOTerms-class), 27
GOTerms, 32
GOTerms (GOTerms-class), 27
GOTerms-class, 27
GOTermsAnnDbBimap (Bimap), 10
GOTermsAnnDbBimap-class (Bimap), 10

hasMultiProbes (toggleProbes), 35
hasMultiProbes,ProbeAnnDbBimap-method

(toggleProbes), 35
hasMultiProbes,ProbeAnnDbMap-method

(toggleProbes), 35
hasMultiProbes,ProbeGo3AnnDbBimap-method

(toggleProbes), 35
hasMultiProbes,ProbeIpiAnnDbMap-method

(toggleProbes), 35
hasSingleProbes (toggleProbes), 35

hasSingleProbes,ProbeAnnDbBimap-method
(toggleProbes), 35

hasSingleProbes,ProbeAnnDbMap-method
(toggleProbes), 35

hasSingleProbes,ProbeGo3AnnDbBimap-method
(toggleProbes), 35

hasSingleProbes,ProbeIpiAnnDbMap-method
(toggleProbes), 35

head, 21
head,FlatBimap-method (Bimap-toTable),

20

idConverter (inpIDMapper), 28
initialize,GOTerms-method

(GOTerms-class), 27
InparanoidDb-class

(AnnotationDb-objects), 7
inpIDMapper, 28
INTERPRO (ACCNUM), 3
intraIDMapper (inpIDMapper), 28
IPI (ACCNUM), 3
IpiAnnDbMap (Bimap), 10
IpiAnnDbMap-class (Bimap), 10
isNA (Bimap-keys), 18
isNA,ANY-method (Bimap-keys), 18
isNA,Bimap-method (Bimap-keys), 18
isNA,environment-method (Bimap-keys), 18

KEGGFrame, 31
KEGGFrame,data.frame,character-method

(KEGGFrame), 31
KEGGFrame,data.frame,missing-method

(KEGGFrame), 31
KEGGFrame-class (KEGGFrame), 31
keyname (Bimap-toTable), 20
keyname,Bimap-method (Bimap-toTable), 20
keys, 15, 16
keys (AnnotationDb-objects), 7
keys,Bimap-method (Bimap-keys), 18
keys,ChipDb-method

(AnnotationDb-objects), 7
keys,GODb-method

(AnnotationDb-objects), 7
keys,Inparanoid8Db-method

(AnnotationDb-objects), 7
keys,InparanoidDb-method

(AnnotationDb-objects), 7
keys,OrgDb-method

(AnnotationDb-objects), 7

INDEX 43

keys,OrthologyDb-method
(AnnotationDb-objects), 7

keys,ReactomeDb-method
(AnnotationDb-objects), 7

keys<- (Bimap-keys), 18
keys<-,Bimap-method (Bimap-keys), 18
keytypes (AnnotationDb-objects), 7
keytypes,ChipDb-method

(AnnotationDb-objects), 7
keytypes,GODb-method

(AnnotationDb-objects), 7
keytypes,Inparanoid8Db-method

(AnnotationDb-objects), 7
keytypes,InparanoidDb-method

(AnnotationDb-objects), 7
keytypes,OrgDb-method

(AnnotationDb-objects), 7
keytypes,OrthologyDb-method

(AnnotationDb-objects), 7
keytypes,ReactomeDb-method

(AnnotationDb-objects), 7

length,Bimap-method (Bimap-keys), 18
links (Bimap-toTable), 20
links,AnnDbBimap-method

(Bimap-toTable), 20
links,Bimap-method (Bimap-toTable), 20
links,FlatBimap-method (Bimap-toTable),

20
links,Go3AnnDbBimap-method

(Bimap-toTable), 20
Lkeyname (Bimap-toTable), 20
Lkeyname,AnnDbBimap-method

(Bimap-toTable), 20
Lkeyname,Bimap-method (Bimap-toTable),

20
Lkeys (Bimap-direction), 14
Lkeys,AnnDbBimap-method

(Bimap-direction), 14
Lkeys,FlatBimap-method

(Bimap-direction), 14
Lkeys,ProbeAnnDbBimap-method

(Bimap-direction), 14
Lkeys,ProbeAnnDbMap-method

(Bimap-direction), 14
Lkeys,ProbeGo3AnnDbBimap-method

(Bimap-direction), 14
Lkeys,ProbeIpiAnnDbMap-method

(Bimap-direction), 14

Lkeys<- (Bimap-direction), 14
Lkeys<-,AnnDbBimap-method

(Bimap-direction), 14
Lkeys<-,FlatBimap-method

(Bimap-direction), 14
Llength (Bimap-direction), 14
Llength,AnnDbBimap-method

(Bimap-direction), 14
Llength,Bimap-method (Bimap-direction),

14
Llength,ProbeAnnDbBimap-method

(Bimap-direction), 14
Llength,ProbeAnnDbMap-method

(Bimap-direction), 14
Llength,ProbeGo3AnnDbBimap-method

(Bimap-direction), 14
Llength,ProbeIpiAnnDbMap-method

(Bimap-direction), 14
loadDb (AnnotationDb-objects), 7
ls, 18
ls (Bimap-envirAPI), 17
ls,Bimap-method (Bimap-envirAPI), 17

make_eg_to_go_map, 32
make_go_to_eg_map (make_eg_to_go_map),

32
makeGOGraph, 28, 32
MAP (ACCNUM), 3
mapIds (AnnotationDb-objects), 7
mapIds,AnnotationDb-method

(AnnotationDb-objects), 7
mappedkeys (Bimap-keys), 18
mappedkeys,Bimap-method (Bimap-keys), 18
mappedkeys,environment-method

(Bimap-keys), 18
mappedkeys,vector-method (Bimap-keys),

18
mappedLkeys (Bimap-direction), 14
mappedLkeys,AgiAnnDbMap-method

(Bimap-direction), 14
mappedLkeys,AnnDbBimap-method

(Bimap-direction), 14
mappedLkeys,FlatBimap-method

(Bimap-direction), 14
mappedLkeys,Go3AnnDbBimap-method

(Bimap-direction), 14
mappedRkeys (Bimap-direction), 14
mappedRkeys,AnnDbBimap-method

(Bimap-direction), 14

44 INDEX

mappedRkeys,AnnDbMap-method
(Bimap-direction), 14

mappedRkeys,FlatBimap-method
(Bimap-direction), 14

mappedRkeys,Go3AnnDbBimap-method
(Bimap-direction), 14

metadata,AnnotationDb-method
(AnnotationDb-objects), 7

mget, 18
mget (Bimap-envirAPI), 17
mget,ANY,Bimap-method (Bimap-envirAPI),

17
mget,Bimap-method (Bimap-envirAPI), 17

names,AnnotationDb-method
(AnnotationDb-objects), 7

ncol (Bimap-toTable), 20
ncol,Bimap-method (Bimap-toTable), 20
nhit, 16, 36
nhit (Bimap-toTable), 20
nhit,Bimap-method (Bimap-toTable), 20
nhit,environment-method

(Bimap-toTable), 20
nhit,list-method (Bimap-toTable), 20
nrow (Bimap-toTable), 20
nrow,AnnDbBimap-method (Bimap-toTable),

20
nrow,AnnDbTable-method (Bimap-toTable),

20
nrow,Bimap-method (Bimap-toTable), 20
nrow,FlatBimap-method (Bimap-toTable),

20
nrow,Go3AnnDbBimap-method

(Bimap-toTable), 20

OMIM (ACCNUM), 3
ONTOLOGY (GOID), 26
Ontology (GOTerms-class), 27
Ontology,character-method

(GOTerms-class), 27
Ontology,GOTerms-method

(GOTerms-class), 27
Ontology,GOTermsAnnDbBimap-method

(GOTerms-class), 27
ONTOLOGYALL (ACCNUM), 3
ORF (ACCNUM), 3
organismKEGGFrame, 33
OrgDb-class (AnnotationDb-objects), 7
orgPackageName, 34

OrthologyDb-class
(AnnotationDb-objects), 7

PATH (ACCNUM), 3
PFAM (ACCNUM), 3
PMID (ACCNUM), 3
print.data.frame, 34, 35
print.probetable, 34
ProbeAnnDbBimap (Bimap), 10
ProbeAnnDbBimap-class (Bimap), 10
ProbeAnnDbMap (Bimap), 10
ProbeAnnDbMap-class (Bimap), 10
ProbeGo3AnnDbBimap (Bimap), 10
ProbeGo3AnnDbBimap-class (Bimap), 10
PROBEID (ACCNUM), 3
ProbeIpiAnnDbMap (Bimap), 10
ProbeIpiAnnDbMap-class (Bimap), 10
PROSITE (ACCNUM), 3

Rattribnames (Bimap-toTable), 20
Rattribnames,AnnDbBimap-method

(Bimap-toTable), 20
Rattribnames,Bimap-method

(Bimap-toTable), 20
Rattribnames<- (Bimap-toTable), 20
Rattribnames<-,AnnDbBimap-method

(Bimap-toTable), 20
Rattribnames<-,FlatBimap-method

(Bimap-toTable), 20
Rattribnames<-,Go3AnnDbBimap-method

(Bimap-toTable), 20
ReactomeDb-class

(AnnotationDb-objects), 7
REFSEQ (ACCNUM), 3
revmap (Bimap-direction), 14
revmap,AnnDbBimap-method

(Bimap-direction), 14
revmap,Bimap-method (Bimap-direction),

14
revmap,environment-method

(Bimap-direction), 14
revmap,list-method (Bimap-direction), 14
Rkeyname (Bimap-toTable), 20
Rkeyname,AnnDbBimap-method

(Bimap-toTable), 20
Rkeyname,Bimap-method (Bimap-toTable),

20
Rkeys (Bimap-direction), 14

INDEX 45

Rkeys,AnnDbBimap-method
(Bimap-direction), 14

Rkeys,AnnDbMap-method
(Bimap-direction), 14

Rkeys,FlatBimap-method
(Bimap-direction), 14

Rkeys,Go3AnnDbBimap-method
(Bimap-direction), 14

Rkeys<- (Bimap-direction), 14
Rkeys<-,AnnDbBimap-method

(Bimap-direction), 14
Rkeys<-,FlatBimap-method

(Bimap-direction), 14
Rlength (Bimap-direction), 14
Rlength,AnnDbBimap-method

(Bimap-direction), 14
Rlength,AnnDbMap-method

(Bimap-direction), 14
Rlength,Bimap-method (Bimap-direction),

14
Rlength,Go3AnnDbBimap-method

(Bimap-direction), 14

sample, 18
sample (Bimap-envirAPI), 17
sample,Bimap-method (Bimap-envirAPI), 17
sample,environment-method

(Bimap-envirAPI), 17
saveDb (AnnotationDb-objects), 7
saveDb,AnnotationDb-method

(AnnotationDb-objects), 7
Secondary (GOTerms-class), 27
Secondary,character-method

(GOTerms-class), 27
Secondary,GOTerms-method

(GOTerms-class), 27
Secondary,GOTermsAnnDbBimap-method

(GOTerms-class), 27
select, 20
select (AnnotationDb-objects), 7
select,ChipDb-method

(AnnotationDb-objects), 7
select,GODb-method

(AnnotationDb-objects), 7
select,Inparanoid8Db-method

(AnnotationDb-objects), 7
select,InparanoidDb-method

(AnnotationDb-objects), 7

select,OrgDb-method
(AnnotationDb-objects), 7

select,OrthologyDb-method
(AnnotationDb-objects), 7

select,ReactomeDb-method
(AnnotationDb-objects), 7

SGD (ACCNUM), 3
show,AnnDbBimap-method (Bimap), 10
show,AnnDbTable-method (Bimap-keys), 18
show,AnnotationDb-method

(AnnotationDb-objects), 7
show,FlatBimap-method (Bimap), 10
show,GOTerms-method (GOTerms-class), 27
SMART (ACCNUM), 3
species (AnnotationDb-objects), 7
species,AnnotationDb-method

(AnnotationDb-objects), 7
subset,AnnDbBimap-method

(Bimap-direction), 14
subset,Bimap-method (Bimap-direction),

14
summary,AnnDbBimap-method (Bimap), 10
summary,Bimap-method (Bimap), 10
SYMBOL (ACCNUM), 3
Synonym (GOTerms-class), 27
Synonym,character-method

(GOTerms-class), 27
Synonym,GOTerms-method (GOTerms-class),

27
Synonym,GOTermsAnnDbBimap-method

(GOTerms-class), 27

tagname (Bimap-toTable), 20
tagname,AnnDbBimap-method

(Bimap-toTable), 20
tagname,Bimap-method (Bimap-toTable), 20
tail, 21
tail,FlatBimap-method (Bimap-toTable),

20
TAIR (ACCNUM), 3
taxonomyId (AnnotationDb-objects), 7
taxonomyId,AnnotationDb-method

(AnnotationDb-objects), 7
TERM (GOID), 26
Term (GOTerms-class), 27
Term,character-method (GOTerms-class),

27
Term,GOTerms-method (GOTerms-class), 27

46 INDEX

Term,GOTermsAnnDbBimap-method
(GOTerms-class), 27

toggleProbes, 35
toggleProbes,ProbeAnnDbBimap-method

(toggleProbes), 35
toggleProbes,ProbeAnnDbMap-method

(toggleProbes), 35
toggleProbes,ProbeGo3AnnDbBimap-method

(toggleProbes), 35
toggleProbes,ProbeIpiAnnDbMap-method

(toggleProbes), 35
toSQLStringSet, 36
toTable (Bimap-toTable), 20
toTable,Bimap-method (Bimap-toTable), 20
toTable,FlatBimap-method

(Bimap-toTable), 20

UNIGENE (ACCNUM), 3
UNIPROT (ACCNUM), 3
unlist, 38
unlist2, 37

	ACCNUM
	AnnDbObj-objects
	AnnDbPkg-checker
	AnnotationDb-objects
	Bimap
	Bimap-direction
	Bimap-envirAPI
	Bimap-keys
	Bimap-toTable
	BimapFormatting
	createSimpleBimap
	GOFrame
	GOID
	GOTerms-class
	inpIDMapper
	KEGGFrame
	makeGOGraph
	make_eg_to_go_map
	organismKEGGFrame
	orgPackageName
	print.probetable
	toggleProbes
	toSQLStringSet
	unlist2
	Index

