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Introduction

ppiStats is a package that provides tools for the description and analysis of protein interaction data rep-
resented in node-and-edge graph form. The package is specifically designed to address data generated
by bait-prey technologies (e.g. yeast-two-hybrid (Y2H) and affinity purification-mass spectrometry
(AP-MS)) in which directed edges extend from bait proteins toward detected prey proteins, with the
nature of the detected interaction depending on the technology.

This vignette demonstrates the main functionality of the ppiStats package including: 1) summariz-
ing observed data, 2) identifying systematically biased proteins in a data set, and 3) estimating stochas-
tic error probabilities. In order to demonstrate ppiStats, we will make use of the protein interaction data
sets available in ppiData.

> library("ppiStats")
> library("ppiData")

In this vignette, we will use to AP-MS data sets reported by Gavin et al. (2002) (Gavin02) and
Gavin et al. (2006) (Gavin06) for Saccharomyces cerevisiae. AP-MS technology is a bait-prey system
designed to detect complex co-membership on behalf of proteins.

Most of the functions available in ppiStats require objects that extend the class graph, defined in
the graph package. For example, Gavin2002BPGraph and Gavin2006BPGraph are graphNEL
objects available in ppiData. For assistance in converting raw data files into the appropriate object
instance, see the help pages for the functions bpMatrix and genBPGraph in the ppiStats package.
The graph and RpsiXML packages also contain helpful functionality.

> data(Gavin2002BPGraph)
> data(Gavin2006BPGraph)
> GavinGraphs = list(Gavin02=Gavin2002BPGraph,Gavin06=Gavin2006BPGraph)
> GavinGraphs

$Gavin02
A graphNEL graph with directed edges
Number of Nodes = 1362
Number of Edges = 3418

$Gavin06
A graphNEL graph with directed edges
Number of Nodes = 2551
Number of Edges = 19105
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Summarizing observed data

While AP-MS data can in concept assay all possible complex co-membership interactions in a cell,
in fact only a certain portion of those interactions are assayed in an experiment. The sampled portion
of the ‘interactome’ depends on which proteins are selected as baits, the subset of those baits that
are amenable to the technology, and the set of proteins in the cell that are available for detection as
prey under the conditions of the experiment. Chiang et al. (2007) present the notion of ‘viability’ to
summarize these ideas, defining ‘viable baits’ (VBs) as baits that detect at least one prey and ‘viable
prey’ (VP) as proteins that are detected by at least one bait. It is possible for a protein to be both a
viable bait and a viable prey (VBP). These definitions are important since only the edges that extend
from VB nodes to VP nodes are deemed ‘tested’ in the analyses presented here. All other potential
interactions (e.g. an edge between two nodes that are VP but not VBP) are treated as untested.

The function createSummaryTables lists several summary statistics about the viable protein
population in an experiment. In addition to describing the viable protein population, the total number
of directed interactions (TI) is reported.

> summaryTables = createSummaryTables(GavinGraphs)
> summaryTables

VB VP VBP VBP/VB VP/VB TI TI/VB
Gavin02 455 1178 271 0.60 2.59 3418 7.51
Gavin06 1752 1790 991 0.57 1.02 19105 10.90

When examining the VB and VP populations, it can be helpful to compare the number of repre-
sented proteins to the total population in the cell, especially if the experiment is intended to be genome-
wide. Figure 1 demonstrates VB and VP coverage for the Gavin02 and Gavin06 experiments, relative
to the entire 6000+ genes in yeast.

> viabilityCharts(GavinGraphs)

Rather than simply enumerating the viable protein population, the function idViableProteins
identifies the specific VB, VP, and VBP proteins represented in a data set.

> GavinViableProteins = lapply(GavinGraphs,FUN=idViableProteins)
> sapply(GavinViableProteins,FUN=function(x) lapply(x,FUN=length))

Gavin02 Gavin06
VB 455 1752
VP 1178 1790
VBP 271 991

> Gavin06VBPproteins = GavinViableProteins[["Gavin06"]]$VBP
> Gavin06VBPproteins[1:4]

[1] "YLR274W" "YDR460W" "YGL240W" "YPR189W"
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Figure 1: Enumerations of the VB, VP, and VBP populations for the Gavin02 and Gavin06 datasets in
comparison with the entire set of 6000+ genes in yeast.
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Identifying systematically biased proteins

In some bait-prey experiments, certain proteins are prone to systematic bias. Specifically, in the VBP
population, some proteins have a high imblance between in- and out-degree. In-degree in the VBP
population represents the number of times a VBP node is detected as prey by another VBP protein.
Out-degree represents the number of times that VBP node detects other prey. When in-degree is
much higher than out-degree, or vice versa, it may be an indication that the node is subject to more
than simply stochastic measurement error in line with the sensitivity and specificity of the technology.
The inOutScatterCharts function compares in- and out-degree for the VBP nodes and provides
boundaries for determining which nodes may be particularly prone to systematic error according to the
Binomial model of Chiang et al. (2007).

> inOutScatterCharts(GavinGraphs)

It appears that the Gavin06 dataset contains more proteins that are subject to systematic error than
the Gavin02 dataset. We can identify these proteints using the function idSystematic, remove them
from the graph, and then proceed with estimation of stochastic error probabilities using the remaining
VBP nodes.

> systematicVBPsGavin06 = idSystematic(Gavin2006BPGraph,Gavin06VBPproteins,bpGraph=TRUE)
> unbiasedGavin06VBPs = setdiff(Gavin06VBPproteins,systematicVBPsGavin06)
> Gavin06VBPsubgraph = subGraph(unbiasedGavin06VBPs,Gavin2006BPGraph)
> Gavin06VBPsubgraph

A graphNEL graph with directed edges
Number of Nodes = 678
Number of Edges = 1622

Estimating stochastic error probabilities

Each edge between the subgraph induced by the VBP nodes is tested twice, once in each direction. With
perfectly sensitive and specific technology, each edge would either be observed twice or not observed
twice. The presence of unreciprocated edges indicates the presence of measurement error - either a
false positive (FP) or a false negative (FN) observation.

The function estimateCCMErrorRates estimates stochastic error probabilities, specifically
the false positive (pFP ) and false negative (pFN ) probabilities, using the method of moments approach
described by Chiang et al. (2007). estimateCCMErrorRates calls estErrProbMethodOfMoments
to compute a solution manifold and then selects a single pair of estimates for pFP and pFN using a gold
standard approach as described in Scholtens et al. (2008). In the example below, we use the ScISIC
dataset from the package ScISI as the gold standard. This is a set of manurally curated complexes culled
from GO and MIPS and serves to define a set of edges that should be detected by AP-MS technology.

> data(ScISIC, package = "ScISI")
> Gavin06m = as(Gavin06VBPsubgraph,"matrix")
> errorProbabilities = estimateCCMErrorRates(Gavin06m,ScISIC)
> pTPestimate = errorProbabilities$globalpTP
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Figure 2: Scatter plots corresponding to the in- and out-degree (and the square root of each) for the VBP
nodes in Gavin02. The points within the diagonal bands represent those proteins for which there is not
enough evidence to reject the null hypothesis that the protein might be affected by some systematic
bias while the points outside the bands are rejected at the 0.01 p-value. The bottom plot describes the
distribution of the p-values for each data point. While the majority of proteins are not rejected, we can
see that a substantial number proteins are. Those proteins which are rejected should not be analyzed
using the standard statistical methods to model stochastic variability nor should they be used to estimate
the underlying features within the data.
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Figure 3: The same plots as described in Figure 2 presented here for the Gavin06 data.
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Figure 4: A plot of the solution manifold for estimates of pFP and pFN with the star denoting the gold
standard point estimate.

> pFPestimate =errorProbabilities$globalpFP
> solutionManifold = errorProbabilities$probPairs
> pTPestimate

[1] 0.7857143

> pFPestimate

[1] 0.0008106258

Figure 4 plots the calculated solution manifold and highlights the gold standard estimates.

> plot(solutionManifold[,"pFPs"],solutionManifold[,"pFNs"],type="l",col="violet",xlab="pFP",ylab="1-pTP")
> points(pFPestimate,1-pTPestimate,cex=3,pch=8,col="turquoise")

Estimates of pFP and pFN are helpful in using statistical models to estimate features and parame-
ters for that dataset. One popular statististic is node degree, def. the number of interacting partners for a
protein. Nodes in an experimental AP-MS graph have an unknown true degree. An AP-MS experiment
yields an observed number of reciprocated edges, as well as unreciprocated in- and out-edges. A few
examples are listed below.
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> Gavin06VBPobserved = calcInOutDegStats(Gavin06VBPsubgraph)
> Gavin06VBPobserved$unrecipInDegree[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C
0 4 0 2 1 0

> Gavin06VBPobserved$unrecipOutDegree[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C
0 1 1 0 5 1

> Gavin06VBPobserved$recipIn[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C
1 6 4 2 1 1

The function degreeEstimates estimates degree for VBP nodes according to the parametric
model described by Scholtens et al. (2008) using the observed data and the stochastic error probability
estimates.

> Gavin06VBPdegree = degreeEstimates(Gavin06m,pTPestimate,pFPestimate)
> Gavin06VBPdegree[5:10]

YJR041C YLR357W YGL128C YER022W YDR167W YMR089C
1 10 5 3 5 1

>

Conclusion

The ppiStats package is useful for describing data in graphs and is aimed at bait-prey systems. It is
useful for summarizing graph data, identifying systematically biased baits and estimating stochastic
error probabilities in preparation for estimation of relevant graph features.

> sessionInfo()

R version 4.2.0 RC (2022-04-19 r82224)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
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[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] ppiData_0.33.1 graph_1.74.0 BiocGenerics_0.42.0
[4] ppiStats_1.62.0

loaded via a namespace (and not attached):
[1] Rcpp_1.0.8.3 compiler_4.2.0 RColorBrewer_1.1-3
[4] GenomeInfoDb_1.32.0 XVector_0.36.0 bitops_1.0-7
[7] tools_4.2.0 zlibbioc_1.42.0 bit_4.0.4

[10] annotate_1.74.0 RSQLite_2.2.12 memoise_2.0.1
[13] lattice_0.20-45 png_0.1-7 rlang_1.0.2
[16] Matrix_1.4-1 DBI_1.1.2 cli_3.3.0
[19] Category_2.62.0 fastmap_1.1.0 GenomeInfoDbData_1.2.8
[22] genefilter_1.78.0 httr_1.4.2 Biostrings_2.64.0
[25] S4Vectors_0.34.0 vctrs_0.4.1 IRanges_2.30.0
[28] stats4_4.2.0 bit64_4.0.5 grid_4.2.0
[31] GSEABase_1.58.0 Biobase_2.56.0 R6_2.5.1
[34] AnnotationDbi_1.58.0 survival_3.3-1 RBGL_1.72.0
[37] XML_3.99-0.9 blob_1.2.3 splines_4.2.0
[40] KEGGREST_1.36.0 xtable_1.8-4 RCurl_1.98-1.6
[43] cachem_1.0.6 crayon_1.5.1
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