How to Use pkgDepTools

Seth Falcon
April 26, 2022

1 Introduction

The pkgDepTools package provides tools for computing and analyzing depen-
dency relationships among R packages. With it, you can build a graph-based
representation of the dependencies among all packages in a list of CRAN-style
package repositories. There are utilities for computing installation order of a
given package and, if the RCurl package is available, estimating the download
size required to install a given package and its dependencies.

This vignette demonstrates the basic features of the package.

2 Graph Basics

A graph consists of a set of nodes and a set of edges representing relationships
between pairs of nodes. The relationships among the nodes of a graph are
binary; either there is an edge between a pair of nodes or there is not. To
model package dependencies using a graph, let the set of packages be the
nodes of the graph with directed edges originating from a given package
to each of its dependencies. Figure 1 shows a part of the Bioconductor
dependency graph for to the Category package. Since circular dependencies
are not allowed, the resulting dependency graph will be a directed acyclic
graph (DAG).

3 Building a Dependency Graph

> library("pkgDepTools")
> library("Biobase")

> library("Rgraphviz")

The makeDepGraph function retrieves the meta data for all packages of
a specified type (source, win.binary, or mac.binary) from each repository in
a list of repository URLs and builds a graphNEL'! instance representing the
packages and their dependency relationships.

The function takes four arguments: 1) repList a character vector of
CRAN-style package repository URLs; 2) suggests.only a logical value in-
dicating whether the resulting graph should represent relations from the
Depends field (FALSE, default) or the Suggests field (TRUE); 3) type a string
indicating the type of packages to search for, the default is getOption ("pkgType");
4) keep.builtin which will keep packages that come with a standard R in-
stall in the dependency graph (the default is FALSE).

Here we use makeDepGraph to build dependency graphs of the BioC and
CRAN packages. Each dependency graph is a graphNEL instance. The out-
edges of a given node list its direct dependencies (as shown for package an-
notate). The node attribute “size” gives the size of the package in megabytes
when the dosize argument is TRUE (this is the default). Obtaining the size
of packages requires the RCurl package and can be time consuming for large
repositories since a seprate HTTP request must be made for each package.
In the examples below, we set dosize=FALSE to speed the computations.

> library(BiocManager)
> biocUrl <- repositories()["BioCsoft"]
> biocDeps <- makeDepGraph(biocUrl, type="source", dosize=FALSE)

> biocDeps

=

graphNEL graph with directed edges
Number of Nodes = 3318
Number of Edges = 18335

> edges(biocDeps) ["annotate"]

$annotate
[1] "AnnotationDbi'" "XML" "Biobase" "DBI"
[56] "xtable" "BiocGenerics" '"httr"

> ## if dosize=TRUE, size in MB is stored
> ## as a node attribute:
> ## nodeData(biocDeps, n="annotate', attr="size'")

1See help("graphNEL-class")

4 Using the Dependency Graph

The dependencies of a given package can be visualized using the graph gen-
erated by makeDepGraph and the Rgraphviz package. The graph shown in
Figure 1 was produced using the code shown below. The acc method from
the graph package returns a vector of all nodes that are accessible from the
given node. Here, it has been used to obtain the complete list of Category’s
dependencies.

> categoryNodes <- c("Category",

+ names (acc(biocDeps, "Category")[[1]1]1))
> categoryGraph <- subGraph(categoryNodes, biocDeps)

> nn <- makeNodeAttrs(categoryGraph, shape="ellipse")

> plot(categoryGraph, nodeAttrs=nn)

In R, there is no easy to way to preview a given package’s dependencies
and estimate the amount of data that needs to be downloaded even though
the install.packages function will search for and install package dependen-
cies if you ask it to by specifying dependencies=TRUE. The getInstallOrder
function provides such a “preview”.

For computing installation order, it is useful to have a single graph rep-
resenting the relationships among all packages in all available repositories.
Below, we create such a graph combining all CRAN and Bioconductor pack-
ages.

> allDeps <- makeDepGraph (repositories(), type="source",
+ keep.builtin=TRUE, dosize=FALSE)
>

Calling getInstallOrder for package GOstats, we see a listing of only
those packages that need to be installed. Your results will be different based
upon your installed packages.

> getInstallOrder ("GOstats", allDeps)

$packages
character (0)

$total.size
numeric (0)

When needed.only=FALSE, the complete dependency list is returned re-

gardless of what packages are currently installed.

> getInstallOrder ("GOstats", allDeps, needed.only=FALSE)

$packages

[1] "methods"

[4] "stats"

[7] "stats4"
[10] "DBI"
[13] "rlang"
[16] "vctrs"
[19] "cachem"
[22] "Rcpp"
[256] "curl"
[28] "mime"
[31] "openssl"
[34] "png"

[37] "bitops"
[40] "GenomeInfoDb"
[43] "Biostrings"

[46] "grid"
[49] "graph"
[62] "XML"

[656] "GSEABase"
[68] "genefilter"
[61] "AnnotationForge"

$total.size
[1] NA

"utils"

"BiocGenerics"

"S4Vectors"
"bit"
"glue"
"blob"
"memoise"
"plogr"
"jsonlite"
n SyS "

IIR6II
"zlibbioc"
"RCurl"
"grDevices"
"KEGGREST"
"lattice"
IIBHII
"xtable"
"splines"
"Category"
"Rgraphviz"

"graphics"
"Biobase"
"IRanges"
"bit64"
"cli"
"fastmap"
"pkgconfig"
"RSQLite"
"tools"
"askpass"
"httr"
"XVector"
"GenomeInfoDbData"
"crayon"
"AnnotationDbi"
"Matrix"
"RBGL"
"annotate"
"survival"
"GO.db"
"GOstats"

The edge directions of the dependency graph can be reversed and the
resulting graph used to determine the set of packages that make use of (even
indirectly) a given package. For example, one might like to know which
packages make use of the methods package. Here is one way to do that:

> allDepsOnMe <- reverseEdgeDirections(allDeps)

> usesMethods <- dijkstra.sp(allDepsOnMe, start="methods")$distance
> usesMethods <- usesMethods[is.finite(usesMethods)]

> length(usesMethods) - 1 ## don't count methods itself

4

[1] 17769

> table (usesMethods)

usesMethods

0 1 2 3 4 5

1 5393 11078 12563 42 2 1
>

> toLatex(sessionInfo())

e R version 4.2.0 RC (2022-04-19 r82224), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

e Running under: Ubuntu 20.04.4 LTS

e Matrix products: default

e BLAS: /home/biocbuild/bbs-3.15-bioc/R/1ib/1libRblas.so

e LAPACK: /home/biocbuild/bbs-3.15-bioc/R/1lib/1ibRlapack.so

e DBase packages: base, datasets, grDevices, graphics, grid, methods,
stats, utils

e Other packages: Biobase 2.56.0, BiocGenerics 0.42.0,
BiocManager 1.30.17, RBGL 1.72.0, RCurl 1.98-1.6, Rgraphviz 2.40.0,
graph 1.74.0, pkgDepTools 1.62.0

e Loaded via a namespace (and not attached): bitops 1.0-7,
compiler 4.2.0, stats4 4.2.0, tools 4.2.0

Figure 1: The dependency graph for the Category package.

