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1 Licensing

Under the Artistic License, you are free to use and redistribute this software for academic and personal use.

2 Variance stabilization in flow cytometry

2.1 Why variance stabilization might be needed

Scientists often compare cell populations (clusters of cells with similar marker expressions) to detect changes
in populations across biological conditions. The between-population changes might help us to diagnose
diseases, develop new drugs and understand the immune system in general. Comparing cell populations in
conventional statistical framework (e.g., t-test, F-test, etc.) often requires variance homogeneity of the cell
populations. Furthermore, algorithms for constructing meta-clustering and templates such as flowMatch [1)2,
4] and FLAME [10] can also use the homogeneity of clusters when creating homogeneous meta-clusters. Hence,
within-population variance stabilization might be beneficial in between-population comparisons, which could
enhance our effort in automating biological discovery based on flow cytometry.

2.2 Our approach

In this software package £lowVS [3], we developed a variance stabilization (VS) method based on maximum
likelihood (ML) estimation, which is built on top of a commonly used inverse hyperbolic since (asinh)
transformation. The choice of asinh function is motivated by its success as a variance stabilizer for microarray
data [6,9]. £1lowVS stabilizes the within-population variances separately for each fluorescence channel z across
a collection of N samples. After transforming z by asinh(z/c), where ¢ is a normalization cofactor, £lowVS
identifies one-dimensional clusters (density peaks) in the transformed channel. Assume that a total of m
1-D clusters are identified from N samples with the i-th cluster having variance o2. Then the asinh(z/c)
transformation works as a variance stabilizer if the variances of the 1-D clusters are approximately equal,
ie., 02 ~ 03 ~ ...~ d2. To evaluate the homogeneity of variance (also known as homoskedasticity), we use
Bartlett’s likelihood-ratio test [5]. From a wide range of cofactors, our algorithm selects one that minimizes
Bartlett’s test statistics, resulting in a transformation with the best possible VS. Note that, in contrast to
other transformation approaches, our algorithm apply the same transformation to corresponding channels
in every sample. flowVS is therefore an explicit VS method that stabilizes within-population variances in
each channel by evaluating the homoskedasticity of clusters with a likelihood-ratio test.

The scope and limitations of flowVS are as follows:

e flowVS is a method for selecting parameters for transformation so that within-population variances
are stabilized. Currently, one dimensional transformation is supported.

e flowVS stabilizes variance separately on each fluorescence channel. The same channel in all samples
will be transformed with the same parameter.

e For each channel, f1owVS stabilizes variance of a collection of flow cytometry samples. Variance can
not be efficiently stabilized from a single sample.

2.3 Related work

Several packages are available in Bioconductor (http://www.bioconductor.org/) for transforming flow cy-
tometry data. The flowCore package provides several transformation routines that transform data using
logarithm, hyperlog, generalized Box-Cox, and biexponential (e.g., logicle and generalized arcsinh) functions.
flowCore also provides several functions to estimate parameters of the transformations, for example, the
estimateLogicle function estimates the parameters for logicle transformation. Current software packages
estimate parameters of transformations in a data-driven manner to maximize the likelihood (flowTrans by
Finak et al. [8]), to satisfy the normality (flowScape by Ray et al. [12]), and to comply with simulations
(FCSTrans by Qian et al. [11]). flowTrans estimates transformation parameters for each sample by maxi-
mizing the likelihood of data being generated by a multivariate-normal distribution on the transformed scale.



flowScape optimizes the normalization factor of asinh transformation by the Jarque-Bera test of normality.
FCSTrans selects the parameters of the linear, logarithm, and logicle transformations with an extensive set of
simulations. However, normalizing data may not necessarily stabilize its variance, e.g., for a Poisson variable
z, \/z + 3/8 is an approximate variance-stabilizer, whereas 2%/3 is a normalizer . Therefore, we consider
an approach built upon the well-known asinh transformation and estimate transformation parameters for
explicitly stabilizing within-population variations.

3 Examples

3.1 Healthy Data (HD)

In the £1lowVS package, we have included a healthy donor (HD) dataset consisting of 12 samples from three
healthy individuals, “A”, “C”, and “D”. From each individual, the samples were drawn on two different days
and two technical replicates were created from each sample (i.e., 3 x 2 x 2 = 12 samples). Each HD sample
was stained using labeled antibodies against CD45, CD3, CD4, CDS8, and CD19 protein markers. Here, an
HD sample “C_4_2” means that it is collected on day 4 from individual “C” and it is the second replicate
on that day. We have identified lymphocytes in each sample of the HD dataset and apply the subsequent
analysis on lymphocytes.

We stabilize within-population variances in each channel of the HD dataset. At first, we load the HD
dataset from flowVS package and estimate the optimum cofactors for CD3 and CD4 channels. The optimum
parameters are identified by the estParamFlowVS function. The function outputs the search intervals and
Bartlett’s statistics at the local optimum cofactor in each interval. The global optimum cofactor is computed
from the local optimum cofactors.

library(flowVS)

data(HD)

cofactors = estParamFlowVS(HD[1:5],channels=c('CD3', 'CD4'))

##

## Channel CD3 : Finding optimum cofactor for asinh transformation
##

it cf range opt cf Bartlett's stat time
##

## [ 0.37, 1.00 ] 0.52 9450.42 2.83
## [ 1.00, 2.72 1] 1.71 9457 .66 2.03
## [ 2o12, 7.39 ] 5.60 8172.71 1.61
## [ 7.39, 20.09 1] 17.09 8355.33 1.99
## [ 20.09, 54.60 ] 33.27 8284.71 1.76
#it [ 54.60, 148.41 ] 117.97 8219.30 1.96
## [ 148.41, 403.43 ] 306.02 5324 .25 1.43
## [ 403.43, 1096.63 ] 430.90 5597.57 2.02
## [ 1096.63, 2980.96 ] 2875.95 3353.36 2.01
## [ 2980.96, 8103.08 1] 7064.65 93.60 2.03
## [ 8103.08, 22026.47 ] 8879.01 433.64 1.66
##

## Optimum cofactor for CD3 : 7064.652

##

##

##

## Channel CD4 : Finding optimum cofactor for asinh transformation



Optimum cofactor for CD3 : 7064.65 Optimum cofactor for CD4 : 5879.78
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Figure 1: Transforming two fluorescence channels in the HD data. Bartlett’s statistics (Y-axis) is computed
from density peaks after data is transformed by different cofactors (X-axis). An optimum cofactor is obtained
where Bartlett’s statistics is minimum (indicated by red circles).

##

#i#t cf range opt cf Bartlett's stat time
##

## [ 0.37, 1.00 ] 0.40 4261.51 1.63
## [ 1.00, 2.72 ] 1.10 4261.65 1.94
##t [ 2o T2y 7.39 1] 2.89 4332.86 2.19
## [ 7.39, 20.09 ] 8.11 4379.35 2.00
## [ 20.09, 54.60 ] 21.28 4351.10 2.20
## [ 54.60, 148.41 ] 57.83 4556.40 2.42
## [ 148.41, 403.43 ] 389.22 44099.60 1.68
## [ 403.43, 1096.63 ] 1058.00 24545.94 1.99
## [ 1096.63, 2980.96 ] 2875.95 5068.62 2.08
## [ 2980.96, 8103.08 1] 5879.78 87.73 1.45
## [ 8103.08, 22026.47 ] 8879.01 1778.80 2.01
##

## Optimum cofactor for CD4 : 5879.785

##

After computing the optimum cofactors for the requested channels, we use transFlowVS function to
actually transform the data by asinh transformation with the cofactors. The density plots show that the
variance of populations are relatively stabilized after the transformation.

## transform CD3 and CD4 channels in all samples
HD.VS = transFlowVS(HD, channels=c('CD3', 'CD4'), cofactors)

## Transforming flowSet by asinh function with supplied cofactors.

## denstity plot (from flowViz package)
densityplot (“CD3+CD4, HD.VS, main="Transfromed CD3 and CD4 channels in HD data")



Transfromed CD3 and CD4 channels in HD data
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Figure 2: The density plots after the data is transformed by asins transformation with the optimum cofactors.



3.2 Immune Tolerance Data (ITN)

We use the Immune Tolerance Network (ITN) dataset from the flowStats package in Bioconductor to
demonstrate the use of flowVS. The ITN dataset is collected from 15 patients. It includes 3 patient groups
with 5 samples each. Each sample was stained using labeled antibodies against CD3, CD4, CD8, CD69 and
HLADr. We identify lymphocytes in each sample of the ITN dataset beforehand by the lymphs function in
flowVs.

## Exzample 2: ITN data from flowStats package

suppressMessages (library(flowStats))

data(ITN)

# tdentify lymphocytes

ITN.lymphs = fsApply(ITN,lymphs, list("FS"=c(200, 600),"SS"=c(0, 400)), "FSC", "SSC",FALSE)
## identify optimum cofactor for CD3 and CD4 channels

cofactors = estParamFlowVS(ITN.lymphs[1:5],channels=c('CD3', 'CD4'))

##

## Channel CD3 : Finding optimum cofactor for asinh transformation
#i#

#i# cf range opt cf Bartlett's stat time
##

## [ 0.37, 1.00 1] 0.83 518.03 2.26
## [ 1.00, 2.72 ] 2.62 349.48 1.57
## [ B T2y 7.39 1] 3.58 324.14 1.85
## [ 7.39, 20.09 ] 18.23 593.23 1.44
## [ 20.09, 54.60 ] 22.01 470.14 1.76
## [ 54.60, 148.41 ] 59.83 2966.10 1.70
## [ 148.41, 403.43 ] 389.22 465.22 1.51
## [ 403.43, 1096.63 ] 691.32 372.03 1.73
## [ 1096.63, 2980.96 ] 1201.64 404.25 1.33
## [ 2980.96, 8103.08 ] 3266.40 456.17 1.65
## [ 8103.08, 22026.47 ] 8879.01 467.18 1.38
##

## Optimum cofactor for CD3 : 3.580238

#i#

##

##

## Channel CD4 : Finding optimum cofactor for asinh transformation
##

#H# cf range opt cf Bartlett's stat time
#i#

## [ 0.37, 1.00 ] 0.85 4592.92 1.46
## [ 1.00, 2.72 ] 2.62 3979.68 1.86
## [ 2o 12 7.39 1] 7.22 1820.98 1.91
## [ 7.39, 20.09 ] 19.38 186.04 1.78
## [ 20.09, 54.60 ] 23.97 97.07 1.46
## [ 54.60, 148.41 ] 59.83 962.15 1.85
## [ 148.41, 403.43 ] 162.62 3852.96 1.55
## [ 403.43, 1096.63 ] 442.06 5076.06 2.04
## [ 1096.63, 2980.96 ] 2091.30 5447 .12 1.77
## [ 2980.96, 8103.08 ] 3266.40 5459.34 1.89
## [ 8103.08, 22026.47 ] 8879.01 5466.71 1.50
##

## Optimum cofactor for CD4 : 23.97044

##




Optimum cofactor for CD3 : 3.58 Optimum cofactor for CD4 : 23.97

400
1
800
1

Bartlett's statistics
400
1

Bartlett's statistics

360
1

340
1

T T T T T T T 1 T T T T T
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 15 20 25 30 35

Cofactors Cofactors

Figure 3: Transforming two fluorescence channels in the ITN data. Bartlett’s statistics (Y-axis) is computed
from density peaks after data is transformed by different cofactors (X-axis). An optimum cofactor is obtained
where Bartlett’s statistics is minimum (indicated by red circles).

After computing the optimum cofactors for the requested channels, we use transFlowVS function to
actually transform the data by asinh transformation with the cofactors. The density plots show that the
variance of populations are relatively stabilized after the transformation.

ITN.VS = transFlowVS(ITN.lymphs, channels=c('CD3', 'CD4'), cofactors)

## Transforming flowSet by asinh function with supplied cofactors.

densityplot ("CD3+CD4, ITN.VS, main="Transfromed CD3 and CD4 channels in ITN data")

4 Variance stabilization in microarray data

The VS approach based on optimizing Bartlett’s statistics can also be used to stabilize variance in microarray
data. Assume that the expressions of m genes are measured from N samples in a microarray experiment.
After transforming the data by the asinh function, the mean y; and variance o of the ith gene g; are com-
puted from the expressions of g; in all samples. We then stabilizes the variances of the genes by transforming
data using the asinh function with an optimum choice of cofactor. Unlike FC, a single cofactor is selected
for all genes in microarrays.

The function microVS performs the variance stabilization in microarray data. This function transforms
a microarray data matrix z by asinh(z/c) transformation where c is a normalizing cofactor. The cofactor
is searched in the range [cfLow, cfHigh] and an optimum cofactor is obtained for which the transformed
data is variance stabilized. The optimum cofactor is obtained by minimizing Bartlett’s test statistics for
homogeneity of variance.



Transfromed CD3 and CD4 channels in ITN data
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Figure 4: The density plots after the data is transformed by asins transformation with the optimum cofactors.



4.1 Example

We have applied the microVS to the publicly available Kidney microarray data provided by Huber et al. ﬂgﬂ
The Kidney data reports the expression of 8704 genes from two neighboring parts of a kidney tumor by using
c¢DNA microarray technology. For different values of the cofactor, lowVS transforms the Kidney data with
the asinh function and identifies the optimum cofactor by minimizing Bartlett’s statistics. The figure below
shows that a minimum value of Bartlett’s statistics is obtained when the cofactor is set to exp(6) (~ 400).
The optimum cofactor is then used with the asinh function to transform the Kidney data.

suppressMessages (library(vsn))
data(kidney)
kidney.microVS = microVS(exprs(kidney)) #variance stabilization

##

## Finding optimum cofactor for asinh transformation

iR S e e e e e e e e e
## cofactor(log scale) Bartlett's stat

#H#

i 0 29380.95

## 1 26322.83

## 2 22577.36

#i# 3 18128.08

## 4 13515.48

Hit 5 10073.42

## 6 9005.62

#i# 7 10362.98

#i# 8 13159.53

## 9 16115.28

## 10 18483.08

##

## Optimum cofactor : exp(6)

I R R



Optimum cofactor: exp(6)
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To take a closer look at the transformed data by microVS, we plot the variances of genes against the
ranks of their means. For this purpose, we included a plotting function plotMeanSd that is modified from the
meanSdPlot function in vsn package. We compare the performance of microVS and vsn in the figures below
by using the plotMeanSd function. Here, the ranks of means distribute the data evenly along the z-axis and
thus make it easy to visualize the homogeneity of variances. We also show the running median estimator of
standard deviation by the red lines. Both vsn and microVS remove the mean-variance dependence because
the red lines are approximately horizontal for both transformations. Hence, f1owVS performs at least as well
as a state-of-the-art approach developed for microarray data.

suppressMessages (library(vsn))

data(kidney)

kidney.vsn = vsn2(exprs(kidney))

plotMeanSd(kidney.microVS, main="Kidney data: VS by flowVS")
plotMeanSd(exprs(kidney.vsn), main="Kidney data: VS by vsn")
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Kidney data: VS by flowVS

Standard deviation
00 0.2 04 06 0.8

0 2000 4000 6000 8000

Rank of means (ascending order)

Kidney data: VS by vsn

v _,
—
[
S
8 S -
>\—|
(]
©
©
I
o] v _|
c O
]
)
(0))]
o _|
© | | | | |

0 2000 4000 6000 8000

Rank of means (ascending order)

Figure 5: Variance stabilization of the Kidney microarray data by flowVs and vsn packages.
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5 Sessioninfo

Here is the output of sessionInfo on the system on which this document was compiled:

toLatex(sessionInfo())

e R version 4.2.0 RC (2022-04-19 r82224), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

)

e Running under: Ubuntu 20.04.4 LTS

e Matrix products: default

e BLAS: /home/biocbuild/bbs-3.15-bioc/R/1ib/1libRblas.so

e LAPACK: /home/biocbuild/bbs-3.15-bioc/R/1ib/1libRlapack.so

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: Biobase 2.56.0, BiocGenerics 0.42.0, flowCore 2.8.0, flowStats 4.8.0, flowVS 1.28.0,
flowViz 1.60.0, knitr 1.38, lattice 0.20-45, vsn 3.64.0

e Loaded via a namespace (and not attached): BiocManager 1.30.17, DBI 1.1.2, DEoptimR 1.0-11,
IDPmisc 1.1.20, KernSmooth 2.23-20, MASS 7.3-57, Matrix 1.4-1, R6 2.5.1, RColorBrewer 1.1-3,
RCurl 1.98-1.6, RProtoBufLib 2.8.0, Rcpp 1.0.8.3, ReppParallel 5.1.5, Rgraphviz 2.40.0,

S4Vectors 0.34.0, XML 3.99-0.9, affy 1.74.0, affyio 1.66.0, assertthat 0.2.1, aws.s3 0.3.21,
aws.signature 0.6.0, base64enc 0.1-3, bitops 1.0-7, cli 3.3.0, cluster 2.1.3, colorspace 2.0-3,

compiler 4.2.0, corpcor 1.6.10, crayon 1.5.1, curl 4.3.2, cytolib 2.8.0, data.table 1.14.2, deSolve 1.32,
digest 0.6.29, dplyr 1.0.8, ellipsis 0.3.2, evaluate 0.15, fansi 1.0.3, fda 5.5.1, fds 1.8,

flowWorkspace 4.8.0, generics 0.1.2, ggplot2 3.3.5, glue 1.6.2, graph 1.74.0, grid 4.2.0, gtable 0.3.0,
hdrcde 3.4, hexbin 1.28.2, highr 0.9, httr 1.4.2, jpeg 0.1-9, ks 1.13.5, latticeExtra 0.6-29,

lifecycle 1.0.1, limma 3.52.0, magrittr 2.0.3, matrixStats 0.62.0, mclust 5.4.9, mnormt 2.0.2,

munsell 0.5.0, mvtnorm 1.1-3, ncdfFlow 2.42.0, parallel 4.2.0, pcaPP 2.0-1, pillar 1.7.0,

pkgconfig 2.0.3, png 0.1-7, pracma 2.3.8, preprocessCore 1.58.0, purrr 0.3.4, rainbow 3.6, rlang 1.0.2,
robustbase 0.95-0, rrcov 1.7-0, scales 1.2.0, splines 4.2.0, stats4 4.2.0, stringi 1.7.6, stringr 1.4.0,
tibble 3.1.6, tidyselect 1.1.2, tmvnsim 1.0-2, tools 4.2.0, utf8 1.2.2, vectrs 0.4.1, xfun 0.30, xml2 1.3.3,
zlibbioc 1.42.0
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