
flagme: Fragment-level analysis of

GC-MS-based metabolomics data

Mark Robinson

mrobinson@wehi.edu.au

Riccardo Romoli

riccardo.romoli@unifi.it

April 26, 2022

1 Introduction

This document gives a brief introduction to the flagme package, which is designed to process, visualise and sta-
tistically analyze sets of GC-MS samples. The ideas discussed here were originally designed with GC-MS-based
metabolomics in mind, but indeed some of the methods and visualizations could be useful for LC-MS data sets.
The fragment-level analysis though, takes advantage of the rich fragmentation patterns observed from electron
interaction (EI) ionization.

There are many aspects of data processing for GC-MS data. Generally, algorithms are run separately on each
sample to detect features, or peaks (e.g. AMDIS). Due to retention time shifts from run-to-run, an alignment
algorithm is employed to allow the matching of the same feature across multiple samples. Alternatively, if known
standards are introduced to the samples, retention indices can be computed for each peak and used for alignment.
After peaks are matched across all samples, further processing steps are employed to create a matrix of abundances,
leading into detecting di�erences in abundance.

Many of these data processing steps are prone to errors and they often tend to be black boxes. But, with e�ective
exploratory data analysis, many of the pitfalls can be avoided and any problems can be �xed before proceeding to
the downstream statistical analysis. The package provides various visualizations to ensure the methods applied are
not black boxes.

The flagme package gives a complete suite of methods to go through all common stages of data processing. In
addition, R is especially well suited to the downstream data analysis tasks since it is very rich in analysis tools and
has excellent visualization capabilities. In addition, it is freely available (www.r-project.org), extensible and there
is a growing community of users and developers. For routine analyses, graphical user interfaces could be designed.

2 Reading and visualizing GC-MS data

To run these examples, you must have the gcspikelite package installed. This data package contains several
GC-MS samples from a spike-in experiment we designed to interrogate data processing methods. So, �rst, we load
the packages:

To load the data and corresponding peak detection results, we simply create vectors of the �le-names and create
a peakDataset object. Note that we can speed up the import time by setting the retention time range to a subset
of the elution, as below:

> gcmsPath <- paste(find.package("gcspikelite"), "data", sep="/")

> data(targets)

> cdfFiles <- paste(gcmsPath, targets$FileName, sep="/")

1

> eluFiles <- gsub("CDF", "ELU", cdfFiles)

> pd <- peaksDataset(cdfFiles, mz=seq(50,550), rtrange=c(7.5,8.5))

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_468.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_474.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_475.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_485.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_493.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_496.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_470.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_471.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_479.CDF

> pd <- addAMDISPeaks(pd, eluFiles)

Reading retention time range: 7.500133 8.499917

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_468.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_474.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_475.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_485.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_493.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_496.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_470.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_471.ELU ... Done.

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_479.ELU ... Done.

> pd

An object of class "peaksDataset"

9 samples: 0709_468 0709_474 0709_475 0709_485 0709_493 0709_496 0709_470 0709_471 0709_479

501 m/z bins - range: (50 550)

scans: 175 175 175 175 175 174 175 175 175

peaks: 24 23 26 20 27 24 24 25 21

Here, we have added peaks from AMDIS, a well known and mature algorithm for deconvolution of GC-
MS data. For GC-TOF-MS data, we have implemented a parser for the ChromaTOF output (see the analogous
addChromaTOFPeaks function). The addXCMSPeaks allows to use all the XCMS peak-picking algorithms; using this
approach it is also possible to elaborate the raw data �le from within R instead of using an external software. In
particular the function reads the raw data using XCMS, group each extracted ion according to their retention time
using CAMERA and attaches them to an already created peaksDataset object:

> pd.2 <- peaksDataset(cdfFiles[1:3], mz = seq(50, 550), rtrange = c(7.5, 8.5))

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_468.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_474.CDF

Reading /home/biocbuild/bbs-3.15-bioc/R/library/gcspikelite/data/0709_475.CDF

> cwt <- xcms::CentWaveParam(snthresh = 3, ppm = 3000, peakwidth = c(3, 40),

+ prefilter = c(3, 100), fitgauss = FALSE, integrate = 2, noise = 0,

+ extendLengthMSW = TRUE, mzCenterFun = "wMean")

> mfp <- xcms::MatchedFilterParam(fwhm = 10, snthresh = 5)

> pd.2 <- addXCMSPeaks(cdfFiles[1:3], pd.2, settings = mfp, minintens = 100,

+ multipleMatchedFilter = FALSE, multipleMatchedFilterParam =

+ list(fwhm = c(5, 10, 20), rt_abs = 2, mz_abs = 0.1)

+)

2

Start peakPicking

peakPicking Done

Start grouping after retention time.

Created 155 pseudospectra.

Start grouping after retention time.

Created 151 pseudospectra.

Start grouping after retention time.

Created 152 pseudospectra.

> pd.2

An object of class "peaksDataset"

3 samples: 0709_468 0709_474 0709_475

418 m/z bins - range: (51 468)

scans: 175 175 175

peaks: 52 58 52

The possibility to work using computer cluster will be added in the future.
Regardless of platform and peak detection algorithm, a useful visualization of a set of samples is the set of total

ion currents (TIC), or extracted ion currents (XICs). To view TICs, you can call:

> plotChrom(pd, rtrange=c(7.5,8.5), plotPeaks=TRUE, plotPeakLabels=TRUE,

+ max.near=8, how.near=0.5, col=rep(c("blue","red","black"), each=3))

Note here the little hashes represent the detected peaks and are labelled with an integer index. One of the main
challenges is to match these peak detections across several samples, given that the appear at slightly di�erent times
in di�erent runs.

For XICs, you need to give the indices (of pd@mz, the grid of mass-to-charge values) that you want to plot
through the mzind argument. This could be a single ion (e.g. mzind=24) or could be a range of indices if multiple
ions are of interest (e.g. mzind=c(24,25,98,99)).

There are several other features within the plot command on peaksDataset objects that can be useful. See
?plot (and select the �agme version) for full details.

Another useful visualization, at least for individual samples, is a 2D heatmap of intensity. Such plots can be
enlightening, especially when peak detection results are overlaid. For example (with detected fragment peaks from
AMDIS shown in white):

> r <- 1

> plotImage(pd, run=r, rtrange=c(7.5,8.5), main="")

> v <- which(pd@peaksdata[[r]] > 0, arr.ind=TRUE) # find detected peaks

> abline(v=pd@peaksrt[[r]])

> points(pd@peaksrt[[r]][v[,2]], pd@mz[v[,1]], pch=19, cex=.6, col="white")

3 Pairwise alignment with dynamic programming algorithm

One of the �rst challenges of GC-MS data is the matching of detected peaks (i.e. metabolites) across several samples.
Although gas chromatography is quite robust, there can be some drift in the elution time of the same analyte from
run to run. We have devised a strategy, based on dynamic programming, that takes into account both the similarity
in spectrum (at the apex of the called peak) and the similarity in retention time, without requiring the identity
of each peak; this matching uses the data alone. If each sample gives a `peak list' of the detected peaks (such
as that from AMDIS that we have attached to our peaksDataset object), the challenge is to introduce gaps into
these lists such that they are best aligned. From this a matrix of retention times or a matrix of peak abundances

3

can be extracted for further statistical analysis, visualization and interpretation. For this matching, we created a
procedure analogous to a multiple sequence alignment.

To highlight the dynamic programming-based alignment strategy, we �rst illustrate a pairwise alignment of two
peak lists. This example also illustrates the selection of parameters necessary for the alignment. From the data read
in previously, let us consider the alignment of two samples, denoted 0709_468 and 0709_474. First, a similarity
matrix for two samples is calculated. This is calculated based on a scoring function and takes into account the
similarity in retention time and in the similarity of the apex spectra, according to:

Sij(D) =

∑K
k=1 xikyjk√∑K

k=1 x
2
ik ·
∑K

k=1 y
2
jk

· exp
(
−1

2

(ti − tj)
2

D2

)
where i is the index of the peak in the �rst sample and j is the index of the peak in the second sample, xi and yj are
the spectra vectors and ti and tj are their respective retention times. As you can see, there are two components to
the similarity: spectra similarity (left term) and similarity in retention time (right term). Of course, other metrics
for spectra similarity are feasible. Ask the author if you want to see other metrices implemented. We have some
non-optimized code for a few alternative metrics.

The peak alignment algorithm, much like sequence alignments, requires a gap parameter to be set, here a number
between 0 and 1. A high gap penalty discourages gaps when matching the two lists of peaks and a low gap penalty
allows gaps at a very low cost. We �nd that a gap penalty in the middle range (0.4-0.6) works well for GC-MS peak
matching. Another parameter, D, modulates the impact of the di�erence in retention time penalty. A large value
for D essentially eliminates the e�ect. Generally, we set this parameter to be a bit larger than the average width of
a peak, allowing a little �exibility for retention time shifts between samples. Keep in mind the D parameter should
be set on the scale (i.e. seconds or minutes) of the peaksrt slot of the peaksDataset object. The next example
shows the e�ect of the gap and D penalty on the matching of a small ranges of peaks.

> Ds <- c(0.1, 10, 0.1, 0.1)

> gaps <- c(0.5, 0.5, 0.1, 0.9)

> par(mfrow=c(2,2), mai=c(0.8466,0.4806,0.4806,0.1486))

> for(i in 1:4){

+ pa <- peaksAlignment(pd@peaksdata[[1]], pd@peaksdata[[2]],

+ pd@peaksrt[[1]], pd@peaksrt[[2]], D=Ds[i],

+ gap=gaps[i], metric=1, type=1, compress = FALSE)

+ plotAlignment(pa, xlim=c(0, 17), ylim=c(0, 16), matchCol="yellow",

+ main=paste("D=", Ds[i], " gap=", gaps[i], sep=""))

+ }

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 0.1 , metric= 1 , type= 1

[peaksAlignment] 21 matched. Similarity= 0.2308905

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 10 , metric= 1 , type= 1

[peaksAlignment] 21 matched. Similarity= 0.2180835

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.1 D= 0.1 , metric= 1 , type= 1

[peaksAlignment] 15 matched. Similarity= 0.01170268

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.9 D= 0.1 , metric= 1 , type= 1

[peaksAlignment] 22 matched. Similarity= 0.2785359

You might ask: is the �agme package useful without peak detection results? Possibly. There have been some
developments in alignment (generally on LC-MS proteomics experiments) without peak/feature detection, such
as Prince et al. 2006, where a very similar dynamic programming is used for a pairwise alignment. We have
experimented with alignments without using the peaks, but do not have any convincing results. It does introduce a
new set of challenges in terms of highlighting di�erentially abundant metabolites. However, in the peaksAlignment
routine above (and those mentioned below), you can set usePeaks=FALSE in order to do scan-based alignments
instead of peak-based alignments. In addition, the flagme package may be useful simply for its bare-bones dynamic
programming algorithm.

4

3.1 Normalizing retention time score to drift estimates

In what is mentioned above for pairwise alignments, we are penalizing for di�erences in retention times that are
non-zero. But, as you can see from the TICs, some di�erences in retention time are consistent. For example, all
of the peaks from sample 0709_485 elute at later times than peaks from sample 0709_496. We should be able to
estimate this drift and normalize the time penalty to that estimate, instead of penalizing to zero. That is, we should
replace ti − tj with ti − tj − d̂ij where d̂ij is the expected drift between peak i of the �rst sample and peak j of the
second sample.

More details coming soon.

3.2 Imputing location of undetected peaks

One goal of the alignment leading into downstream data analyses is the generation of a table of abundances for each
metabolite across all samples. As you can see from the TICs above, there are some low intensity peaks that fall
below detection in some but not all samples. Our view is that instead of inserting arbitrary low constants (such as 0
or half the detection limit) or imputing the intensities post-hoc or having missing data in the data matrices, it is best
to return to the area of the where the peak should be and give some kind of abundance. The alignments themselves
are rich in information with respect to the location of undetected peaks. We feel this is a more conservative and
statistically valid approach than introducing arbitrary values.

More details coming soon.

4 Multiple alignment of several experimental groups

Next, we discuss the multiple alignment of peaks across many samples. With replicates, we typically do an alignment
within replicates, then combine these together into a summarized form. This cuts down on the computational cost.
For example, consider 2 sets of samples, each with 5 replicates. Aligning �rst within replicates requires 10+10+1
total alignments whereas an all-pairwise alignment requires 45 pairwise alignments. In addition, this allows some
�exibility in setting di�erent gap and distance penalty parameters for the within alignment and between alignment.
An example follows.

> print(targets)

FileName Group

1 0709_468.CDF mmA

2 0709_474.CDF mmA

3 0709_475.CDF mmA

4 0709_485.CDF mmC

5 0709_493.CDF mmC

6 0709_496.CDF mmC

7 0709_470.CDF mmD

8 0709_471.CDF mmD

9 0709_479.CDF mmD

> ma <- multipleAlignment(pd, group=targets$Group, wn.gap=0.5, wn.D=.05,

+ bw.gap=.6, bw.D=0.05, usePeaks=TRUE, filterMin=1,

+ df=50, verbose=FALSE, metric = 1, type = 1) # bug

[clusterAlignment] Aligning 0709_468 to 0709_474

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 22 matched. Similarity= 0.2816753

[clusterAlignment] Aligning 0709_468 to 0709_475

[peaksAlignment] Comparing 24 peaks to 26 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

5

[peaksAlignment] 20 matched. Similarity= 0.1618763

[clusterAlignment] Aligning 0709_474 to 0709_475

[peaksAlignment] Comparing 23 peaks to 26 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 20 matched. Similarity= 0.1831043

[progressiveAlignment] Doing merge -1 -3

[progressiveAlignment] left.runs: 1 , right.runs: 3

[progressiveAlignment] Doing merge -2 1

[progressiveAlignment] left.runs: 2 , right.runs: 1 3

[progressiveAlignment] (dot=50) going to 23 :

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 7981188 426.3 12177321 650.4 12177321 650.4

Vcells 14787456 112.9 38509077 293.9 38509067 293.9

[clusterAlignment] Aligning 0709_485 to 0709_493

[peaksAlignment] Comparing 20 peaks to 27 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 20 matched. Similarity= 0.2221932

[clusterAlignment] Aligning 0709_485 to 0709_496

[peaksAlignment] Comparing 20 peaks to 24 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 18 matched. Similarity= 0.2047329

[clusterAlignment] Aligning 0709_493 to 0709_496

[peaksAlignment] Comparing 27 peaks to 24 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 22 matched. Similarity= 0.2446219

[progressiveAlignment] Doing merge -4 -6

[progressiveAlignment] left.runs: 4 , right.runs: 6

[progressiveAlignment] Doing merge -5 1

[progressiveAlignment] left.runs: 5 , right.runs: 4 6

[progressiveAlignment] (dot=50) going to 27 :

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 7981296 426.3 12177321 650.4 12177321 650.4

Vcells 14790364 112.9 38509077 293.9 38509067 293.9

[clusterAlignment] Aligning 0709_470 to 0709_471

[peaksAlignment] Comparing 24 peaks to 25 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 23 matched. Similarity= 0.2891437

[clusterAlignment] Aligning 0709_470 to 0709_479

[peaksAlignment] Comparing 24 peaks to 21 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 18 matched. Similarity= 0.1674945

[clusterAlignment] Aligning 0709_471 to 0709_479

[peaksAlignment] Comparing 25 peaks to 21 peaks -- gap= 0.5 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 20 matched. Similarity= 0.165173

[progressiveAlignment] Doing merge -8 -9

[progressiveAlignment] left.runs: 8 , right.runs: 9

[progressiveAlignment] Doing merge -7 1

[progressiveAlignment] left.runs: 7 , right.runs: 8 9

[progressiveAlignment] (dot=50) going to 24 :

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 7981433 426.3 12177321 650.4 12177321 650.4

Vcells 14793113 112.9 38509077 293.9 38509067 293.9

[clusterAlignment] Aligning to

[peaksAlignment] Comparing 31 peaks to 29 peaks -- gap= 0.6 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 26 matched. Similarity= 0.3217042

[clusterAlignment] Aligning to

[peaksAlignment] Comparing 31 peaks to 28 peaks -- gap= 0.6 D= 0.05 , metric= 1 , type= 1

6

[peaksAlignment] 26 matched. Similarity= 0.2240976

[clusterAlignment] Aligning to

[peaksAlignment] Comparing 29 peaks to 28 peaks -- gap= 0.6 D= 0.05 , metric= 1 , type= 1

[peaksAlignment] 26 matched. Similarity= 0.2825078

[progressiveAlignment] Doing merge -1 -3

[progressiveAlignment] left.runs: 1 , right.runs: 3

[progressiveAlignment] Doing merge -2 1

[progressiveAlignment] left.runs: 2 , right.runs: 1 3

[progressiveAlignment] (dot=50) going to 29 :

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 7982934 426.4 12177321 650.4 12177321 650.4

Vcells 14844729 113.3 38509077 293.9 38509067 293.9

> ma

An object of class "multipleAlignment"

3 groups: 3 3 3 samples, respectively.

35 merged peaks

If you set verbose=TRUE, many nitty-gritty details of the alignment procedure are given. Next, we can take the
alignment results and overlay it onto the TICs, allowing a visual inspection.

> plotChrom(pd, rtrange=c(7.5,8.5), runs=ma@betweenAlignment@runs,

+ mind=ma@betweenAlignment@ind, plotPeaks=TRUE,

+ plotPeakLabels=TRUE, max.near=8, how.near=.5,

+ col=rep(c("blue","red","black"), each=3))

> mp <- correlationAlignment(object=pd.2, thr=0.85, D=20, penality=0.2,

+ normalize=TRUE, minFilter=1)

> mp

4.1 Gathering results

The alignment results can be extracted from the multipleAlignment object as:

> ma@betweenAlignment@runs

[1] 5 4 6 2 1 3 7 8 9

> ma@betweenAlignment@ind

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 1 1 1 1 1 1 1 1

[2,] 2 NA NA 2 2 2 2 2 NA

[3,] 3 2 2 3 3 3 3 3 2

[4,] 4 3 3 4 4 4 4 4 3

[5,] 5 NA 4 NA 5 NA 5 5 NA

[6,] 6 4 5 5 6 5 6 6 4

[7,] NA NA NA 6 7 NA NA NA NA

[8,] 7 5 6 7 8 6 7 7 5

[9,] 8 6 NA 8 9 7 NA NA NA

[10,] 9 7 7 9 10 8 NA 8 6

[11,] NA NA NA NA NA NA 8 NA 7

7

[12,] 10 8 8 10 11 NA 9 9 8

[13,] 11 NA NA NA NA NA NA NA NA

[14,] 12 NA NA 11 12 9 NA 10 9

[15,] 13 9 9 NA 13 NA NA 11 10

[16,] 14 10 NA 12 14 10 10 12 11

[17,] 15 11 10 13 15 11 11 13 12

[18,] 16 NA 11 NA 16 12 12 14 NA

[19,] 17 NA 12 NA NA NA NA NA NA

[20,] 18 12 13 14 NA 13 13 15 13

[21,] 19 NA 14 NA NA 14 14 16 14

[22,] 20 13 15 15 17 15 15 17 15

[23,] NA NA NA 16 NA NA 16 NA NA

[24,] 21 14 16 17 18 16 17 18 16

[25,] NA 15 17 18 19 17 18 19 17

[26,] 22 NA 18 NA NA 18 NA NA NA

[27,] 23 16 19 19 20 19 19 20 18

[28,] NA NA 20 NA NA NA NA 21 19

[29,] 24 17 21 20 NA 20 20 22 NA

[30,] NA NA NA NA 21 21 21 NA NA

[31,] 25 18 22 21 22 22 22 23 NA

[32,] NA NA NA NA NA 23 NA NA NA

[33,] 26 19 23 22 23 24 23 24 20

[34,] NA NA NA NA NA 25 NA NA NA

[35,] 27 20 24 23 24 26 24 25 21

This table would suggest that matched peak 8 (see numbers below the TICs in the �gure above) corresponds to
detected peaks 9, 12, 11 in runs 4, 5, 6 and so on, same as shown in the above plot.

In addition, you can gather a list of all the merged peaks with the gatherInfo function, giving elements for
the retention times, the detected fragment ions and their intensities. The example below also shows the how to
construct a table of retention times of the matched peaks (No attempt is made here to adjust retention times onto
a common scale. Instead, the peaks are matched to each other on their original scale). For example:

> outList <- gatherInfo(pd,ma)

> outList[[8]]

$rt

mmC.5 mmC.4 mmC.6 mmA.2 mmA.1 mmA.3 mmD.7 mmD.8

7.694983 7.716883 7.694267 7.713550 7.708567 7.648733 7.702967 7.701717

mmD.9

7.713933

$mz

[1] 58 59 66 72 73 74 75 79 89 104 116 133 147 148 188 204

$data

mmC.5 mmC.4 mmC.6 mmA.2 mmA.1 mmA.3 mmD.7 mmD.8 mmD.9

[1,] 0 0 16656 0 0 0 14648 0 0

[2,] 5740 4717 5699 5113 4425 0 4855 4557 4728

[3,] 5633 4824 5475 3926 5146 0 4831 3354 4783

[4,] 4909 3931 5123 3680 3910 0 4051 3427 3907

[5,] 75336 69832 77784 61816 65680 0 65912 52848 61560

[6,] 8067 7367 9000 6705 6185 0 6642 6235 7088

8

[7,] 29936 27440 29256 26376 23328 0 28016 26304 27184

[8,] 0 0 0 0 0 0 38712 0 0

[9,] 6213 5886 7266 5617 5347 0 5173 3946 5659

[10,] 15490 14203 17408 13173 13808 0 12852 9816 12492

[11,] 6447 5440 7809 5417 5525 0 5577 4504 5201

[12,] 3583 3334 4461 3539 3730 0 3599 2436 3893

[13,] 24600 24296 28672 21864 20016 0 21904 17896 22400

[14,] 4473 4299 4918 4413 3430 0 3006 3335 3851

[15,] 17208 16208 18224 14433 14751 0 14731 10680 14061

[16,] 8053 7692 8977 6878 6667 0 6935 5149 6830

> rtmat <- matrix(unlist(lapply(outList,.subset,"rt"), use.names=FALSE),

+ nr=length(outList), byrow=TRUE)

> colnames(rtmat) <- names(outList[[1]]$rt); rownames(rtmat) <- 1:nrow(rtmat)

> round(rtmat, 3)

mmC.5 mmC.4 mmC.6 mmA.2 mmA.1 mmA.3 mmD.7 mmD.8 mmD.9

1 7.512 7.534 7.506 7.531 7.526 7.540 7.520 7.519 7.531

2 7.535 NA NA 7.559 7.549 7.557 7.543 7.547 NA

3 7.558 7.580 7.551 7.576 7.566 7.574 7.560 7.565 7.577

4 7.575 7.597 7.569 7.588 7.583 7.592 7.577 7.582 7.594

5 7.586 NA 7.586 NA 7.600 NA 7.594 7.599 NA

6 7.615 7.614 7.614 7.616 7.617 7.614 7.617 7.610 7.617

7 NA NA NA 7.691 7.663 NA NA NA NA

8 7.695 7.717 7.694 7.714 7.709 7.649 7.703 7.702 7.714

9 7.741 7.728 NA 7.736 7.783 7.712 NA NA NA

10 7.804 7.803 7.711 7.799 7.800 7.803 NA 7.805 7.805

11 NA NA NA NA NA NA 7.806 NA 7.817

12 7.809 7.825 7.803 7.828 7.823 NA 7.812 7.816 7.823

13 7.849 NA NA NA NA NA NA NA NA

14 7.946 NA NA 7.942 7.880 7.826 NA 7.907 7.874

15 7.958 7.946 7.951 NA 7.943 NA NA 7.936 7.943

16 7.969 7.974 NA 7.976 7.966 7.975 7.966 7.965 7.977

17 7.986 8.008 7.980 7.999 7.994 7.997 7.989 7.993 8.000

18 8.009 NA 8.003 NA 8.011 8.009 8.012 8.010 NA

19 8.049 NA 8.043 NA NA NA NA NA NA

20 8.061 8.077 8.060 8.079 NA 8.077 8.069 8.068 8.080

21 8.107 NA 8.100 NA NA 8.095 8.086 8.085 8.091

22 8.204 8.111 8.111 8.114 8.109 8.112 8.109 8.108 8.114

23 NA NA NA 8.182 NA NA 8.172 NA NA

24 8.244 8.254 8.237 8.251 8.246 8.249 8.246 8.245 8.251

25 NA 8.266 8.254 8.285 8.263 8.283 8.280 8.262 8.263

26 8.301 NA 8.294 NA NA 8.312 NA NA NA

27 8.324 8.334 8.323 8.337 8.332 8.335 8.326 8.330 8.337

28 NA NA 8.329 NA NA NA NA 8.342 8.400

29 8.352 8.363 8.352 8.359 NA 8.357 8.360 8.359 NA

30 NA NA NA NA 8.360 8.375 8.377 NA NA

31 8.392 8.403 8.386 8.399 8.394 8.403 8.395 8.393 NA

32 NA NA NA NA NA 8.420 NA NA NA

33 8.432 8.437 8.432 8.434 8.434 8.437 8.435 8.433 8.440

34 NA NA NA NA NA 8.443 NA NA NA

35 8.461 8.477 8.460 8.474 8.469 8.472 8.469 8.468 8.474

9

5 Future improvements and extension

There are many procedures that we have implemented in our investigation of GC-MS data, but have not made part
of the package just yet. Some of the most useful procedures will be released, such as:

1. Parsers for other peak detection algorithms (e.g. MzMine) and parsers for other alignment procedures (e.g.
SpectConnect) and perhaps retention indices procedures.

2. More convenient access to the alignment information and abundance table.

3. Statistical analysis of di�erential metabolite abundance.

4. Fragment-level analysis, an alternative method to summarize abundance across all detected fragments of a
metabolite peak.

6 References

See the following for further details:

1. Robinson MD. Methods for the analysis of gas chromatography - mass spectrometry data. Ph.D. Thesis. Oc-
tober 2008. Department of Medical Biology (Walter and Eliza Hall Institute of Medical Research), University
of Melbourne.

2. Robinson MD, De Souza DP, Keen WW, Saunders EC, McConville MJ, Speed TP, Liki¢ VA. (2007) A dynamic

programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry

experiments. BMC Bioinformatics. 8:419.

3. Prince JT, Marcotte EM (2006) Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered

bijective interpolated warping. Anal Chem. 78(17):6140-52.

7 This vignette was built with/at ...

> sessionInfo()

R version 4.2.0 RC (2022-04-19 r82224)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.4 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

10

[8] base

other attached packages:

[1] flagme_1.52.0 CAMERA_1.52.0 xcms_3.18.0

[4] MSnbase_2.22.0 ProtGenerics_1.28.0 S4Vectors_0.34.0

[7] mzR_2.30.0 Rcpp_1.0.8.3 Biobase_2.56.0

[10] BiocGenerics_0.42.0 BiocParallel_1.30.0 gcspikelite_1.33.0

loaded via a namespace (and not attached):

[1] bitops_1.0-7 matrixStats_0.62.0

[3] doParallel_1.0.17 RColorBrewer_1.1-3

[5] GenomeInfoDb_1.32.0 backports_1.4.1

[7] tools_4.2.0 utf8_1.2.2

[9] R6_2.5.1 affyio_1.66.0

[11] KernSmooth_2.23-20 rpart_4.1.16

[13] Hmisc_4.7-0 DBI_1.1.2

[15] colorspace_2.0-3 nnet_7.3-17

[17] gridExtra_2.3 tidyselect_1.1.2

[19] compiler_4.2.0 MassSpecWavelet_1.62.0

[21] preprocessCore_1.58.0 graph_1.74.0

[23] cli_3.3.0 htmlTable_2.4.0

[25] SparseM_1.81 DelayedArray_0.22.0

[27] caTools_1.18.2 checkmate_2.1.0

[29] scales_1.2.0 DEoptimR_1.0-11

[31] robustbase_0.95-0 affy_1.74.0

[33] RBGL_1.72.0 stringr_1.4.0

[35] digest_0.6.29 foreign_0.8-82

[37] XVector_0.36.0 htmltools_0.5.2

[39] base64enc_0.1-3 jpeg_0.1-9

[41] pkgconfig_2.0.3 MatrixGenerics_1.8.0

[43] fastmap_1.1.0 limma_3.52.0

[45] htmlwidgets_1.5.4 rlang_1.0.2

[47] rstudioapi_0.13 impute_1.70.0

[49] generics_0.1.2 gtools_3.9.2

[51] mzID_1.34.0 dplyr_1.0.8

[53] RCurl_1.98-1.6 magrittr_2.0.3

[55] GenomeInfoDbData_1.2.8 Formula_1.2-4

[57] MALDIquant_1.21 Matrix_1.4-1

[59] munsell_0.5.0 fansi_1.0.3

[61] MsCoreUtils_1.8.0 lifecycle_1.0.1

[63] vsn_3.64.0 stringi_1.7.6

[65] MASS_7.3-57 SummarizedExperiment_1.26.0

[67] zlibbioc_1.42.0 gplots_3.1.3

[69] plyr_1.8.7 grid_4.2.0

[71] parallel_4.2.0 crayon_1.5.1

[73] lattice_0.20-45 MsFeatures_1.4.0

[75] splines_4.2.0 knitr_1.38

[77] pillar_1.7.0 igraph_1.3.1

[79] GenomicRanges_1.48.0 codetools_0.2-18

[81] XML_3.99-0.9 glue_1.6.2

[83] latticeExtra_0.6-29 data.table_1.14.2

11

[85] pcaMethods_1.88.0 BiocManager_1.30.17

[87] vctrs_0.4.1 png_0.1-7

[89] foreach_1.5.2 gtable_0.3.0

[91] RANN_2.6.1 purrr_0.3.4

[93] clue_0.3-60 assertthat_0.2.1

[95] ggplot2_3.3.5 xfun_0.30

[97] ncdf4_1.19 survival_3.3-1

[99] tibble_3.1.6 iterators_1.0.14

[101] IRanges_2.30.0 cluster_2.1.3

[103] ellipsis_0.3.2

> date()

[1] "Tue Apr 26 16:40:20 2022"

12

