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Experimental Data

In this vignette, we demonstrate how to use linear models and the package factDesign to analyze data
from a factorial designed microarray experiment. When careful attention is paid to the biological
interpretation of the linear model parameters, multifactor experiments can be particularly useful for
disentangling complex biological systems. These methods are also more generally applicable to any
microarray experiment to which linear modeling applies. For small experiments, investigators may
want to consider moderating variance estimates using the techniques available in packages such as
limma, siggenes, LPE, and EBarrays.

In this package, an ExpressionSet object called estrogen contains gene expression levels
for 500 genes from Affymetrix HGU95av2 chips for eight samples from a breast cancer cell line. The
results of the analysis of the full data set (12,625 probes, 32 samples) are discussed in Scholtens, et al.
Analyzing Factorial Designed Microarray Experiments. Journal of Multivariate Analysis. (To appear).
The expression estimates were calculated using the rma method after quantile normalization from the
affy package. The expression values are reported in log base 2 scale as returned by rma (Irizarry et al,
2003).

> library(Biobase)
> library(affy)
> library(stats)
> library(factDesign)
>

The investigators in this experiment were interested in the effect of estrogen on the genes in ER+
breast cancer cells over time. After serum starvation of all eight samples, they exposed four samples to
estrogen, and then measured mRNA transcript abundance after 10 hours for two samples and 48 hours
for the other two. They left the remaining four samples untreated, and measured mRNA transcript
abundance at 10 hours for two samples, and 48 hours for the other two. Since there are two factors in
this experiment (estrogen and time), each at two levels, (estrogen: absent or present,time: 10 hours or
48 hours), this experiment is said to have a 2×2 factorial design. Table 1 shows the correspondence of
the sample names in estrogen with the experimental conditions.

> data(estrogen)
> estrogen

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 8 samples
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Table 1: Experimental Conditions for .cel Files

time estrogen
absent present

10 hours et1 Et1
et2 Et2

48 hours eT1 ET1
eT2 ET2

element names: exprs, se.exprs
protocolData: none
phenoData

sampleNames: et1.CEL et2.CEL ... ET2.CEL (8 total)
varLabels: ES TIME
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu95av2

> pData(estrogen)

ES TIME
et1.CEL A 10h
et2.CEL A 10h
Et1.CEL P 10h
Et2.CEL P 10h
eT1.CEL A 48h
eT2.CEL A 48h
ET1.CEL P 48h
ET2.CEL P 48h

>

Analysis Using Fold Change Criteria

A simple method for finding estrogen-affected genes would be to form a ratio of the mean expression
levels of the estrogen-treated samples to the mean of the expression levels for the untreated samples.
Suppose we consider only the 10-hour time point, calculate fold change (FC) values for the estrogen-
treated vs. untreated samples, and select genes for which we observe FC>2. In the plots below, ab-
sence/presence of estrogen is represented by e/E and the 10/48 hour time point is represented by t/T
on the horizontal axis. The proposed FC criteria at 10 hours would compare the mean of the green dots
to the mean of the red dots.

If we used a FC> 2 criteria to identify ES-affected genes in the estrogen data set, we would
successfully eliminate genes like 34371_at and select genes like 37325_at; however, we could miss
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several interesting genes. For example, 33744_at has a lower fold change value of 1.245, but the
replicates are very consistent, leading us to believe that this smaller effect might be real. We would
want to distinguish this from other genes like 39792_at which has a similar fold change value of 1.246,
but quite variable observations.

> par(mfrow=c(2,2))
> par(las=2)
> for (i in c("34371_at","37325_at","33744_at","39792_at")){
+ expvals <- 2^exprs(estrogen)[i,]
+ plot(expvals,axes=F,cex=1.5,
+ xlab="Conditions",ylab="Expression Estimate")
+ points(1:2,expvals[1:2],pch=16,cex=1.5,col=2)
+ points(3:4,expvals[3:4],pch=16,cex=1.5,col=3)
+ axis(1,at=1:8,labels=c("et1","et2","Et1","Et2","eT1","eT2","ET1","ET2"))
+ axis(2)
+ FC <- round(mean(expvals[3:4])/mean(expvals[1:2]),3)
+ title(paste(i,", FC=",FC,sep=""))
+ }
>
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We would like to find genes with consistent expression estimates between replicate samples that
are either up- or down-regulated by estrogen, for example 32536_at and 40446_at. We would also like
to find genes like gene 32901_at for which the magnitude of the effect of estrogen changes over time.
Furthermore, we would like to exclude genes like 31826_at that demonstrate change primarily over
time, and not necessarily due to estrogen.

Selecting genes according to fold change estimates alone does not take advantage of the measure of
variability in gene expression offered by the replicate sampels. Furthermore, we cannot attach statisti-
cal significance (i.e., a p-value) to the fold change estimates computed in this manner. It is also difficult
to quantify any change in estrogen effect over time. Classical statistical linear modeling with thought-
ful biological interpretation of the parameters offers a natural paradigm for the analysis of factorial
designed microarray experiments.

> par(mfrow=c(2,2))
> par(las=2)
> for (i in c("32536_at","40446_at","32901_s_at","31826_at")){
+ expvals <- exprs(estrogen)[i,]
+ plot(expvals,axes=F,cex=1.5,
+ xlab="Conditions",ylab="log 2 Expression Estimate")
+ axis(1,at=1:8,labels=c("et1","et2","Et1","Et2","eT1","eT2","ET1","ET2"))
+ axis(2)
+ title(i)
+ }
>
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Removing Outliers

Before defining the linear model for this particular experiment, we may want to remove observations
that might be single outliers in the data set. The test we used is based on the differences between
replicates and is appropriate for small factorial experimental designs. First, we identify replicate pairs
with differences that are significantly larger than expected, and then we can apply a median absolute
deviation filter to make sure one of the observations is indeed the single outlier. For example, 728_at
has a replicate pair with a large difference, but we wouldn’t want to label either observation as the
single outlier. 33379_at has one observation that indeed appears to be a single outlier.

Removing single outliers from small factorial designed experiments does assume that the changes
in expression across experimental conditions are small compared to the outlier effects. For probe
33379_at, it could very well be the second observation which is the outlier if true expression happens
to be higher at the earlier time in the presence of estrogen. Users should consider whether or not single
outlier elimination is appropriate in their particular experimental setting. Here we have commented out
the code that could be used to replace single outliers with "NA" values.

> op1 <- outlierPair(exprs(estrogen)["728_at",],INDEX=pData(estrogen),p=.05)
> print(op1)
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$test
[1] TRUE

$pval
[1] 0.01432178

$whichPair
[1] 7 8

> madOutPair(exprs(estrogen)["728_at",],op1[[3]])

[1] NA

> par(mfrow=c(2,2))
> par(las=2)
> for (i in c("728_at","33379_at")){
+ expvals <- exprs(estrogen)[i,]
+ plot(expvals,axes=F,cex=1.5,
+ xlab="Conditions",ylab="log 2 Expression Estimate")
+ if(i=="728_at") points(7:8,expvals[7:8],pch=16,cex=1.5)
+ if(i=="33379_at") points(1:2,expvals[1:2],pch=16,cex=1.5)
+ axis(1,at=1:8,labels=c("et1","et2","Et1","Et2","eT1","eT2","ET1","ET2"))
+ axis(2)
+ title(i)
+ }
>
> #for (j in 1:500){
> # op <- outlierPair(exprs(estrogen)[j,],INDEX=pData(estrogen),p=.05)
> # if(op[[1]]){
> # so <- madOutPair(exprs(estrogen)[j,],op[[3]])
> # if(!is.na(so)) exprs(estrogen)[j,so] <- NA
> # }
> #}
>
>
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Describing the Linear Model

The 2×2 factorial design of this experiment allows us to use a statistical linear model to measure the
effects of estrogen and time on gene expression. In equation (1), yfull,ij is the observed expression level
for gene i in sample j (j = 1, ..., 8). xESj = 1 if estrogen is present and 0 otherwise; xTIMEj = 1
if gene expression was measured at 48 hours and 0 otherwise. µi is the expression level of untreated
gene i at 10 hours. βESi and βTIMEi represent the effects of estrogen and time on the expression level
of gene i, respectively. βES:TIMEi is called an interaction term for gene i; this allows us to quantify
any change in estrogen effect over time for probes like 1700_at. εij represents random error for gene
i and sample j, and is assumed to be independent for each gene and sample, and normally distributed
with mean 0 and variance σ2i . The biologically independent replicates of the experimental conditions
in this study allow us to estimate σ2i .

yij = µi + βESixESj + βTIMEixTIMEj + βES:TIMEixESjxTIMEj + εij (1)

To proceed with the analysis, we estimate the β parameters for every gene using least squares, and call
the estimates β̂ESi, β̂TIMEi, and β̂ES:TIMEi. For gene i, the samples that were not treated with estro-
gen and were measured at 10 hours will have estimated expression values of µ̂i. The estrogen-treated,
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10-hour samples will have estimates µ̂i + β̂ESi. The untreated, 48-hour samples will have estimates
µ̂i + β̂TIMEi. The estrogen-treated, 48-hour samples will have estimates µ̂i + β̂ESi + β̂TIMEi +
β̂ES:TIMEi.

We will also form a reduced model with only an effect for time (2), and use this to decide if a model
including estrogen is appropriate for the gene of interest.

yij = µi + βTIMEixTIMEj + εi (2)

> lm.full <- function(y) lm(y ~ ES + TIME + ES:TIME)
> lm.time <- function(y) lm(y ~ TIME)
> lm.f <- esApply(estrogen, 1, lm.full)
> lm.t <- esApply(estrogen, 1, lm.time)
> lm.f[[1]]

Call:
lm(formula = y ~ ES + TIME + ES:TIME)

Coefficients:
(Intercept) ESP TIME48h ESP:TIME48h

4.81164 -0.22762 0.01055 0.03839

> lm.t[[1]]

Call:
lm(formula = y ~ TIME)

Coefficients:
(Intercept) TIME48h

4.69783 0.02974

>

Selecting Genes of Interest using the Linear Model

We are only interested in genes which are affected by estrogen. One way to select such genes is to
compare the full linear model (lm.f) to the linear model consisting of only a term for time (lm.t)
using an ANOVA F -test. If the full model lm.f fits better than the reduced model lm.t, then we
know the gene must be affected by estrogen.

Since we have so many genes to consider, multiple comparisons is an obvious problem. The R
package multtest contains many functions that are suitable for multiple comparisons adjustment for
microarrays. Here, the p-values from the ANOVA F -tests are adjusted according to the Benjamini and
Hochberg (1995) False Discovery Rate method with an FDR of .15.

> Fpvals <- rep(0,length(lm.f))
> for(i in 1:length(lm.f)){
+ Fpvals[i]<-anova(lm.t[[i]],lm.f[[i]])$P[2]
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+ }
> library(multtest)
> procs <- c("BH")
> F.res <- mt.rawp2adjp(Fpvals,procs)
> F.adjps <- F.res$adjp[order(F.res$index),]
> Fsub <- which(F.adjps[,"BH"]<.15)
> estrogen.Fsub <- estrogen[Fsub]
> lm.f.Fsub <- lm.f[Fsub]
> estrogen.Fsub

ExpressionSet (storageMode: lockedEnvironment)
assayData: 28 features, 8 samples

element names: exprs, se.exprs
protocolData: none
phenoData

sampleNames: et1.CEL et2.CEL ... ET2.CEL (8 total)
varLabels: ES TIME
varMetadata: labelDescription

featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu95av2

>
>

Suppose we want to identify genes that are affected by estrogen at 10 hours. In our linear model, this
corresponds to testing a null hypothesis H0ES : βES = 0, and if the hypothesis rejected, concluding
that the gene has a main estrogen effect.

> betaNames <- names(coef(lm.f[[1]]))
> lambda <- par2lambda(betaNames,c("ESP"),c(1))
> mainES <- function(x) contrastTest(x,lambda,p=0.05)[[1]]
> mainESgenes <- sapply(lm.f.Fsub,FUN=mainES)
> sum(mainESgenes=="REJECT")

[1] 22

>

Heatmaps can be a useful way to visualize genes that are selected according to a certain criteria. In
the first heatmap that follows, we see genes for which the null hypothesis H0ES was rejected at a 0.05
significance level. In the second heatmap, we see the genes for which the main estrogen effect was not
statistically significant; it appears that estrogen affected these genes only after 48 hours.

> heatmap(exprs(estrogen.Fsub)[mainESgenes=="REJECT",],Colv=NA,col=cm.colors(256))
>
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> heatmap(exprs(estrogen.Fsub)[mainESgenes=="FAIL TO REJECT",],Colv=NA,col=cm.colors(256))
>
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Selecting genes according to p-value can produce some possibly misleading results. For exam-
ple, 32901_s_at had a main ES effect with p-value for βES less than 0.01, but the estimate of fold
change supression at 10 hours is only .8922. While this small effect is statistically significant, it may
not be biologically interesting. Selecting genes with significant contrast test p-values as well as fold
change values above a certain threshold can give a good approximation to more sophisticated variance
moderating analyses.

> lambdaNum <- par2lambda(betaNames,list(c("(Intercept)","ESP")),list(c(1,1)))
> lambdaDenom <- par2lambda(betaNames,list(c("(Intercept)")),list(c(1)))
> FCval <- findFC(lm.f.Fsub[["32901_s_at"]],lambdaNum,lambdaDenom,logbase=2)
> print(FCval)

[,1]
[1,] 0.8922424

> FCvals <- lapply(lm.f.Fsub,FUN=findFC,lambdaNum,lambdaDenom,logbase=2)
> largeFC <- unlist(FCvals>1.4 | FCvals<.7)
> estrogen.Fsub.FC <- estrogen.Fsub[largeFC & mainESgenes=="REJECT"]
> heatmap(exprs(estrogen.Fsub.FC),Colv=NA,col=cm.colors(256))
>

Now suppose we want to find genes that are affected by estrogen after both 10 and 48 hours. By
testing for the main estrogen effect, we have already found genes with an estrogen effect at 10 hours.
To select genes with an estrogen effect at 48 hours, we want to compare the gene expression levels of
the untreated samples that were measured at 48 hours with the estrogen-treated samples at 48 hours. In
terms of our linear model, for each gene, we want to test the null hypothesis H0ES,TIME in (3).

H0ES,TIME : µ+ βTIME = µ+ βES + βTIME + βES:TIME (3)

Testing the null hypothesis H0ES,TIME is equivalent to testing the linear contrast H0ES,TIME∗ in (4).
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H0ES,TIME∗ : βES + βES:TIME = 0 (4)

The technique for testing this linear contrast follows from straightforward linear model theory. The
par2lambda function helps set up the appropriate matrix for testing sets of linear contrasts.

> lambdaEST <- par2lambda(betaNames,list(c("ESP","ESP:TIME48h")),list(c(1,1)))
> ESTcontrast <- function(x) contrastTest(x,lambdaEST,p=.10)[[1]]
> ESTgenes <- sapply(lm.f.Fsub,FUN=ESTcontrast)
> sum(ESTgenes=="REJECT")

[1] 27

>

Again, we can use a heatmap to look at genes for which we rejected both H0ES and H0ES,TIME∗.

> heatmap(exprs(estrogen.Fsub)[mainESgenes=="REJECT" & ESTgenes=="REJECT",],Colv=NA,col=cm.colors(256))
>

et
1.

C
E

L

et
2.

C
E

L

E
t1

.C
E

L

E
t2

.C
E

L

eT
1.

C
E

L

eT
2.

C
E

L

E
T

1.
C

E
L

E
T

2.
C

E
L

432_s_at
38242_at
32901_s_at
36317_at
672_at
35435_s_at
41862_at
40032_at
32331_at
286_at
34374_g_at
38432_at
39787_at
33744_at
36618_g_at
1005_at
32536_at
32681_at
2049_s_at
39137_at
40446_at

12



After genes are selected according to contrast tests of interest, the annotation information available
in other Bioconductor packages allows for more in-depth research on specific genes.

Using linear models for factorial designed microarray experiments enables investigators to extend
analyses beyond basic gene filtering according to fold change. Genes can be selected in a high-
throughput manner with biologically interpretable parameters and quantifiable measures of confidence.
This lab investigated the effects of estrogen on breast cancer cells, but the principles behind this specific
example are applicable to any carefully designed microarray study.
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