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1 Introduction

SimBindPro�les identi�es common and unique binding regions in genome tiling array
data. This package does not rely on peak calling, but directly compares binding pro�les
processed on the same array platform. It implements a simple threshold approach, thus
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allowing retrieval of commonly and di�erentially bound regions between datasets as well
as events of compensation and increased binding.

The tool requires each data set in SGR �le format, which are tab-delimited �les with
chromosome, position and signal value columns. We suggest preprocessing two-colour
microarray data with Ringo [3] and A�ymetrix cel �les with Starr [4], which perform
smoothing of probe intensities across replicate arrays for each data set. It is important
that data are sorted by chromosomes and ascending positions along each chromosome.

> library("SimBindProfiles")

2 Reading data and normalisation

We provide three working example data sets in this vignette. These data have been
processed on NimbleGen Drosophila melanogaster DM5 Tiling Set HX1 in triplicates
and smoothed into window scores using Ringo.

In Drosophila melanogaster, SoxNeuro (SoxN) and Dichaete (D) belong to the SoxB fam-
ily of transcription factors. SoxN and Dichaete play essential roles in many aspects of
neurogenesis and exhibit some degree of functional redundancy in cells where they are
coexpressed. Here, we study the binding patterns of SoxN and Dichaete in wildtype (wt)
and SoxN mutant embryos via DamID. In this vignette, we only use the probes located
on chromosome X between 1-6000000 bp:
SoxNDam = SoxN binding in wt embryos
SoxN-DDam = Dichaete binding in SoxN mutants
DDam = Dichaete binding in wt embryos

> dataPath <- system.file("extdata",package="SimBindProfiles")

> list.files(dataPath, pattern=".txt")

[1] "DDam_trunc.txt" "SoxN-DDam_trunc.txt" "SoxNDam_trunc.txt"

> head(read.delim(paste(dataPath, "SoxNDam_trunc.txt", sep="/"),

+ header=FALSE, nrows=5))

V1 V2 V3

1 chrX 116 -1.218227

2 chrX 181 -1.116333

3 chrX 236 -1.081980

4 chrX 276 -1.116333

5 chrX 331 -1.116333
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To read data into an ExpressionSet object each �le name is speci�ed omitting the .txt
extension. While reading the �les, data is quantile normalised as per limma [2]. For
more details on ExpressionSet please refer to "An Introduction to Bioconductor's Ex-
pressionSet Class" [1].

> readTestSGR <- readSgrFiles(X=c("SoxNDam_trunc", "SoxN-DDam_trunc",

+ "DDam_trunc"), dataPath)

We continue in this vignette using the larger chromosome X probe set data which was
previously saved as SGR.Rdata object and can be loaded and viewed.

> dataPath <- system.file("data",package="SimBindProfiles")

> load(paste(dataPath, "SGR.RData", sep="/"))

> print(SGR)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 98715 features, 3 samples

element names: exprs

protocolData: none

phenoData

sampleNames: SoxNDam SoxN-DDam DDam

varLabels: FileName tiling array

varMetadata: varLabel labelDescription

featureData

featureNames: 1 2 ... 98715 (98715 total)

fvarLabels: PROBE_ID CHR START

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

A useful plot comparing all the data sets and their correlation after normalisation can
be created with the eSetScatterPlot function (Figure 1).

> eSetScatterPlot(SGR)

3 Determining a bound cut-o� and a di�erence cut-o�

In order to identify probes or regions, which are bound similarly or di�erentially bound
between the data sets, bound.cutoff and diff.cutoff (di�erence cut-o�) thresholds
have to be chosen.

We implemented two methods to set the bound cut-o�, probes above this threshold are
considered "bound". The twoGaussiansNull method established in the Ringo package
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Figure 1: Smoothed scatterplots of normalised signals and the corresponding correlations.

[3], in which data is assumed to follow a mixture of two Gaussian distributions. The
Gaussian with the lower mean value is assumed to be the null distribution and probe
levels are assigned p-values based on this null distribution. Alternatively the user can
select the normalNull method which assumes the null distribution is normal and sym-
metrical around the mode or zero. For both methods the user can decide if the resulting
p-values are to be adjusted for multiple testing (fdr) or select a p-value threshold.

In our example we use the twoGaussiansNull at 25% FDR, the function also provides a
QC plot of the two Gaussians curves and an optional p-value histogram (not shown).

> bound.cutoff <- findBoundCutoff(SGR, method="twoGaussiansNull", fdr=0.25)

Using bound.cutoff = 2.05

To show the bound.cutoff in relation to the data one can plot a histogram of the data
with the bound cuto� (Figure 2).

> hist(exprs(SGR)[,1], breaks=1000, freq=FALSE, border="grey",

+ main=sampleNames(SGR)[1], xlab="signal",

+ sub=paste("bound.cutoff =", bound.cutoff, sep=" "))

> abline(v=bound.cutoff, col="red", lty=3, lwd=2)

A probe is considered uniquely bound in one data set if it is bound above the diff.cutoff
threshold to the other set. We propose that the di�erence cut-o� should be smaller than
the bound cut-o�, but for more stringent analysis criteria it can also be set to the same
value as the bound.cutoff.

In our example we used the di�.cuto� as 75% of the bound.cutoff
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Figure 2: Histogram of the signal of SoxNDam. Probes with a signal above the

bound.cuto� threshold are considered "bound".

> diff.cutoff <- round(bound.cutoff * 0.75,2)

We can plot the probe intensities along parts of the chromosome using the chipAlongChrom
function from Ringo, which can be called via the plot command. First we create a
probeAnno class object which contains the mapping between the probes and their ge-
nomic positions and uses the information stored in the ExpressionSet object and requires
the probe length of the oligo on the array. In Figure 3 SoxNDam (green curve) is uniquely
bound at region 2324000 - 2326000 as the intensity is above the bound.cuto�. Whereas
SoxN-DDam (orange) is also above the bound.cuto� at region 2334000 - 2336000 but the
di�erence in the intensity of SoxNDam is too small (below di�.cuto�) to call this region
uniquely bound.

> probeAnno <- probeAnnoFromESet(SGR, probeLength=50)

> plot(SGR, probeAnno, chrom="X", xlim=c(2323000,2337000), ylim=c(-3,4),

+ samples=c(1,2))

4 Setting array speci�c parameters

The user has to specify the probes and probe.max.spacing parameters. Both depend
on the array platform and how densely the probes are spaced across the genome on the
tiling array. The minimum number of probes speci�es how many probes have to be in
a valid region. The probe.max.spacing is the maximum distance in base pairs allowed
between probes before a region is split into separate regions.
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Figure 3: Probe intensities along chromosome, green = SoxNDam, orange = SoxN-

DDam.

> probes <- 10

> probe.max.spacing <- 200

A frequency plot of number of probes per bound regions can be used to help determine
the probes parameter selection

> probeLengthPlot(SGR, sgrset=1, chr=NULL, bound.cutoff, probe.max.spacing=200,

+ xlim.max=25)

5 Performing pairwise classi�cation

In this section we identify regions that are uniquely or commonly bound in two data
sets. First the probes for each data set are �agged as bound or not bound depending
on whether the signal is above the bound.cutoff. Then the probes are split into three
classes:
Class 1: uniquely bound in set 1 (bound in set 1, not bound in set 2, signal 1 minus
signal 2 above di�.cuto�).
Class 2: uniquely bound in set 2 (bound in set 2, not bound in set 1, signal 2 minus
signal 1 above di�.cuto�)
Class 3: bound in both data sets
Then the classi�ed probes are �ltered into regions using the probes and probe.max.spacing
parameters. The regions for each class are exported to bed �les, which provide the chro-
mosome, start and end positions, the name and a score for the region. For example the
score for class 1 is calculated as follows. First we subtract for each probe within a region
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Figure 4: Frequency plot of number of probes per bound region.

signal set 1 minus signal set 2, and then we calculate the mean over the region. The tool
uses the names of each data set and the selected parameters as the resulting �le names
(b = bound.cuto�, d = di�.cuto�, v = probes, g = probe.max.spacing).

In our example we query SoxNDam vs. DDam, which correspond to data set 1 and 3 in
the ExpessionSet object.

> pairwiseR <- pairwiseRegions(SGR, sgrset=c(1,3), bound.cutoff,

+ diff.cutoff, probes, probe.max.spacing)

Pairwise comparison of SoxNDam vs DDam

Filter data into regions...

Writing SoxNDam.vs.DDam.unique_b2.05d1.54v10g200.bed ,regions = 67 ...

Writing DDam.vs.SoxNDam.unique_b2.05d1.54v10g200.bed ,regions = 51 ...

Writing SoxNDam.DDam.common_b2.05d1.54v10g200.bed ,regions = 43 ...

> head(pairwiseR)

name class.group chr start end score nProbes

1 SoxNDam.unique 1 chrX 424668 426418 3.142840 33

2 SoxNDam.unique 1 chrX 436708 437593 2.278542 17
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3 SoxNDam.unique 1 chrX 761106 762136 2.255283 20

4 SoxNDam.unique 1 chrX 789430 792565 3.177630 58

5 SoxNDam.unique 1 chrX 900082 900792 1.770974 14

6 SoxNDam.unique 1 chrX 901237 901727 1.896931 10

We also provide a ploting method to show the bound probes (before �ltering into regions)
in colour.

> plotBoundProbes(SGR, sgrset=c(1,2), method="pairwise", bound.cutoff,

+ diff.cutoff)

Figure 5: Scatterplot of pairwise classi�cation of SoxNDam vs. DDam. Red highlights

the unique SoxNDam probes, green unique in DDam and grey are probes common to both.

6 Performing three-way classi�cation

This tool allows identi�cation of regions that are unique or common in three data sets.
The approach is the same as for the pairwise classi�cation. The probes are segregated
into seven classes:
Class = 1: unique probes in set 1
Class = 2: unique probes in set 2
Class = 3: unique probes in set 3
Class = 4: common probes in set 1+2
Class = 5: common probes in set 2+3
Class = 6: common probes in set 1+3
Class = 7: common probes in set 1+2+3
Then the probes are again �ltered into regions using the probes and probe.max.spacing

parameters. The regions for each class are exported to bed �les. The score is calculated
similar to the pair-wise classi�cation.
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In our example we query SoxNDam vs. SoxN-DDam vs. DDam (results not shown).

> threewayR <- threewayRegions(SGR, sgrset=c(1,2,3), bound.cutoff,

+ diff.cutoff, probes, probe.max.spacing)

7 Performing increased binding classi�cation

It might be of interest to identify regions showing increased binding, which are more
bound in one dataset compared to the other. In our example, Dichaete can bind at a
higher level in the SoxN mutant embryos (SoxN-DDam) compared to the wt embryos
(DDam) (Figure 6). If the signal of a bound probe in set 1 is higher than the di�.cuto�,
then these probes are �ltered into regions using the probes and probe.max.spacing

parameters and reported as bed �le, which reports the chromosome, start, end, name
and score. The score is calculated similarly to the pairwise classi�cation.

Compare set SoxN-DDam vs. DDam

> increasedR <- increasedBindingRegions(SGR, sgrset=c(2,3), bound.cutoff, diff.cutoff,

+ probes, probe.max.spacing)

> head(increasedR)

name class.group chr start end score nProbes

1 SoxN-DDam.increasedBinding 1 chrX 2217665 2218265 2.352285 12

2 SoxN-DDam.increasedBinding 1 chrX 4590918 4591908 1.671484 18

Visualise the second increased binding region in genomic context.

> plot(SGR, probeAnno, chrom="X", xlim=c(4589000,4593200), ylim=c(-0.5,5),

+ samples=c(2,3))

To plot the probes showing increased binding (before �ltering into regions) in colour
(Figure 7).

> plotBoundProbes(SGR, sgrset=c(2,3), method="increasedBinding", bound.cutoff,

+ diff.cutoff, pcex=4)

8 Performing compensation classi�cation

This is another special case in which we want to identify regions which are bound in two
sets but not in the third. In our example, in wt embryos Dichaete is not bound (DDam)
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Figure 6: Probe intensities along chromosome at increased binding region, green = SoxN-

DDam, orange = DDam.

Figure 7: Scatterplot of increased binding classi�cation of SoxNDam vs. DDam, increased

binding probes are highlighted in blue
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and SoxN is bound (SoxNDam). However, in SoxN mutants (SoxN-DDam) Dichaete
binds at this location to compensate for the loss of SoxN (Figure 8). Probes above the
bound.cuto� for which the average bound signal of set 1 and set 2 are larger than the
di�.cuto� to the non-bound set 3 are identi�ed. The probes are again �ltered into regions
using the probes and probe.max.spacing parameters and reported in a bed �le, which
gives the chromosome, start, end, name and score.

Compare set SoxNDam + SoxN-DDam vs. DDam

> compR <- compensationRegions(SGR, sgrset=c(1,2,3), bound.cutoff,

+ diff.cutoff, probes, probe.max.spacing)

> head(compR)

name class.group chr start end

1 SoxNDam.SoxN-DDam.vs.DDam.compensation 1 chrX 1512681 1513656

2 SoxNDam.SoxN-DDam.vs.DDam.compensation 1 chrX 2411543 2413073

3 SoxNDam.SoxN-DDam.vs.DDam.compensation 1 chrX 2456797 2457742

4 SoxNDam.SoxN-DDam.vs.DDam.compensation 1 chrX 2944219 2945314

5 SoxNDam.SoxN-DDam.vs.DDam.compensation 1 chrX 3616693 3617308

score nProbes

1 1.900121 19

2 2.508937 29

3 2.880944 18

4 2.701074 21

5 2.243366 12

Visualise a compensation region in genomic context (Figure 8).

> plot(SGR, probeAnno, chrom="X", xlim=c(2943000,2947000), ylim=c(-1,4))

To plot the probes showing compensation (before �ltering into regions) in colour (Fig-
ure 9).

> plotBoundProbes(SGR, sgrset=c(1,2,3), method="compensation", bound.cutoff,

+ diff.cutoff, pcex=4)

9 Concluding Remarks

The package SimBindPro�les facilitates the comparison of ChIP-chip or DamID pro�les
generated on the same microarray platform. It provides functions for data import, nor-
malization and analysis. High-level plots for quality assessment are available. While this
analysis approach worked well with our data, we do not claim it is the de�nite algorithm
for this task.

This vignette was generated using the following package versions:
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Figure 8: Probe intensities along chromosome, green = SoxN-DDam, orange = SoxN-

DDam, blue = DDam.

Figure 9: Scatterplot of compensation classi�cation of SoxNDam + SoxN-DDam vs.

DDam. Probes which are bound in SoxNDam + SoxN-DDam but not in DDAm are

highlighted in orange.
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� R version 4.2.0 RC (2022-04-19 r82224), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Running under: Ubuntu 20.04.4 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

� Other packages: Biobase 2.56.0, BiocGenerics 0.42.0, Matrix 1.4-1,
RColorBrewer 1.1-3, Ringo 1.60.0, SimBindPro�les 1.34.0, lattice 0.20-45,
limma 3.52.0

� Loaded via a namespace (and not attached): AnnotationDbi 1.58.0,
BiocManager 1.30.17, Biostrings 2.64.0, DBI 1.1.2, GenomeInfoDb 1.32.0,
GenomeInfoDbData 1.2.8, IRanges 2.30.0, KEGGREST 1.36.0,
KernSmooth 2.23-20, R6 2.5.1, RCurl 1.98-1.6, RSQLite 2.2.12, Rcpp 1.0.8.3,
S4Vectors 0.34.0, XML 3.99-0.9, XVector 0.36.0, a�y 1.74.0, a�yio 1.66.0,
annotate 1.74.0, assertthat 0.2.1, bit 4.0.4, bit64 4.0.5, bitops 1.0-7, blob 1.2.3,
cachem 1.0.6, cli 3.3.0, colorspace 2.0-3, compiler 4.2.0, crayon 1.5.1, dplyr 1.0.8,
ellipsis 0.3.2, fansi 1.0.3, fastmap 1.1.0, gene�lter 1.78.0, generics 0.1.2,
ggplot2 3.3.5, glue 1.6.2, gtable 0.3.0, httr 1.4.2, lifecycle 1.0.1, magrittr 2.0.3,
mclust 5.4.9, memoise 2.0.1, munsell 0.5.0, pillar 1.7.0, pkgcon�g 2.0.3, png 0.1-7,
preprocessCore 1.58.0, purrr 0.3.4, rlang 1.0.2, scales 1.2.0, splines 4.2.0,
stats4 4.2.0, survival 3.3-1, tibble 3.1.6, tidyselect 1.1.2, tools 4.2.0, utf8 1.2.2,
vctrs 0.4.1, vsn 3.64.0, xtable 1.8-4, zlibbioc 1.42.0
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