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1 Introduction
The characterization of molecular changes in diseased tissues can provide crucial information
about pathophysiological mechanisms and is important for the development of targeted drugs
and therapies. However, many disease processes are accompanied by changes of cell popula-
tions due to cell migration, proliferation or death. Identification of key molecular events can
thus be overshadowed by confounding changes in tissue composition.

To address the issue of confounding between cell population composition and cellular ex-
pression changes, we developed Population-Specific Expression Analysis (PSEA) [1, 2]. This
method works by exploiting linear regression modeling of queried expression levels to the
abundance of each cell population. Since a direct measure of population size is often un-
obtainable (e.g. from human clinical or autopsy samples), PSEA instead tracks relative cell
population size via levels of mRNAs expressed in a single population only. Thus, a reference
measure is constructed for each cell population by averaging expression data for cell-type-
specific mRNAs derived from the same expression profile.

Here we will demonstrate some of the functionalities in the PSEA package. We will first
generate reference signals and deconvolve individual transcripts to illustrate the method. We
will then show how to apply PSEA to entire expression profiles. Let us start by loading the
package

> library(PSEA)

We have included expression data obtained from brain samples of 41 individuals as well as
their phenotypes, i.e. control and Huntington’s disease (HD) (the full data is deposited at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3790)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3790
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> data(example)

The example data contains the variable expression, a matrix with the expression levels of
23 transcripts and the variable groups, a vector with phenotypic information encoded as 0
and 1 (indicating control and disease, respectively). Detailed information about the data is
provided in the corresponding manual pages (see ?expression and ?groups).

> expression[1:5,1:3]

GSM86787.cel.gz GSM86789.cel.gz GSM86791.cel.gz

200850_s_at 4654.3390 6093.9529 2914.7702

201313_at 953.4176 1649.3578 2447.6300

201667_at 4529.0839 5857.4259 2672.2444

202429_s_at 1729.1979 3641.1434 5706.2037

203416_at 432.0814 682.8519 393.8298

> groups

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

[39] 1 1 1

2 Reference signals
We previously found that neurons, astrocytes, oligodendrocytes and microglia were the four
neural cell populations that mostly contributed expression in these brain samples [1]. For
each cell population, we then identified several probesets corresponding to mRNAs expressed
in that cell type only, that can be used to monitor the abundance of the cell population. For
neurons, we selected the following probe sets (see Supplementary Table 5 in [1])

> neuron_probesets <- list(c("221805_at", "221801_x_at", "221916_at"), "201313_at",

+ "210040_at", "205737_at", "210432_s_at")

Note that they are assigned to a list where each item can contain one or more probesets
measuring expression of the same gene. Here, the first three probesets measure expression
of NEFL, and four additional genes are measured by one probeset each. The list structure
allows us to average expression over probesets measuring the same transcript (for instance
the first three probesets that measure NEFL transcripts) before averaging over several genes.
This is what is achieved by the function marker, resulting in a neuronal "reference signal"

> neuron_reference <- marker(expression, neuron_probesets)

We also define marker probesets and calculate reference signals for the three other cell pop-
ulations

> astro_probesets <- list("203540_at", c("210068_s_at", "210906_x_at"), "201667_at")

> astro_reference <- marker(expression, astro_probesets)

> oligo_probesets <- list(c("211836_s_at", "214650_x_at"), "216617_s_at", "207659_s_at",

+ c("207323_s_at", "209072_at"))

> oligo_reference <- marker(expression, oligo_probesets)

> micro_probesets <- list("204192_at", "203416_at")

> micro_reference <- marker(expression, micro_probesets)
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In addition, we will need a group indicator variable that codes controls as 0s and HD subjects
as 1s. It is included in the example data, as explained above
> groups

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

[39] 1 1 1

The indicator variable is used to generate an interaction regressor that will allow us to test
for differences in cell population-specific expression across groups (HD versus control). For
neurons, the interaction regressor is defined as

> neuron_difference <- groups * neuron_reference

We create similar interaction regressors for the other three populations

> astro_difference <- groups * astro_reference

> oligo_difference <- groups * oligo_reference

> micro_difference <- groups * micro_reference

3 Principle of PSEA
To illustrate how PSEA works, we will deconvolve the expression of Calcineurin A (or
PPP3CA, measured by probeset 202429_s_at), a gene whose product was previously shown
to be decreased in the striatum of HD patients. In PSEA, we use linear regression and model
the expression of Calcineurin A in the control samples as a linear combination of the four
reference signals

> model1 <- lm(expression["202429_s_at",] ~ neuron_reference + astro_reference +

+ oligo_reference + micro_reference, subset=which(groups==0))

The dependence of expression on each reference signal can be visualized as follows

> par(mfrow=c(2,2), mex=0.8)

> crplot(model1, "neuron_reference", newplot=FALSE)

> crplot(model1, "astro_reference", newplot=FALSE)

> crplot(model1, "oligo_reference", newplot=FALSE)

> crplot(model1, "micro_reference", newplot=FALSE)

The plots show the strong and specific dependence of Calcineurin A expression on the neuronal
reference signal (Figure 1). The fit summary provides further useful information on the model

> summary(model1)

Call:

lm(formula = expression["202429_s_at", ] ~ neuron_reference +

astro_reference + oligo_reference + micro_reference, subset = which(groups ==

0))

Residuals:

Min 1Q Median 3Q Max

-713.9 -364.4 -128.0 351.6 1019.3
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Figure 1: Component-plus-residual plots showing deconvolved neuronal, astrocytic, oligodendrocytic and mi-
croglial expression of Calcineurin A in control samples

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 103.60 918.19 0.113 0.911

neuron_reference 4604.72 505.05 9.117 2.89e-09 ***
astro_reference -21.35 385.48 -0.055 0.956

oligo_reference -267.37 276.29 -0.968 0.343

micro_reference -288.05 491.12 -0.587 0.563

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 483.2 on 24 degrees of freedom

Multiple R-squared: 0.818, Adjusted R-squared: 0.7877

F-statistic: 26.97 on 4 and 24 DF, p-value: 1.428e-08

There is indeed a strong correlation between the expression of Calcineurin A and the neuronal
reference signal (neuron_reference), as indicated by the highly significant (p = 2.89 ∗ 10−9)
coefficient of this reference signal. This reflects the fact that Calcineurin A is expressed in
neurons. The coefficient of the neuronal reference signal (4605) represents the normalized
neuron-specific expression of this gene. It is the slope of the regression line in the first panel
of Figure 1.

Next, we test for a difference in neuron-specific expression in HD versus control samples and
model the expression of Calcineurin A as a combination of the neuronal reference signal and
the neuron-specific group difference (neuronal interaction regressor)
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> model2 <- lm(expression["202429_s_at",] ~ neuron_reference + neuron_difference)

The fitted model is visualized as follows

> crplot(model2, "neuron_reference", g="neuron_difference")
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Figure 2: Component-plus-residual plot showing deconvolved neuron-specific expression in controls (black)
and HD subjects (red)

It shows that neuronal expression of Calcineurin A is decreased in HD (red) compared to
control (black) samples, as indicated by the smaller slope of the regression line for HD
samples (Figure 2). The fit summary

> summary(model2)

Call:

lm(formula = expression["202429_s_at", ] ~ neuron_reference +

neuron_difference)

Residuals:

Min 1Q Median 3Q Max

-757.06 -317.30 -49.51 324.19 1109.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -387.8 379.6 -1.021 0.313490

neuron_reference 4548.5 345.5 13.165 9.82e-16 ***
neuron_difference -831.5 215.5 -3.859 0.000428 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 435.6 on 38 degrees of freedom

Multiple R-squared: 0.8953, Adjusted R-squared: 0.8898

F-statistic: 162.5 on 2 and 38 DF, p-value: < 2.2e-16

reveals that the coefficient of the group-specific difference is negative (-831) and highly
significant (0.0004). This reflects the fact that Calcineurin A expression is downregulated in
neurons of HD patients. Normalized neuron-specific expression in the control group is given
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by the coefficient of the neuronal reference signal (4548) and normalized neuron-specific
expression in HD is given by the sum of both coefficients (4548 - 831 = 3117). These two
coefficients are the slopes of the regression lines in Figure 2. The fold change in neuronal
expression can thus be easily calculated using the fitted coefficients

> foldchange <- (model2$coefficients[2] + model2$coefficients[3]) / model2$coefficients[2]

Finally, note that the model fit is excellent (adjusted R2 = 0.89) which means that most
of the variations in Calcineurin A expression across samples is explained by the variation in
neuronal abundance (as measured by the neuronal reference signal) and the group-specific
difference between HD and control samples.

4 Deconvolution of expression profiles
An important aspect of PSEA (and statistical model building in general) is how to choose
the parameters to include in the model. Indeed, adding more parameters will always result in
a better overall fit (and increase the coefficient of determination R2) but will not necessarily
result in a more informative or predictive expression model. The goal thus is to reach a
balance between the number of parameters in the model and how much of the data it can
account for.

The stepwise method is a classical approach to model selection. It can be applied to model
building for PSEA (as in [2]) and swlm provides a simple wrapper function that performs
stepwise model selection on every transcript in turn (see ?swlm for details). However, it
might not be computationally efficient when considering a large number of transcripts and
might lack flexibility in model specification. Here we will illustrate the "all-subset" approach
used in [1] in more details.

We will restrict the statistical models under consideration to those that provide appropriate
gene expression models. In the present case, the small number of samples also makes it
unlikely to robustly fit highly complex expression models and we might want to exclude models
containing several parameters coding for expression changes in different cell populations. The
function lmfitst efficiently fits a set of models to every transcript in an expression profile
and selects the best model for each transcript.

We first need to define a model matrix containing all possible parameters as columns (in-
cluding an intercept as the first column)

> model_matrix <- fmm(cbind(neuron_reference, astro_reference,

+ oligo_reference, micro_reference), groups)

We then specify the subset of models that we want to fit as a list. Each list item represents
a model by specifying the included parameters (as their column indices in the model matrix).
The function em_quantvg enumerates models automatically

> model_subset <- em_quantvg(c(2,3,4,5), tnv=4, ng=2)

For instance, the 17th model in the list,

> model_subset[[17]]

[1] 1 2 6
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represents an expression model containing an intercept (column 1 in model_matrix), the
neuronal reference signal (column 2) and the neuron-specific expression change (column 6).

We can then fit each probeset in the expression profile with all models in the subset and for
each probeset select the best expression model (using AIC as a criterion)

> models <- lmfitst(t(expression), model_matrix, model_subset)

The function lmfitst returns two lists. The first contains the identity of the best and next
best models for each transcript. The second contains details of the (fitted) best model
for each transcript. For PPP3CA, for instance, the selected expression model contains the
parameters corresponding to neuronal expression and neuron-specific expression change (as
we previously manually worked out)

> summary(models[[2]][["202429_s_at"]])

Call:

lm(formula = y[, x] ~ ., data = data.frame(fmdlm[, st[[wcrto1[x]]][-1]]))

Residuals:

Min 1Q Median 3Q Max

-757.06 -317.30 -49.51 324.19 1109.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)

1 -387.8 379.6 -1.021 0.313490

2 4548.5 345.5 13.165 9.82e-16 ***
6 -831.5 215.5 -3.859 0.000428 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 435.6 on 38 degrees of freedom

Multiple R-squared: 0.8953, Adjusted R-squared: 0.8898

F-statistic: 162.5 on 2 and 38 DF, p-value: < 2.2e-16

We can then check that the selected models provide appropriate expression models and focus
on transcripts with features of interest like e.g. expression in a particular cell population or
significant population-specific expression change. To this end, we extract the coefficients,
p-values and adjusted R2 for the selected models using a few ad hoc functions

> regressor_names <- as.character(1:9)

> coefficients <- coefmat(models[[2]], regressor_names)

> pvalues <- pvalmat(models[[2]], regressor_names)

> models_summary <- lapply(models[[2]], summary)

> adjusted_R2 <- slt(models_summary, 'adj.r.squared')

We use specific criteria to filter satisfactory expression models (e.g. sufficient R2 and small
intercept, see [1] for more details)
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> average_expression <- apply(expression, 1, mean)

> filter <- adjusted_R2 > 0.6 & coefficients[,1] / average_expression < 0.5

We can now list transcripts that we would like to focus on (excluding transcripts used to
construct reference signals). Here we for instance identify transcripts with significant expres-
sion in oligodendrocytes (corresponding to column 4 in model_matrix). There is one such
transcript in our small example dataset

> filter[match(unlist(c(neuron_probesets, astro_probesets, oligo_probesets, micro_probesets)),

+ rownames(expression))] <- FALSE

> select <- which(filter & pvalues[, 4] < 0.05)

> coefficients[select,]

coef.1 coef.2 coef.3 coef.4 coef.5 coef.6 coef.7 coef.8

19.38714 NA NA 69.27515 NA NA NA 33.26382

coef.9

NA

5 Session Information
The version number of R and packages loaded for generating the vignette were:

R version 4.2.0 RC (2022-04-19 r82224)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.4 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] PSEA_1.30.0

loaded via a namespace (and not attached):

[1] digest_0.6.29 MASS_7.3-57 evaluate_0.15

[4] rlang_1.0.2 cli_3.3.0 rmarkdown_2.14

[7] BiocStyle_2.24.0 tools_4.2.0 Biobase_2.56.0

[10] xfun_0.30 yaml_2.3.5 fastmap_1.1.0

[13] compiler_4.2.0 BiocGenerics_0.42.0 BiocManager_1.30.17

[16] htmltools_0.5.2 knitr_1.38
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