
Oscope: a statistical pipeline for identifying
oscillatory genes in unsynchronized single
cell RNA-seq experiments

Ning Leng and Christina Kendziorski

April 26, 2022

Contents

1 Introduction . 1

2 Run Oscope . 3

2.1 Required inputs . 3

2.2 Normalization . 3

2.3 Pre-processing . 4

2.4 Rescaling . 5

2.5 Oscope: paired-sine model . 5

2.6 Oscope: K-medoids algorithm. 6

2.7 Flag clusters with small within-cluster sine scores and/or small within-
cluster phase shifts . 6

2.8 Oscope: extended nearest insertion 8

3 Session info . 9

1 Introduction
Oscope (as detailed in Leng* et al., 2015 (1)) is a statistical pipeline for identifying oscillatory
genes in unsynchronized single cell RNA-seq (scRNA-seq) experiments. Oscope capitalizes on
the fact that cells from an unsynchronized population represent distinct states in a system.
Oscope utilizes co-regulation information among oscillators to identify groups of putative
oscillating genes, and then reconstructs the cyclic order of samples for each group, defined as
the order that specifies each sample’s position within one cycle of the oscillation, referred to
as a base cycle. The reconstructed order is based on minimizing distance between each gene’s
expression and its gene-specific profile defined by the group’s base cycle allowing for phase
shifts between different genes. For different groups of genes following independent oscillatory
processes and/or having distinct frequencies, the cyclic orders need not be the same.

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

The flowchart of Oscope is shown in Figure 1. As shown, Oscope first fits a sinusoidal function
to all gene pairs and choose those with significantly high sine scores. Once candidate genes
are identified, K-medoids is applied to cluster genes into groups with similar frequencies, but
possibly different phases. Then, for each group, Oscope recovers the cyclic order which orders
cells by their position within one cycle of the oscillatory process underlying the group.

Screen for candidate
oscillator pairs:
Paired-sine model

Recover cell order
within gene group:
Extended nearest
insertion

Cluster candidate
genes into groups:
K-medoids algorithm

Top gene pairs
gene1 - gene2
gene3 - gene2
gene1 - gene3

Sc
al

ed
 e

xp
re

ss
io

n

Recovered order

gene1
gene2

gene3

gene4

gene5

gene6
gene7

gene8

gene9

gene10

gene 1

gene 2

gene 3

Oscope (Oscilloscope):

A statistical pipeline for identifying
oscillatory gene sets

Figure 1: The Oscope flowchart

2

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

2 Run Oscope
Before analysis can proceed, the Oscope package must be loaded into the working space:

> library(Oscope)

2.1 Required inputs
Data: The object Data should be a G− by − S matrix containing the expression values for
each gene and each sample, where G is the number of genes and S is the number of
samples. These values should exhibit estimates of gene expression across samples. Counts
of this nature may be obtained from RSEM ((2)), Cufflinks ((3)), or a similar approach.
Cross-sample library size normalization should be performed. An cross-sample library size
normalization by median normalization are shown in section 2.2.

The object OscopeExampleData is a simulated data matrix containing 500 rows of genes and
30 columns of samples. The genes are named g1, g2, ... and the samples are named
S1, S2, ... Among the 500 genes, gene g1-g120 are simulated as oscillators. Two groups
of oscillators (g1-g60 and g61-g120) are simulated following independent frequencies and
orders. The data set also include a gene group (g301-g305) that has purely linear correlation
between genes (but not oscillating). The other genes are simulated as noise.

> data(OscopeExampleData)

> str(OscopeExampleData)

num [1:500, 1:30] 982 1038 901 1524 895 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:500] "g1" "g2" "g3" "g4" ...

..$: chr [1:30] "S1" "S2" "S3" "S4" ...

> set.seed(10)

2.2 Normalization
Oscope requires cross-sample normalization to be applied to adjust for sequencing depth
differences among different samples. Here, the library size factors may be obtained via the
function MedianNorm, which reproduces the median normalization approach in DESeq (4).

> Sizes <- MedianNorm(OscopeExampleData)

If quantile normalization is preferred, library size factors may be obtained via the function
QuantileNorm (for example, QuantileNorm(GeneMat,.75) for Upper-Quartile Normalization
in (5)).

To obtain the normalized expression matrix, user may used the GetNormalizedMat() function:

3

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

> DataNorm <- GetNormalizedMat(OscopeExampleData, Sizes)

2.3 Pre-processing
It is well-accepted that scRNA-seq suffers from high level of technical noise. It is also known
that the low expressers are more affected by the noises. Therefore, we suggest users to apply
Oscope on a subset of genes with high mean and high variance to reduce the effects from
technical noises. Note that once the base cycle order is recovered, a user may apply ordinary
time-series oscillatory gene detection algorithms based on the recovered orders to identify
oscillatory genes in the genes with lower mean and variance.

Function CalcMV() may be used to calculate the estimated mean and variance of genes, as
well as select genes with high mean and high variance. For example:

> MV <- CalcMV(Data = OscopeExampleData, Sizes = Sizes)

> str(MV$GeneToUse)

chr [1:171] "g4" "g6" "g7" "g9" "g11" "g15" "g19" "g22" "g30" "g33" "g35" ...

> DataSubset <- DataNorm[MV$GeneToUse,]

10 50 100 500 5000

1
5

10
50

50
0

Mean

V
ar

ia
nc

e

Figure 2: Mean-Variance plot generated by CalcMV() function

Figure 2 shows the output figure of the CalcMV() function. By default, CalcMV() defines
genes with mean expression greater than 100 as high expressers. To change it, a user may
specify parameter MeanCutLow to another number. To define the high variance genes, the
CalcMV() function will fit a linear regression on log(variance) ∼ log(mean) on genes with
high mean. Genes with variance above this line are considered as genes with high mean and
high variance (marked in green in Figure 2). The upper bound of mean may be specified
using MeanCutHigh.

While working with a normalized data set, a user may specify Sizes = NULL and NormData = TRUE.
For example:

> MV2 <- CalcMV(Data = DataNorm, Sizes = NULL, NormData = TRUE)

> str(MV2$GeneToUse)

> DataSubset2 <- DataNorm[MV2$GeneToUse,]

4

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

The CalcMV() function can also take unnormalized data set. By setting Sizes = NULL and
NormData = FALSE, the CalcMV() function will calculate the library size factor via Median-
Norm() function first, then calculate mean and variance after adjusting for library sizes. A
user can also input pre-defined library size factor for unnormalized data via parameter Sizes.

2.4 Rescaling
Since the paired-sine model in Oscope requires input values to be between -1 and 1, a rescaling
step is needed prior to apply Oscope. Function NormForSine may be used for the rescaling.
For example:

> DataInput <- NormForSine(DataNorm)

The NormForSine() function will rescale the expression measurements to values between -1
and 1. To reduce the influences of potential outliers, the default setting in NormForSine()
function will impute the extreme values in each gene to its upper/lower bound. By default
settings,a gene’s upper (lower) bound is set to be its 95th (5th) quantile of expression. These
two quantile thresholds may be changed via parameters qt1 and qt2. If qt1 and qt2 are set
as 0 and 1, no outlier imputation will take place.

2.5 Oscope: paired-sine model
We developed a paired-sine model to identify gene pairs that are oscillating following the same
process. Genes following the same process are assumed to have same frequency, but allow
for phase shifts. To apply the paired-sine model, user may use the OscopeSine() function.

> SineRes <- OscopeSine(DataInput)

> str(SineRes)

The OscopeSine function can be parallelized by setting parallel=TRUE (see below). A user
may change the settings, such as the number of cores, via the parameter parallelParam.

> SineRes <- OscopeSine(DataInput, parallel=TRUE)

> str(SineRes)

List of 3

$ SimiMat : num [1:500, 1:500] 0 0.668 0.413 0.177 0.156 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:500] "g1" "g2" "g3" "g4" ...

.. ..$: chr [1:500] "g1" "g2" "g3" "g4" ...

$ DiffMat : num [1:500, 1:500] 0 0.215 0.387 0.666 0.698 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:500] "g1" "g2" "g3" "g4" ...

.. ..$: chr [1:500] "g1" "g2" "g3" "g4" ...

$ ShiftMat: num [1:500, 1:500] 0 0.0908 0.2083 0.2961 0.4471 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:500] "g1" "g2" "g3" "g4" ...

.. ..$: chr [1:500] "g1" "g2" "g3" "g4" ...

5

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

The output of OscopeSine() contains 3 matrices. SimiMat shows the sine score between each
pair of input genes. The higher the sine score, the more likely that two genes are oscillating
following the same process. DiffMat shows the distance (dissimilarity estimates) between
each pair of genes. Note that sine score = -log10 (distance) for any pair of genes. ShiftMat
shows the estimated phase shift between each pair of genes.

If only high mean high variance genes are of interest, a user may run the paired-sine model
on the genes defined in section 2.3:

> DataInput2 <- NormForSine(DataSubset)

> SineRes2 <- OscopeSine(DataInput2)

2.6 Oscope: K-medoids algorithm
Oscope incorporated a K-medoids algorithm to cluster candidate oscillatory gene pairs iden-
tified by the paired-sine model into gene groups. Function OscopeKM() may be used to apply
the K-medoids algorithm:

> KMRes <- OscopeKM(SineRes, maxK = 10)

> print(KMRes)

$cluster1

[1] "g301" "g302" "g303" "g304" "g305"

$cluster2

[1] "g61" "g62" "g78" "g79" "g92" "g93"

$cluster3

[1] "g5" "g6" "g15" "g16" "g21" "g22" "g24" "g25" "g29" "g30" "g32" "g33"

[13] "g53" "g54"

Input of OscopeKM() function is required to be the output of the OscopeSine() function.
The K-mediods algorithm uses the distance matrix estimated in the paired-sine model as the
dissimilarity metric. By setting maxK = 10, OscopeKM() function will search for the optimal K
among 2-10 by maximizing the Silhouette distance. By default settings, the top 5% genes will
be used in the K-medoids clustering. The percentage may be changed by setting parameter
quan. We define a gene’s minimal distance as the shortest distance between the gene and any
other genes. The top genes are defined as those that have the shortest minimal distances.
The distances may be calculated using the OscopeSine() function described in section 2.5.
If maxK is not specified, the maximum K will be set to the integer part of (number of top
genes)/10. In this example, the optimal number of clusters is 3. The 3 clusters contain 5, 6
and 14 genes, respectively.

2.7 Flag clusters with small within-cluster sine scores and/or small
within-cluster phase shifts
To infer the significance of each group, Oscope evaluates each group’s sine score distribution
using permuted data. For each group, Oscope permutes cell order for each gene indepen-
dently. By default, Oscope only takes groups whose median sine score in original data is
greater than its 90th quantile in permuted data. Function FlagCluster() will flag groups
who fail to meet this criteria.

6

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

To avoid detecting gene groups with purely linear relationship, we suggest users to only
consider gene clusters with some within-group phase differences. For any pair of genes gi, gj
within a group, define υgi,gj = min((π − ηgi,gj), ηgi,gj), in which ηgi,gj = ψgi,gj mod π.
Oscope’s default takes groups whose 90th quantile of υgi,gj ’s is greater than π/4 for further
order recovery. Function FlagCluster() could also flag gene clusters with small within-cluster
phase shifts.

For example:

> ToRM <- FlagCluster(SineRes, KMRes, DataInput)

0% 25% 50% 75% 100%

0.9791176 1.1432542 1.2087869 1.2774145 1.3284732

0% 25% 50% 75% 100%

-1.147309 -1.075269 -1.064647 -1.053983 -1.031982

0% 25% 50% 75% 100%

-0.4779631 -0.3909184 -0.2329971 0.2340577 0.7903933

0% 25% 50% 75% 100%

-1.162034 -1.126894 -1.072365 -1.050766 -0.970662

0% 25% 50% 75% 100%

-0.53898937 -0.38557307 -0.28651353 0.03803695 0.91732422

0% 25% 50% 75% 100%

-1.1912483 -1.1089815 -1.0769158 -1.0042413 -0.7328746

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.02988 0.03512 0.03860 0.03876 0.04118 0.05105

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.07956 0.14464 1.20927 0.82758 1.44696 1.53662

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.06996 0.33786 0.77404 0.75466 1.12354 1.52044

> print(ToRM$FlagID_bysine)

integer(0)

> print(ToRM$FlagID_byphase)

[1] 1

> print(ToRM$FlagID) # all flagged clusters

[1] 1

The FlagCluster() function requires outputs of OscopeSine() and OscopeKM(). Summary
statistics will be displayed in R console. In the sine score analysis part, the function will show
summary statistics of the sine scores in the original data and permuted data. In the phase
shift analysis part, the function will show summary statistics of the υ’s within each cluster.
Cluster 1 is flagged in this example because of the lack of within-cluster phase shift. This is
expected since gene 301-305 are simulated as linearly correlated but are not oscillating. To
exclude cluster 1 in the order recovery step:

> KMResUse <- KMRes[-ToRM$FlagID]

> print(KMResUse)

$cluster2

[1] "g61" "g62" "g78" "g79" "g92" "g93"

7

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

$cluster3

[1] "g5" "g6" "g15" "g16" "g21" "g22" "g24" "g25" "g29" "g30" "g32" "g33"

[13] "g53" "g54"

2.8 Oscope: extended nearest insertion
Oscope reconstructs the base cycle order for each of the selected gene clusters. To reconstruct
the base cycle orders, the OscopeENI() function may be used:

> ENIRes <- OscopeENI(KMRes = KMResUse, Data = DataInput, NCThre = 100)

> print(ENIRes)

The OscopeENI function can also be parallelized by setting parallel=TRUE (see below). A
user may change the settings, such as the number of cores, via the parameter parallelParam.

> ENIRes <- OscopeENI(KMRes = KMResUse, Data = DataInput, NCThre = 100, parallel=TRUE)

The OscopeENI() requires gene lists and rescaled expression matrix as inputs. The OscopeENI()
function will perform the extended nearest algorithm and the 2-opt algorithm. Parameter
NCThre may be used to define the iteration stopping criteria of the 2-opt algorithm. Here we
set NCThre = 100 for demonstration purpose. By setting NCThre = 100, The 2-opt algorithm
will be stopped when there are no updates for 100 iterations. The default setting of NCThre
is 1000.

Once the recovered cell orders are obtained, a user may reorder the expression matrix and
apply ordinary time series methods (e.g. FFT) on all the genes to find weaker oscillators (and
oscillators with lower mean or variance, if only high mean high vanriance genes are used in
previous steps). For example, the reordered data set may be obtained by:

> DataNorm2 <- DataNorm[,ENIRes[["cluster2"]]]

8

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

To visualize the recovered base cycle profiles of 6 genes in cluster 2:

> par(mfrow = c(3,2))

> for(i in 1:6)

+ plot(DataNorm[KMResUse[["cluster2"]][i], ENIRes[["cluster2"]]],

+ xlab = "Recovered order", ylab = "Expression",

+ main = KMResUse[["cluster2"]][i])

To visualize the recovered base cycle profiles of 6 genes in cluster 3:

> par(mfrow = c(3,2))

> for(i in 1:6)

+ plot(DataNorm[KMResUse[["cluster3"]][i], ENIRes[["cluster3"]]],

+ xlab = "Recovered order", ylab = "Expression",

+ main = KMResUse[["cluster3"]][i])

3 Session info
Here is the output of sessionInfo on the system on which this document was compiled:

> print(sessionInfo())

R version 4.2.0 RC (2022-04-19 r82224)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.4 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] Oscope_1.26.0 BiocParallel_1.30.0 cluster_2.1.3

[4] EBSeq_1.36.0 testthat_3.1.4 gplots_3.1.3

[7] blockmodeling_1.0.5

loaded via a namespace (and not attached):

[1] knitr_1.38 magrittr_2.0.3 pkgload_1.2.4

[4] lattice_0.20-45 R6_2.5.1 rlang_1.0.2

[7] fastmap_1.1.0 caTools_1.18.2 tools_4.2.0

[10] parallel_4.2.0 grid_4.2.0 xfun_0.30

[13] snow_0.4-4 KernSmooth_2.23-20 cli_3.3.0

9

Oscope: a statistical pipeline for identifying oscillatory genes in unsynchronized single cell RNA-seq exper-
iments

[16] withr_2.5.0 htmltools_0.5.2 gtools_3.9.2

[19] rprojroot_2.0.3 yaml_2.3.5 digest_0.6.29

[22] brio_1.1.3 Matrix_1.4-1 BiocManager_1.30.17

[25] codetools_0.2-18 bitops_1.0-7 evaluate_0.15

[28] rmarkdown_2.14 compiler_4.2.0 desc_1.4.1

[31] BiocStyle_2.24.0

References
[1] Ning Leng*, Li-Fang Chu*, Chris Barry, Yuan Li, Jeea Choi, Xiaomao Li, Peng Jiang, Ron M. Stewart, James A.

Thomson, and Christina Kendzrioski. Oscope: a pipeline for identifying oscillatory genes in unsynchronized single cell
rna-seq experiments. Nature Methods, 2015.

[2] B Li and C N Dewey. Rsem: accurate transcript quantification from rna-seq data with or without a reference genome.
BMC Bioinformatics, 12:323, 2011.

[3] C Trapnell, A Roberts, L Goff, G Pertea, D Kim, D R Kelley, H Pimentel, S L Salzberg, J L Rinn, and L Pachter.
Differential gene and transcript expression analysis of rna-seq experiments with tophat and cufflinks. Nature Protocols,
7(3):562–578, 2012.

[4] S Anders and W Huber. Differential expression analysis for sequence count data. Genome Biology, 11:R106, 2010.

[5] J H Bullard, E A Purdom, K D Hansen, and S Dudoit. Evaluation of statistical methods for normalization and
differential expression in mrna-seq experiments. BMC Bioinformatics, 11:94, 2010.

10

	1 Introduction
	2 Run Oscope
	2.1 Required inputs
	2.2 Normalization
	2.3 Pre-processing
	2.4 Rescaling
	2.5 Oscope: paired-sine model
	2.6 Oscope: K-medoids algorithm
	2.7 Flag clusters with small within-cluster sine scores and/or small within-cluster phase shifts
	2.8 Oscope: extended nearest insertion

	3 Session info

