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1 Introduction

The Gene Ontology (GO) has become one of the most widespread systems for systemat-
ically annotating gene products within the bioinformatics community and is developed
by the Gene Ontology Consortium (The Gene Ontology Consortium, 2004). It is speci�-
cally intended for describing gene products with a controlled and structured vocabulary.
GO terms are part of a Directed Acyclic Graph (DAG), covering three orthogonal tax-
onomies or "aspects": molecular function, biological process and cellular component. Two
di�erent kinds of relationship between GO terms exist: the "is-a" relationship and the
"part-of" relationship. Providing a standard vocabulary across any biological resources,
the GO enables researchers to use this information for automated data analysis.

The GOSim package (Fröhlich et al., 2007) provides the researcher with various infor-
mation theoretic similarity concepts for GO terms (Resnik, 1995, 1999; Lin, 1998; Jiang
and Conrath, 1998; Lord et al., 2003; Couto et al., 2003, 2005). Moreover, since ver-
sion 1.1.5 GOSim contains several new similarity concepts, which are based on so-called
di�usion kernel techniques (Lerman and Shakhnovich, 2007). Additionally GOSim im-
plements di�erent methods for computing functional similarities between gene products
based on the similarties between the associated GO terms (Speer et al., 2005; Fröhlich
et al., 2006; Schlicker et al., 2006; Lerman and Shakhnovich, 2007; del Pozo et al., 2008).
This can, for instances, be used for clustering genes according to their biological function
(Speer et al., 2005; Fröhlich et al., 2006) and thus may help to get a better understanding
of the biological aspects covered by a set of genes.

Since version 1.1 GOSim additionally o�ers the possibility of a GO enrichment anal-
ysis using the topGO package (Alexa et al., 2006). Hence, GOSim acts now as an
umbrella for di�erent analysis methods employing the GO structure.

2 Usage of GOSim

To elucidate the usage ofGOSim we show an example work�ow and explain the employed
similarity concepts. We create a character vector of Entrez gene IDs, which we assume
to be from human:
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> library(GOSim)

> genes=c("207","208","596","901","780","3169","9518","2852","26353","8614","7494")

Next we investigate the GO annotation within the current ontology (which is biological
process by default):

> getGOInfo(genes)

207 208 596 901 780

go_id character,131 character,33 character,109 character,3 character,21

Term character,131 character,33 character,109 character,3 character,21

Definition character,131 character,33 character,109 character,3 character,21

IC numeric,131 numeric,33 numeric,109 numeric,3 numeric,21

3169 9518 2852 26353 8614

go_id character,31 character,13 character,52 character,2 character,12

Term character,31 character,13 character,52 character,2 character,12

Definition character,31 character,13 character,52 character,2 character,12

IC numeric,31 numeric,13 numeric,52 numeric,2 numeric,12

7494

go_id character,47

Term character,47

Definition character,47

IC numeric,47

2.1 Term Similarities

Let us examine the similarity of the GO terms for genes "8614" and "2852" in greater
detail:

> getTermSim(c("GO:0007166","GO:0007267","GO:0007584","GO:0007165","GO:0007186"),method="Resnik",verbose=FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.2628131 0.1806383 0.1266641 0.1945233 0.1945233

GO:0007267 0.1806383 0.3551639 0.0000000 0.1806383 0.1806383

GO:0007584 0.1266641 0.0000000 0.5128961 0.1266641 0.1266641

GO:0007165 0.1945233 0.1806383 0.1266641 0.1945233 0.1945233

GO:0007186 0.1945233 0.1806383 0.1266641 0.1945233 0.4016432

This calculates Resnik's pairwise similarity between GO terms (Resnik, 1995, 1999):

sim(t, t′) = ICms(t, t
′) := max

t̂∈Pa(t,t′)
IC(t̂) (1)

Here Pa(t, t′) denotes the set of all common ancestors of GO terms t and t′, while IC(t)
denotes the information content of term t. It is de�ned as (e.g. Lord et al. (2003))

IC(t̂) = − logP (t̂) (2)
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i.e. as the negative logarithm of the probability of observing t̂. The information content
of each GO term is already precomputed for each ontology based on the empirical ob-
servation, how many times a speci�c GO term or any of its direct or indirect o�springs
appear in the annotation of the GO with gene products. GOSim provides a normalized
version of Resnik's similarity measure, which divides the information content of the min-
imum subsumber by the maximum information content of all GO terms, hence obtaining
a number between 0 and 1.

> data("ICsBPhumanall")

> IC[c("GO:0007166","GO:0007267","GO:0007584","GO:0007165","GO:0007186")]

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

3.006413 4.062846 5.867200 2.225221 4.594539

This loads the information contents of all GO terms within "biological process". Like-
wise, the data �les ICsMFhumanall and ICsCChumanall contain the information contents
of all GO terms within "molecular function" and "cellular component" for human. Since
GOSim version 1.1.4.0 the information content of GO terms relies on the mapping of
primary gene IDs (mainly Entrez) to GO terms provided by the libraries org.Dm.eg.db
(�y), org.Hs.eg.db (human), org.Mm.eg.db (mouse), etc. Additionally, it is possible to
pass a user provided mapping via the function setEvidenceLevel. Please refer to the
manual pages for details. If only GO terms having certain evidence codes should be
considered, one must explicitely calculate the corresponding information contents in the
function calcICs. Again, more information on this function can be found in the manual
pages.

To continue our example from above, let us also calculate Jiang and Conrath's pair-
wise similarity between GO terms, which is the default, for compairson reasons (Jiang
and Conrath, 1998):

> getTermSim(c("GO:0007166","GO:0007267","GO:0007584","GO:0007165","GO:0007186"),verbose=FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.9505312 0.5105747 0.2498911 0.7587689 0.5222505

GO:0007267 0.5105747 0.9828000 0.0000000 0.5740054 0.4169139

GO:0007584 0.2498911 0.0000000 0.9971692 0.2740140 0.2119568

GO:0007165 0.7587689 0.5740054 0.2740140 0.8919565 0.5820734

GO:0007186 0.5222505 0.4169139 0.2119568 0.5820734 0.9898931

Jiang and Conrath's similarity measure is de�ned as

sim(t, t′) = 1−min(1, IC(t)− 2ICms(t, t
′) + IC(t′)) (3)

i.e. the similarity between t and t′ is 0, if their normalized distance is at least 1.
Likewise, we can also compute Lin's pairwise similarity between GO terms (Lin,

1998):
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> getTermSim(c("GO:0007166","GO:0007267","GO:0007584","GO:0007165","GO:0007186"),method="Lin",verbose=FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 1.0000000 0.5846115 0.3265762 0.8506792 0.5855112

GO:0007267 0.5846115 1.0000000 0.0000000 0.6572401 0.4773693

GO:0007584 0.3265762 0.0000000 1.0000000 0.3581018 0.2770009

GO:0007165 0.8506792 0.6572401 0.3581018 1.0000000 0.6525805

GO:0007186 0.5855112 0.4773693 0.2770009 0.6525805 1.0000000

It is de�ned as:

sim(t, t′) =
2ICms(t, t

′)

IC(t) + IC(t′)
(4)

Resnik's, Jiang-Conraths's and Lin's term similarities all refer to ICms(t, t
′), the

information content of the minimum subsumer of t and t′, i.e. of the lowest common an-
cestor in the hierarchy. For illustration let us plot the GO graph with leaves GO:0007166
and GO:0007267 and let us compute their minimum subsumer (see Fig. ??):

> library(igraph)

> G = getGOGraph(c("GO:0007166","GO:0007267"))

> G2 = igraph.from.graphNEL(G)

> plot(G2, vertex.label=V(G2)$name)
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GO:0007166

GO:0007267 GO:0007154

GO:0007165

GO:0023052

GO:0008150

GO:0009987
GO:0050794

GO:0051716

GO:0050789GO:0050896

all

GO:0065007

> getMinimumSubsumer("GO:0007166","GO:0007267")

[1] "GO:0023052"

In contrast to the above de�ned similarity measures Couto et al. (Couto et al., 2005)
introduced a concept, which is not based on the minimum subsumer, but on the set
of all disjunctive common ancestors. Roughly speaking, the idea is not to consider the
common ancestor having the highest information content only, but also others, if they
are somehow "separate" from each other, i.e. there exists a path to t or to t′ not passing
any other of the disjunctive common ancestors.

> getDisjCommAnc("GO:0007166","GO:0007267")

[1] "GO:0007154" "GO:0009987" "GO:0023052"

In this case the set of disjunctive common ancestors consists of the minimum subsumer,
GO:0007154, and its parent, GO:0009987, because from both there exists a path to
GO:0007166 not passing any other disjunctive common ancestor(see Fig. ??).
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Based on the notion of disjunctive common ancestors Resnik's similarity concept can
be extended by de�ning:

sim(t, t′) = ICshare(t, t
′) =

1

|DisjCommAnc|
∑

t∈DisjCommAnc

IC(t) (5)

Likewise, Jiang-Conraths's and Lin's measures can be extended as well by replacing
ICms(t, t

′) by ICshare(t, t
′).

> getTermSim(c("GO:0007166","GO:0007267"),method="CoutoResnik",verbose=FALSE)

GO:0007166 GO:0007267

GO:0007166 3.006413 1.507568

GO:0007267 1.507568 4.062846

Finally, it should be mentioned that also the depth and density enriched term simi-
larity by Couto et al. (Couto et al., 2003) has been integrated into GOSim:

> setEnrichmentFactors(alpha=0.5,beta=0.3)

> getTermSim(c("GO:0007166","GO:0007267"),method="CoutoEnriched",verbose=FALSE)

GO:0007166 GO:0007267

GO:0007166 9.038517 0.00000

GO:0007267 0.000000 16.50672

Since version 1.1.5 GOSim contains several new similarity concepts, which are based
on so-called di�usion kernel techniques (Lerman and Shakhnovich, 2007) rather than
on the information theoretic ideas presented before. For using these similarity mea-
sures it is necessary to pre-compute a di�usion kernel on the Gene Ontology graph via
calc.diffusion.kernel. This will take some time and result in a kernel/similarity ma-
trix that is stored in a �le called e.g. 'di�KernelpowerBPhumanall.rda' (meaning matrix
power di�usion kernel for ontology BP in human using all evidence codes) in the current
working directory. Once the kernel is created, it has to be loaded into the environment
�rst load.diffusion.kernel. Afterwards GO term similarities can be computed via
function getTermSim. Please check the manual pages for details.

Since version 1.2 GOSim also contains Schlicker et al.'s GO term similarity measure
(Schlicker et al., 2006), which is an adaption of Lin's similarity measure. Moreover, the
graph information content similarity by Pesquita et al. has been implemented (Pesquita
et al., 2007).

> getTermSim(c("GO:0007166","GO:0007267","GO:0007584","GO:0007165","GO:0007186"),method="relevance",verbose=FALSE)

GO:0007166 GO:0007267 GO:0007584 GO:0007165 GO:0007186

GO:0007166 0.9505312 0.5105747 0.2498911 0.7587689 0.5222505

GO:0007267 0.5105747 0.9828000 0.0000000 0.5740054 0.4169139

GO:0007584 0.2498911 0.0000000 0.9971692 0.2740140 0.2119568

GO:0007165 0.7587689 0.5740054 0.2740140 0.8919565 0.5820734

GO:0007186 0.5222505 0.4169139 0.2119568 0.5820734 0.9898931
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2.2 Functional Gene Similarities

The special strength of GOSim lies in the possibility not only to calculate similarities for
individual GO terms, but also for genes based on their complete GO anntation. Since
GOSim version 1.1.5 for this purpose the following ideas have been implemented:

1. Maximum (Couto et al., 2003) and average pairwise GO term similarity

2. Average of best matching GO term similarities (Schlicker et al., 2006).

3. Computation of a so-called optimal assignment of terms from one gene to those of
another one (Fröhlich et al., 2006).

4. Similarity derived from Hausdor� distances between sets (del Pozo et al., 2008).

5. Embedding of each gene into a feature space: (Speer et al., 2005; Fröhlich et al.,
2006) proposed to de�ne feature vectors by a gene's maximum GO term similar-
ity to certain prototype genes. More simple (but probably also less accurate),
(Mistry and Pavlidis, 2008) recently proposed to represent each gene by a feature
vector describing the presence/absence of all GO terms. The absence of each GO
term is additionally weighted by its information content. Within a feature space
gene functional similarities naturally arise as dot products between feature vectors.
These dot products can be understood as so-called kernel functions (Schölkopf and
Smola, 2002), as used in e.g. Support Vector Machines (Cortes and Vapnik, 1995).
Depending on the choice of later normalization (see below) one can arrive at the co-
sine similarity (Eq. 6), at the Tanimoto coe�cient (Eq. 7) or at a measure similiar
to Lin's one (Eq. 8, Eq. 4).

2.2.1 Normalization of Similarities

Often, people want to normalize similarities, e.g. on the interval [0, 1], for better inter-
pretation. To do so, we can perform the transformation

simgene(g, g
′)← simgene(g, g

′)√
simgene(g, g)simgene(g′, g′)

(6)

Provided simgene ≥ 0, the consequence will be a similarity of 1 for g with itself and
between 0 and 1 for g with any other gene. In case of a feature space embedding this
transformation is equivalent to computing the cosine similarity between two feature
vectors.

Another possibility is to use Lin's normalization (see Eq. 4):

simgene(g, g
′)← 2simgene(g, g

′)

simgene(g, g) + simgene(g′, g′)
(7)
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Furthermore, one can use a normalization in the spirit of the Tanimoto coe�cient:

simgene(g, g
′)← simgene(g, g

′)

simgene(g, g) + simgene(g′, g′)− simgene(g, g′)
(8)

In case of a feature space embedding the transformation corresponds exactly to the
Tanimoto coe�cient betweem two feature vectors.

We now give a more detailed overview over the di�erent similarity concepts mentioned
above.

2.2.2 Maximum and Average Pairwise GO Term Similarity

The idea of the maximum pairwise GO term similarity is straight forward. Given two
genes g and g′ annotated with GO terms t1, ..., tn and t′1, ..., t

′
m we de�ne the functional

similarity between between g and g′ as

simgene(g, g
′) = max

i = 1, , ..., n
j = 1, ...,m

sim(ti, t
′
j) (9)

where sim is some similarity measure to compare GO terms ti and t
′
j. This idea is, for

instance, realized in FuSSiMeg (Couto et al., 2003). Instead of computing the maximum
pairwise GO term similarity one may also take the average here.

2.2.3 Average of Best Matching GO Term Similarities

The idea of this approach (Schlicker et al., 2006) is to assign each GO term ti occuring in
gene g to its best matching partner t′πi in gene g′. Hence multiple GO terms from gene g
can be assigned to one GO term from gene g′. A similarity score is computed by taking
the average similarity of assigned GO terms. Since, however, genes can have an unequal
number of GO terms the result depends on whether GO terms of gene g are assigned
to those of gene g′ or vice versa. Hence, in Schlicker et al. (2006) it was proposed to
either take the maximum or the average of both similarity scores. Both strategies are
implemented in GOSim.

2.2.4 Optimal Assignment Gene Similarities

To elucidate the idea of the optimal assignment (Fröhlich et al., 2006), consider the GO
terms associated with gene "8614" on one hand and gene "2852" on the other hand:

> getGOInfo(c("8614","2852"))

8614 2852

go_id character,12 character,52

Term character,12 character,52

Definition character,12 character,52

IC numeric,12 numeric,52
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Given a similarity concept sim to compare individual GO terms, the idea is now to assign
each term of the gene having fewer annotation to exactly one term of the other gene such
that the overall similarity is maximized. More formally the optimal assignment problem
can be stated as follows: Let π be some permutation of either an n-subset of natural
numbers {1, ...,m} or an m-subset of natural numbers {1, ..., n} (this will be clear from
context). Then we are looking for the quantity

simgene(g, g
′) =

{
maxπ

∑n
i=1 sim(ti, t

′
π(i)) if m > n

maxπ
∑m

j=1 sim(tπ(j), t
′
j) otherwise

(10)

The computation of (10) corresponds to the solution of the classical maximum weighted
bipartite matching (optimal assignment) problem in graph theory and can be carried
out in O(max(n,m)3) time (Mehlhorn and Näher, 1999). To prevent that larger lists
of terms automatically achieve a higher similarity we may further simgene divide 10 by
max(m,n).

In our example, using Lin's GO term similarity measure the following assignments
yielding a corresponding similarity matrix are found:

> getGeneSim(c("8614","2852"),similarity="OA",similarityTerm="Lin",avg=FALSE, verbose=FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.3234425

2852 0.3234425 1.0000000

Note the di�erence to a gene similarity that is just based on the maximum GO term
similarity and to a gene similarity that is based on the average of best matching GO
terms:

> getGeneSim(c("8614","2852"),similarity="max",similarityTerm="Lin",verbose=FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.9340789

2852 0.9340789 1.0000000

> getGeneSim(c("8614","2852"),similarity="funSimMax",similarityTerm="Lin",verbose=FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.6676739

2852 0.6676739 1.0000000
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2.2.5 Gene Similarities In the Spirit of Hausdor� Metrics

Hausdor� metrics are a general concept for measuring distances between compact subsets
of a metric space. Let X and Y be the two sets of GO terms associated to genes g and
g′, and let d(t, t′) denote the distanc between GO terms t and t′. Then the Hausdor�
distance X and Y is de�ned as

dHausdorff (X, Y ) = max{sup
t∈X

inf
t′∈Y

d(t, t′), sup
t′∈Y

inf
t∈X

d(t, t′)} (11)

Using Hausdor� metrics for measuring gene functional distances was proposed in del
Pozo et al. (2008). We translate the idea to de�ne a similarity measure between g and
g′ (see the di�erence to previous GOSim versions):

simgene(g, g
′) = exp(−dHausdorff (g, g′)) (12)

> getGeneSim(c("8614","2852"),similarity="hausdorff",similarityTerm="Lin",verbose=FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1.0000000 0.9873622

2852 0.9873622 1.0000000

2.2.6 Feature Space Embedding of Gene Products

The Simple Approach Mistry and Pavlidis (2008) proposed to represent each gene
by a feature vector describing the presence/absence of all GO terms. The absence of
each GO term is additionally weighted by its information content. In the feature space
similarities arise as dot products. Hence, the similarity between two GO terms t and
t′ is implicitly de�ned as the product of their information content values, hence igoring
the exact DAG structure of the Gene Ontology as employed by the GO term similarity
measures explained in the beginning of this document.

> getGeneSim(c("8614","2852"),similarity="dot",method="Tanimoto", verbose=FALSE)

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2

8614 2852

8614 1 NaN

2852 NaN 1

This will calculate the Tanimoto coe�cient between feature vectors as a similarity mea-
sure. It is possible to retrieve the feature vectors via:

> features = getGeneFeatures(c("8614","2852"))

filtering out genes not mapping to the currently set GO category ... ===> list of 2 genes reduced to 2
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Embeddings via GO Term Similarities to Prototype Genes This approach is
due to Speer et al. (2005); Fröhlich et al. (2006). The idea is to de�ne a feature vector
for each gene by its pairwise GO term similarity to certain prototype genes, i.e. the
prototype genes form a (nonorthogonal) basis, and each gene is de�ned relative to this
basis. The prototype genes can eithed be de�ned a priori or one can use one of the
heuristics implemented in the function selectPrototypes. The default behavior is to
select the 250 best annotated genes, i.e. which have been annotated with GO terms
most often, but here we just use 3 for computational reasons:

> proto = selectPrototypes(n=3,verbose=FALSE)

We now calculate for each gene g feature vectors φ(g) by using their similarity to all
prototypes p1, ..., pn:

φ(g) = (sim′(g, p1), ..., sim
′(g, pn))

T (13)

Here sim′ by default is the maximum pairwise GO term similarity. Alternatively, one
can use other similarity measures for sim′ as well. These similarity measures can by
itself again be combined with arbitrary GO term similarity concepts. The default is the
Jiang-Conrath term similarity.

Because the feature vectors are very high-dimensional we usually perform a principal
component analysis (PCA) to project the data into a lower dimensional subspace. The
results are not shown here due to long computation time.

> PHI = getGeneFeaturesPrototypes(genes,prototypes=proto, verbose=FALSE)

This uses the above de�ne prototypes to calculate feature vectors and performs a
PCA afterwards. The number of principal components is chosen such that at least 95%
of the total variance in feature space can be explained (this is a relatively conservatve
criterion).

We can now plot our genes in the space spanned by the �rst 2 principal components
to get an impression of the relative "position" of the genes to each other in the feature
space (see Fig. ??). The feature vectors are normalized to Euclidian norm 1 by default:

> x=seq(min(PHI$features[,1]),max(PHI$features[,1]),length.out=100)

> y=seq(min(PHI$features[,2]),max(PHI$features[,2]),length.out=100)

> plot(x,y,xlab="principal component 1",ylab="principal component 2",type="n")

> text(PHI$features[,1],PHI$features[,2],labels=genes)

Finally, we can directly calculate the similarities of the genes to each other, this time
using the Resnik's GO term similarity concept. These similarities may then be used to
cluster genes with respect to their function:

> sim = getGeneSimPrototypes(genes[1:3],prototypes=proto,similarityTerm="Resnik",verbose=FALSE)

> h=hclust(as.dist(1-sim$similarity),"average")

> plot(h,xlab="")

This produces a hierarchical clustering of all genes using average linkage clustering
(see Fig. 2).
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Figure 3: Silhouette plot of a possible given grouping of genes.

2.2.7 Combination of Similarities from Di�erent Ontologies

It should be mentioned that up to now all similarity computations were performed within
the ontology "biological process". One could imagine to combine functional similarities
between gene products with regard to di�erent taxonomies. An obvious way for doing
so would be to consider the sum of the respective similarities:

simtotal(g, g
′) = simOntology1(g, g

′) + simOntology2(g, g
′) (14)

Of course, one could also use a weighted averaging scheme here, if desired.

2.3 Cluster Evaluations

GOSim has the possibility to evaluate a given clustering of genes or terms by means of
their GO similarities. Supposed, based on other experiments (e.g. microarry), we have
decided to put genes "8614", "9518", "780", "2852" in one group, genes "3169", "207",
"7494", "596" in a second and the rest in a third group. Then we can ask ourselves,
how similar these groups are with respect to their GO annotations:

> ev = evaluateClustering(c(2,3,2,3,1,2,1,1,3,1,2), sim$similarity)

> plot(ev$clustersil,main="")

A good indiciation of the clustering qualitiy can be obtained by looking at the cluster
silhouettes (Rousseeuw, 1987) (see Fig. 3). This shows that clusters 1 and 2 are relatively
homogenous with respect to the functional similarity of the genes contained in it, while
the genes in cluster 3 are more dissimilar.
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2.4 GO Enrichment Analysis

Since version 1.1GOSim also o�ers the possibility of a GO enrichment analysis. Suppose,
we may now want to get a clearer picture of the genes involved in cluster 1. For this
purpose we use the topGO tool (Alexa et al., 2006).

> library(org.Hs.eg.db)

> library(topGO)

> allgenes = union(c("8614", "9518", "780", "2852"), sample(keys(org.Hs.egGO), 1000)) # suppose these are all genes

> GOenrichment(c("8614", "9518", "780", "2852"), allgenes) # print out what cluster 1 is about

$GOTerms

go_id

2637 GO:0001934

15774 GO:0006874

16342 GO:0007169

17026 GO:0007566

17735 GO:0008285

23607 GO:0010817

32510 GO:0022411

36281 GO:0031667

47735 GO:0040015

49413 GO:0042692

51099 GO:0043410

51189 GO:0043434

68507 GO:0051128

70812 GO:0051896

70923 GO:0051924

78555 GO:0071375

Term

2637 positive regulation of protein phosphorylation

15774 cellular calcium ion homeostasis

16342 transmembrane receptor protein tyrosine kinase signaling pathway

17026 embryo implantation

17735 negative regulation of cell population proliferation

23607 regulation of hormone levels

32510 cellular component disassembly

36281 response to nutrient levels

47735 negative regulation of multicellular organism growth

49413 muscle cell differentiation

51099 positive regulation of MAPK cascade

51189 response to peptide hormone

68507 regulation of cellular component organization
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70812 regulation of protein kinase B signaling

70923 regulation of calcium ion transport

78555 cellular response to peptide hormone stimulus

Definition

2637 Any process that activates or increases the frequency, rate or extent of addition of phosphate groups to amino acids within a protein.

15774 Any process involved in the maintenance of an internal steady state of calcium ions at the level of a cell.

16342 A series of molecular signals initiated by the binding of an extracellular ligand to a receptor on the surface of the target cell where the receptor possesses tyrosine kinase activity, and ending with regulation of a downstream cellular process, e.g. transcription.

17026 Attachment of the blastocyst to the uterine lining.

17735 Any process that stops, prevents or reduces the rate or extent of cell proliferation.

23607 Any process that modulates the levels of hormone within an organism or a tissue. A hormone is any substance formed in very small amounts in one specialized organ or group of cells and carried (sometimes in the bloodstream) to another organ or group of cells in the same organism, upon which it has a specific regulatory action.

32510 A cellular process that results in the breakdown of a cellular component.

36281 Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus reflecting the presence, absence, or concentration of nutrients.

47735 Any process that stops, prevents, or reduces the frequency, rate or extent of growth of an organism to reach its usual body size.

49413 The process in which a relatively unspecialized cell acquires specialized features of a muscle cell.

51099 Any process that activates or increases the frequency, rate or extent of signal transduction mediated by the MAPK cascade.

51189 Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a peptide hormone stimulus. A peptide hormone is any of a class of peptides that are secreted into the blood stream and have endocrine functions in living animals.

68507 Any process that modulates the frequency, rate or extent of a process involved in the formation, arrangement of constituent parts, or disassembly of cell structures, including the plasma membrane and any external encapsulating structures such as the cell wall and cell envelope.

70812 Any process that modulates the frequency, rate or extent of protein kinase B signaling, a series of reactions mediated by the intracellular serine/threonine kinase protein kinase B.

70923 Any process that modulates the frequency, rate or extent of the directed movement of calcium ions into, out of or within a cell, or between cells, by means of some agent such as a transporter or pore.

78555 Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a peptide hormone stimulus. A peptide hormone is any of a class of peptides that are secreted into the blood stream and have endocrine functions in living animals.

$p.values

GO:0040015 GO:0008285 GO:0010817 GO:0006874 GO:0051924 GO:0051896

0.0001493057 0.0093938555 0.0004457994 0.0030616926 0.0008873744 0.0001493057

GO:0007566 GO:0051128 GO:0031667 GO:0001934 GO:0043410 GO:0043434

0.0001493057 0.0068946643 0.0021973993 0.0093938555 0.0051985345 0.0072202166

GO:0022411 GO:0042692 GO:0071375 GO:0007169

0.0051985345 0.0078661068 0.0030616926 0.0001246946

$genes

$genes$`GO:0040015`

[1] "8614" "9518"

$genes$`GO:0008285`

[1] "11331" "1401" "26277" "2852" "3635" "406902" "4487" "4656"

[9] "5270" "60485" "6754" "780"

$genes$`GO:0010817`

[1] "2488" "2852" "8614"

$genes$`GO:0006874`

[1] "1604" "2151" "2852" "490" "7009" "7184" "8614"
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$genes$`GO:0051924`

[1] "2852" "490" "7009" "8614"

$genes$`GO:0051896`

[1] "2852" "9518"

$genes$`GO:0007566`

[1] "780" "8614"

$genes$`GO:0051128`

[1] "10211" "10361" "128866" "23012" "26115" "26277" "2852" "2895"

[9] "28964" "29978" "4487" "4656" "5270" "54434" "55937" "5756"

[17] "57689" "60676" "6281" "63908" "64218" "6857" "7175" "7755"

[25] "780" "80230" "8260" "84630" "869" "8877" "891" "8976"

[33] "9362" "9518" "9696" "9780"

$genes$`GO:0031667`

[1] "27158" "4149" "490" "7392" "8614" "9518"

$genes$`GO:0001934`

[1] "10211" "11331" "152110" "2250" "2852" "338773" "3456" "84630"

[9] "8792" "8877" "891" "9518"

$genes$`GO:0043410`

[1] "11331" "152110" "168667" "2852" "59" "6754" "8792" "8877"

[9] "9518"

$genes$`GO:0043434`

[1] "2303" "2852" "4149" "4644" "490" "8614" "9340" "9518"

$genes$`GO:0022411`

[1] "10211" "11331" "128866" "1515" "2852" "285636" "5756" "63908"

[9] "780"

$genes$`GO:0042692`

[1] "10211" "1827" "2852" "338773" "348093" "4487" "4656" "6300"

[9] "84193" "9518" "9780"

$genes$`GO:0071375`

[1] "2303" "2852" "4149" "4644" "490" "9340" "9518"
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$genes$`GO:0007169`

[1] "2250" "2303" "2852" "28964" "406902" "5801" "66000" "780"

[9] "9158" "9518"
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