Introduction to BiocParallel

Valerie Obenchain, Vincent Carey, Michael Lawrence, Mar-

tin Morgan'

Edited: January 23, 2021; Compiled: October 11, 2022

Contents

1 Introduction
2 Quick start.

3 The BiocParallel Interface.

3.1 Classes
3.1.1 BiocParallelParam
3.1.2 register()ing BiocParallelParaminstances

3.2 Functions

3.2.1 Parallel looping, vectorized and aggregate operations
3.2.2 Parallel evaluation environment
3.2.3 Error handling and logging
3.24 Locksandcounters.

4 Usecases.

4.1 Single machine.
411 Forked processes with MulticoreParam
412 Clusters of independent processes with SnowParam .

4.2 Ad hoc cluster of multiple machines.

4.2.1 Sockets.
422 MPI . . . o

4.3 Clusters with schedulers

4.3.1 Cluster-centric.

4.3.2 R-centric

5 Analyzing genomic data in Bioconductor
6 Fordevelopers

7 sessionInfo().

WoooONN O M b

IMartin.Morgan@
RoswellPark.org

Martin.Morgan@RoswellPark.org
Martin.Morgan@RoswellPark.org
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

1 Introduction

Numerous approaches are available for parallel computing in R. The CRAN Task View for
high performance and parallel computing provides useful high-level summaries and package
categorization. http://cran.r-project.org/web /views/HighPerformanceComputing.html| Most
Task View packages cite or identify one or more of snow, Rmpi, multicore or foreach as
relevant parallelization infrastructure. Direct support in R for parallel computing started
with release 2.14.0 with inclusion of the parallel package which contains modified versions of
multicore and snow.

A basic objective of BiocParallel is to reduce the complexity faced when developing and using
software that performs parallel computations. With the introduction of the BiocParallel
Param object, BiocParallel aims to provide a unified interface to existing parallel infrastructure
where code can be easily executed in different environments. The BiocParallelParam speci-
fies the environment of choice as well as computing resources and is invoked by ‘registration’
or passed as an argument to the BiocParallel functions.

BiocParallel offers the following conveniences over the ‘roll your own‘ approach to parallel
programming.

= unified interface: BiocParallelParam instances define the method of parallel evaluation
(multi-core, snow cluster, etc.) and computing resources (number of workers, error
handling, cleanup, etc.).

= parallel iteration over lists, files and vectorized operations: bplapply, bpmapply and
bpvec provide parallel list iteration and vectorized operations. bpiterate iterates

through files distributing chunks to parallel workers.

= cluster scheduling: When the parallel environment is managed by a cluster scheduler
through batchtools, job management and result retrieval are considerably simplified.

= support of foreach: The foreach and iterators packages are fully supported. Registra-
tion of the parallel back end uses BiocParallelParam instances.

2 Quick start

The BiocParallel package is available at bioconductor.org and can be downloaded via Bioc
Manager:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("BiocParallel")

Load BiocParallel.

library(BiocParallel)

won

The test function simply returns the square root of “x".

FUN <- function(x) { round(sqgrt(x), 4) }

Functions in BiocParalleluse the registered back-ends for parallel evaluation. The default is
the top entry of the registry list.

http://bioconductor.org/packages/BiocParallel
http://cran.r-project.org/web/views/HighPerformanceComputing.html
https://CRAN.R-project.org/package=snow
https://CRAN.R-project.org/package=Rmpi
https://CRAN.R-project.org/package=multicore
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=parallel
https://CRAN.R-project.org/package=multicore
https://CRAN.R-project.org/package=snow
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=batchtools
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=iterators
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

registered()

$MulticoreParam

class: MulticoreParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

#i# bpexportglobals: TRUE; bpexportvariables: FALSE; bpforceGC: TRUE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

cluster type: FORK

#it

$SnowParam

class: SnowParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

cluster type: SOCK

#it

$SerialParam

class: SerialParam

bpisup: FALSE; bpnworkers: 1; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: FALSE; bpexportvariables: FALSE; bpforceGC: FALSE; bpfallback: FALSE
bplogdir: NA

bpresultdir: NA

Configure your R session to always use a particular back-end configure by setting options
named after the back ends in an .Rprofile file, e.g.,

options (MulticoreParam=quote(MulticoreParam(workers=4)))

When a BiocParallel function is invoked with no BPPARAM argument the default back-end is
used.

bplapply(1:4, FUN)

Environment specific back-ends can be defined for any of the registry entries. This example
uses a 2-worker SOCK cluster.

param <- SnowParam(workers
bplapply(1:4, FUN, BPPARAM

2, type = "SOCK")
param)

[[1]]

[1] 1

##

[[2]]

[1] 1.4142
##

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

[[3]1]

[1] 1.7321
#i#

[[4]]

[1] 2

The BiocParallel Interface

3.1
3.1.1

Classes

BiocParallelParam

BiocParallelParam instances configure different parallel evaluation environments. Creating
or register()ing a ‘Param’ allows the same code to be used in different parallel environments
without a code re-write. Params listed are supported on all of Unix, Mac and Windows except
MulticoreParam which is Unix and Mac only.

SerialParam:
Supported on all platforms.

Evaluate BiocParallel-enabled code with parallel evaluation disabled. This approach is
useful when writing new scripts and trying to debug code.

MulticoreParam:

Supported on Unix and Mac. On Windows, MulticoreParam dispatches to Serial
Param.

Evaluate BiocParallel-enabled code using multiple cores on a single computer. When
available, this is the most efficient and least troublesome way to parallelize code. Win-
dows does not support multi-core evaluation (the MulticoreParam object can be used,
but evaluation is serial). On other operating systems, the default number of workers
equals the value of the global option mc.cores (e.g., getOption("mc.cores")) or, if
that is not set, the number of cores returned by parallel::detectCores() - 2; when
number of cores cannot be determined, the default is 1.

MulticoreParam uses 'forked’ processes with 'copy-on-change' semantics — memory is
only copied when it is changed. This makes it very efficient to invoke compared to
other back-ends.

There are several important caveats to using MulticoreParam. Forked processes are
not available on Windows. Some environments, e.g., RStudio, do not work well with
forked processes, assuming that R code evaluation is single-threaded. Some external
resources, e.g., access to files or data bases, maintain state in a way that assumes the
resource is accessed only by a single thread. A subtle cost is that R's garbage collector
runs periodically, and 'marks’ memory as in use. This effectively triggers a copy of the
marked memory. R's generational garbage collector is triggered at difficult-to-predict
times; the effect in a long-running forked process is that the memory is eventually
copied. See this post for additional details.

MulticoreParam is based on facilities originally implemented in the multicore package
and subsequently the parallel package in base R.

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
https://support.bioconductor.org/p/70196/#70509
https://CRAN.R-project.org/package=multicore
https://CRAN.R-project.org/package=parallel

Introduction to BiocParallel

= SnowParam:
Supported on all platforms.

Evaluate BiocParallel-enabled code across several distinct R instances, on one or several
computers. This is a straightforward approach for executing parallel code on one or
several computers, and is based on facilities originally implemented in the snow package.
Different types of snow ‘back-ends’ are supported, including socket and MPI clusters.

= BatchtoolsParam:
Applicable to clusters with formal schedulers.

Evaluate BiocParallel-enabled code by submitting to a cluster scheduler like SGE.

= DoparParam:
Supported on all platforms.
Register a parallel back-end supported by the foreach package for use with BiocParallel.
The simplest illustration of creating BiocParallelParam is

serialParam <- SerialParam()
serialParam

class: SerialParam

bpisup: FALSE; bpnworkers: 1; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: FALSE; bpexportvariables: FALSE; bpforceGC: FALSE; bpfallback: FALSE
bplogdir: NA

bpresultdir: NA

Most parameters have additional arguments influencing behavior, e.g., specifying the number
of ‘cores’ to use when creating a MulticoreParam instance

multicoreParam <- MulticoreParam(workers = 8)
multicoreParam

class: MulticoreParam

bpisup: FALSE; bpnworkers: 8; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: TRUE; bpexportvariables: FALSE; bpforceGC: TRUE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

cluster type: FORK

Arguments are described on the corresponding help page, e.g., ?MulticoreParam.

3.1.2 register()ing BiocParallelParam instances

The list of registered BiocParallelParam instances represents the user’s preferences for differ-
ent types of back-ends. Individual algorithms may specify a preferred back-end, and different
back-ends maybe chosen when parallel evaluation is nested.

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=snow
https://CRAN.R-project.org/package=snow
http://bioconductor.org/packages/BiocParallel
https://CRAN.R-project.org/package=foreach
http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

The registry behaves like a ‘stack’ in that the last entry registered is added to the top of the
list and becomes the “next used” (i.e., the default).

registered invoked with no arguments lists all back-ends.
registered()

$MulticoreParam

class: MulticoreParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: TRUE; bpexportvariables: FALSE; bpforceGC: TRUE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

cluster type: FORK

#i#

$SnowParam

class: SnowParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

it cluster type: SOCK

#i#t

$SerialParam

class: SerialParam

bpisup: FALSE; bpnworkers: 1; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: FALSE; bpexportvariables: FALSE; bpforceGC: FALSE; bpfallback: FALSE
bplogdir: NA

bpresultdir: NA

bpparam returns the default from the top of the list.
bpparam()

class: MulticoreParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB

bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

DbpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: TRUE; bpexportvariables: FALSE; bpforceGC: TRUE; bpfallback: TRUE
bplogdir: NA

bpresultdir: NA

cluster type: FORK

Add a specialized instance with register. When default is TRUE, the new instance becomes
the default.

default <- registered()
register(BatchtoolsParam(workers = 10), default = TRUE)

http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

3.2
3.2.1

BatchtoolsParam has been moved to the top of the list and is now the default.
names (registered())

[1] "BatchtoolsParam" "MulticoreParam" "SnowParam" "SerialParam"
bpparam()

class: BatchtoolsParam

bpisup: FALSE; bpnworkers: 10; bptasks: 0; bpjobname: BPJOB
bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bpRNGseed: NA; bptimeout: NA; bpprogressbar: FALSE

bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE; bpfallback: TRUE

bplogdir: NA

bpresultdir: NA

At cluster type: multicore
template: NA

registryargs:

file.dir: /tmp/RtmpwXDnbb/Rbuild125f8c661ffc03/BiocParallel/vignettes/filel269f66d167c61
work.dir: getwd()

packages: character(0)

#i# namespaces: character(0)

source: character(0)

load: character(0)

make.default: FALSE

saveregistry: FALSE
resources:
Restore the original registry

for (param in rev(default))
register(param)

Functions

Parallel looping, vectorized and aggregate operations

These are used in common functions, implemented as much as possible for all back-ends.
The functions (see the help pages, e.g., ?bplapply for a full definition) include

bplapply (X, FUN, ...):

Apply in parallel a function FUN to each element of X. bplapply invokes FUN length (X)
times, each time with a single element of X.

bpmapply (FUN, ...):

Apply in parallel a function FUN to the first, second, etc., elements of each argument
in....

bpiterate(ITER, FUN, ...):

Apply in parallel a function FUN to the output of function ITER. Data chunks are
returned by ITER and distributed to parallel workers along with FUN. Intended for
iteration though an undefined number of data chunks (i.e., records in a file).

bpvec(X, FUN, ...):

http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

3.2.2

3.2.3

3.2.4

Apply in parallel a function FUN to subsets of X. bpvec invokes function FUN as many
times as there are cores or cluster nodes, with FUN receiving a subset (typically more
than 1 element, in contrast to bplapply) of X.

bpaggregate(x, data, FUN, ...):

Use the formula in x to aggregate data using FUN.

Parallel evaluation environment
These functions query and control the state of the parallel evaluation environment.
bpisup(x): Query a BiocParallelParam back-end x for its status.

bpworkers; bpnworkers: Query a BiocParallelParam back-end for the number of workers
available for parallel evaluation.

bptasks: Divides a job (e.g., single call to *lapply function) into tasks. Applicable to
MulticoreParam only; DoparParam and BatchtoolsParam have their own approach to
dividing a job among workers.

bpstart(x): Start a parallel back end specified by BiocParallelParam x, if possible.

bpstop(x): Stop a parallel back end specified by BiocParallelParam x.

Error handling and logging

Logging and advanced error recovery is available in BiocParallel 1.1.25 and later. For a
more details see the vignette titled "Error Handling and Logging":

browseVignettes("BiocParallel")

Locks and counters

Inter-process (i.e., single machine) locks and counters are supported using ipclock(), ip
cyield(), and friends. Use these to synchronize computation, e.g., allowing only a single
process to write to a file at a time.

Use cases

4.1

Sample data are BAM files from a transcription profiling experiment available in the RNAse-
gData. HNRNPC.bam.chr14 package.

library (RNAseqData.HNRNPC.bam.chrl4)
fls <- RNAseqData.HNRNPC.bam.chrl4 BAMFILES

Single machine

Common approaches on a single machine are to use multiple cores in forked processes, or to
use clusters of independent processes.

For purely R-based computations on non-Windows computers, there are substantial benefits,
such as shared memory, to be had using forked processes. However, this approach is not
portable across platforms, and fails when code uses functionality, e.g., file or data base

http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

411

access, that assumes only a single thread is accessing the resource. While use of forked
processes with MulticoreParam is an attractive solution for scripts using pure R functionality,
robust and complex code often requires use of independent processes and SnowParam.

Forked processes with MulticoreParam

This example counts overlaps between BAM files and a defined set of ranges. First create a
GRanges with regions of interest (in practice this could be large).

library(GenomicAlignments) ## for GenomicRanges and readGAlignments()
gr <- GRanges("chrl4", IRanges((1000:3999)*5000, width=1000))

A ScanBamParam defines regions to extract from the files.

param <- ScanBamParam(which=range(gr))

FUN counts overlaps between the ranges in ‘gr' and the files.

FUN <- function(fl, param) {
gal <- readGAlignments(fl, param = param)
sum(countOverlaps(gr, gal))

All parameters necessary for running a job in a multi-core environment are specified in the
MulticoreParam instance.

MulticoreParam()

class: MulticoreParam

bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE

#i# bpexportglobals: TRUE; bpexportvariables: FALSE; bpforceGC: TRUE; bpfallback:

bplogdir: NA
bpresultdir: NA
cluster type: FORK

The BiocParallel functions, such as bplapply, use information in the MulticoreParam to set
up the appropriate back-end and pass relevant arguments to low-level functions.

> bplapply(fls[1:3], FUN, BPPARAM = MulticoreParam(), param = param)
$ERR127306
[1] 1185

$ERR127307
[1] 1123

$ERR127308
[1] 1241

Shared memory environments eliminate the need to pass large data between workers or load
common packages. Note that in this code the GRanges data was not passed to all workers
in bplapply and FUN did not need to load GenomicAlignments for access to the readGAlign
ments function.

TRUE

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/GenomicAlignments

Introduction to BiocParallel

41.2

Problems with forked processes occur when code implementating functionality used by the
workers is not written in anticipation of use by forked processes. One example is the database
connection underlying Bioconductor's org.* packages. This psudoe-code

library(org.Hs.eg.db)

FUN <- function(x, ...) {
mapIds(org.Hs.eg.db, ...)
b
bplapply (X, FUN, ..., BPPARAM = MulticoreParam())

is likely to fail, because library(org.Hs.eg.db) opens a database connection that is accessed
by multiple processes. A solution is to ensure that the database is opened independently in
each process

FUN <- function(x, ...) {
library(org.Hs.eg.db)

mapIds(org.Hs.eg.db, ...)

}
bplapply(X, FUN, ..., BPPARAM = MulticoreParam())

Clusters of independent processes with SnowParam

Both Windows and non-Windows machines can use the cluster approach to spawn processes.
BiocParallel back-end choices for clusters on a single machine are SnowParam for configuring
a Snow cluster or the DoparParam for use with the foreach package.

To re-run the counting example, FUN needs to modified such that ‘gr' is passed as a formal
argument and required libraries are loaded on each worker. (In general, this is not necessary
for functions defined in a package name space, see Section 6.)

FUN <- function(fl, param, gr) {
suppressPackageStartupMessages ({
library(GenomicAlignments)
})
gal <- readGAlignments(fl, param = param)
sum(countOverlaps(gr, gal))

}

Define a 2-worker SOCK Snow cluster.

snow <- SnowParam(workers = 2, type = "SO0CK")

A call to bplapply with the SnowParam creates the cluster and distributes the work.
bplapply(fls[1:3], FUN, BPPARAM = snow, param = param, gr = gr)

$ERR127306
[1] 1185
##

$ERR127307

10

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

4.2

4.2.1

[1] 1123
##

$ERR127308
[1] 1241

The FUN written for the cluster adds some overhead due to the passing of the GRanges
and the loading of GenomicAlignments on each worker. This approach, however, has the
advantage that it works on most platforms and does not require a coding change when
switching between windows and non-windows machines.

If several bplapply () statements are likely to require the same resource, it often makes sense
to create a cluster once using bpstart(). The workers are re-used by each call to bplapply(),
so they do not have to re-load packages, etc.

register(SnowParam()) # default evaluation

bpstart() # start the cluster
Béiapply(x, FUN1, ...)

géiapply(x, FUN2, ...) # re-use workers
bpstop()

Ad hoc cluster of multiple machines

We use the term ad hoc cluster to define a group of machines that can communicate with
each other and to which the user has password-less log-in access. This example uses a group
of compute machines ("the rhinos") on the FHCRC network.

Sockets

On Linux and Mac OS X, a socket cluster is created across machines by supplying machine
names as the workers argument to a BiocParallelParam instance instead of a number. Each
name represents an R process; repeat names indicate multiple workers on the same machine.

Create a SnowParam with 2 cpus from ‘rhino01' and 1 from ‘rhino02".

hosts <- c("rhino01", "rhino@1", "rhino02")
param <- SnowParam(workers = hosts, type = "SOCK")

Execute FUN 4 times across the workers.

> FUN <- function(i) system("hostname", intern=TRUE)
> bplapply(1:4, FUN, BPPARAM = param)

[[1]1]

[1] "rhinoOl"

[[211]
[1] "rhinoO1"

[[31]
[1] "rhino02"

11

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/GenomicAlignments

Introduction to BiocParallel

422

[[4]]
[1] "rhinoOGl1"

When creating a cluster across Windows machines workers must be IP addresses (e.g.,
"140.107.218.57") instead of machine names.

MPI

An MPI cluster across machines is created with mpirun or mpiexec from the command line or
a script. A list of machine names provided as the -hostfile argument defines the mpi universe.

The hostfile requests 2 processors on 3 different machines.

rhino@l slots=2
rhino02 slots=2
rhino03 slots=2

From the command line, start a single interactive R process on the current machine.
mpiexec --np 1 --hostfile hostfile R --vanilla

Load BiocParallel and create an MPIl Snow cluster. The number of workers in SnowParam
should match the number of slots requested in the hostfile. Using a smaller number of workers
uses a subset of the slots.

> library(BiocParallel)
> param <- SnowParam(workers = 6, type = "MPI")

Execute FUN 6 times across the workers.

> FUN <- function(i) system("hostname", intern=TRUE)
> bplapply(1:6, FUN, BPPARAM = param)
bplapply(1:6, FUN, BPPARAM = param)

6 slaves are spawned successfully. 0 failed.
[[11]
[1] "rhinoO@1"

[[21]
[1] "rhino0©2"

[[31]
[1] "rhino0©2"

[[4]1]
[1] "rhino0®3"

[[51]
[1] "rhino@3"

[[6]]
[1] "rhinoOGl1"

Batch jobs can be launched with mpiexec and R CMD BATCH. Code to be executed is in
‘Rcode.R".

mpiexec --hostfile hostfile R CMD BATCH Rcode.R

12

http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

4.3

4.3.1

Clusters with schedulers

Computer clusters are far from standardized, so the following may require significant adap-
tation; it is written from experience here at FHCRC, where we have a large cluster managed
via SLURM. Nodes on the cluster have shared disks and common system images, minimizing
complexity about making data resources available to individual nodes. There are two simple
models for use of the cluster, Cluster-centric and R-centric.

Cluster-centric

The idea is to use cluster management software to allocate resources, and then arrange for
an R script to be evaluated in the context of allocated resources. NOTE: Depending on your
cluster configuration it may be necessary to add a line to the template file instructing workers
to use the version of R on the master / head node. Otherwise the default R on the worker
nodes will be used.

For SLURM, we might request space for 4 tasks (with salloc or sbatch), arrange to start
the MPI environment (with orterun) and on a single node in that universe run an R script
BiocParallel-MPI.R. The command is

$ salloc -N 4 orterun -n 1 R -f BiocParallel-MPI.R

The R script might do the following, using MPI for parallel evaluation. Start by loading
necessary packages and defining FUN work to be done

library(BiocParallel)
library (Rmpi)
FUN <- function(i) system("hostname", intern=TRUE)

Create a SnowParam instance with the number of nodes equal to the size of the MPI universe
minus 1 (let one node dispatch jobs to workers), and register this instance as the default

param <- SnowParam(mpi.universe.size() - 1, "MPI")
register(param)

Evaluate the work in parallel, process the results, clean up, and quit

xX <- bplapply(1:100, FUN)
table(unlist(xx))
mpi.quit()

The entire session is as follows:

$ salloc -N 4 orterun -n 1 R --vanilla -f BiocParallel-MPI.R
salloc: Job is in held state, pending scheduler release
salloc: Pending job allocation 6762292

salloc: job 6762292 queued and waiting for resources

salloc: job 6762292 has been allocated resources

salloc: Granted job allocation 6762292

...

> FUN <- function(i) system("hostname", intern=TRUE)
>

> library(BiocParallel)

> library(Rmpi)

> param <- SnowParam(mpi.universe.size() - 1, "MPI")

13

http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

4.3.2

> register(param)
> xx <- bplapply(1:100, FUN)

4 slaves are spawned successfully. 0 failed.
> table(unlist(xx))

gizmofl3 gizmof71 gizmof86 gizmof88
25 25 25 25
>
> mpi.quit()
salloc: Relinquishing job allocation 6762292
salloc: Job allocation 6762292 has been revoked.

One advantage of this approach is that the responsibility for managing the cluster lies firmly
with the cluster management software — if one wants more nodes, or needs special resources,
then adjust parameters to salloc (or sbatch).

Notice that workers are spawned within the bplapply function; it might often make sense to
more explicitly manage workers with bpstart and bpstop, e.g.,

param <- bpstart(SnowParam(mpi.universe.size() - 1, "MPI"))
register(param)

xx <- bplapply(1:100, FUN)

bpstop(param)

mpi.quit()

R-centric

A more R-centric approach might start an R script on the head node, and use batchtools to
submit jobs from within the R session. One way of doing this is to create a file containing a
template for the job submission step, e.g., for SLURM; a starting point might be found at

tmpl <- system.file(package="batchtools", "templates", "slurm-simple.tmpl")
noquote(readLines(tmpl))

[1] #!/bin/bash

[2]

[3] ## Job Resource Interface Definition

[4]

[5] ## ntasks [integer(1)]: Number of required tasks,

[6] ## Set larger than 1 if you want to further parallelize
[T7] ## with MPI within your job.

[8] ## ncpus [integer(1l)]: Number of required cpus per task,

[9] ## Set larger than 1 if you want to further parallelize
[10] ## with multicore/parallel within each task.

[11] ## walltime [integer(1)]: Walltime for this job, in seconds.

[12] ## Must be at least 60 seconds for Slurm to work properly.
[13] ## memory [integer(1)]: Memory in megabytes for each cpu.

[14] ## Must be at least 100 (when I tried lower values my
[15] ## jobs did not start at all).

[16]

[17] ## Default resources can be set in your .batchtools.conf.R by defining the variable

[18] ## 'default.resources' as a named list.

14

http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

[19]
[20] <
[21] # relative paths are not handled well by Slurm

[22] log.file = fs::path_expand(log.file)

[23] -%>

[24]

[25]

[26] #SBATCH --job-name=<%= job.name %>

[27] #SBATCH --output=<%= log.file %>

[28] #SBATCH --error=<%= log.file %>

[29] #SBATCH --time=<%= ceiling(resources$walltime / 60) %>
[30] #SBATCH --ntasks=1

[31] #SBATCH --cpus-per-task=<%= resources$ncpus %>

[32] #SBATCH --mem-per-cpu=<%= resources$memory %>

o°

[33] <%= if (!is.null(resources$partition)) sprintf(pasteO("#SBATCH --partition='", resources$partition,
[34] <%= if (array.jobs) sprintf("#SBATCH --array=1-%i", nrow(jobs)) else "" %>
[35]

[36] ## Initialize work environment like

[37] ## source /etc/profile

[38] ## module add ...

[39]

[40] ## Export value of DEBUGME environemnt var to slave

[41] export DEBUGME=<%= Sys.getenv("DEBUGME") %>

[42]

[43] <%= sprintf("export OMP_NUM_THREADS=%i", resources$omp.threads) -%>

[44] <%= sprintf("export OPENBLAS_NUM_THREADS=%i", resources$blas.threads) -%>
[45] <%= sprintf("export MKL_NUM_THREADS=%i", resources$blas.threads) -%>

[46]

[47] ## Run R:

[48] ## we merge R output with stdout from SLURM, which gets then logged via --output option
[49] Rscript -e 'batchtools::doJobCollection("<%= uri %>")'

The R script, run interactively or from the command line, might then look like
define work to be done
FUN <- function(i) system("hostname", intern=TRUE)

library(BiocParallel)

register SLURM cluster instructions from the template file
param <- BatchtoolsParam(workers=5, cluster="slurm", template=tmpl)
register(param)

do work
xx <- bplapply(1:100, FUN)
table(unlist(xx))

The code runs on the head node until bplapply, where the R script interacts with the
SLURM scheduler to request a SLURM allocation, run jobs, and retrieve results. The argu-
ment 4 to BatchtoolsParam specifies the number of workers to request from the scheduler;

15

http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

bplapply divides the 100 jobs among the 4 workers. If BatchtoolsParam had been created
without specifying any workers, then 100 jobs implied by the argument to bplapply would
be associated with 100 tasks submitted to the scheduler.

Because cluster tasks are running in independent R instances, and often on physically separate
machines, a convenient ‘best practice’ is to write FUN in a ‘functional programming’ manner,
such that all data required for the function is passed in as arguments or (for large data)
loaded implicitly or explicitly (e.g., via an R library) from disk.

Analyzing genomic data in Bioconductor

General strategies exist for handling large genomic data that are well suited to R programs. A
manuscript titled Scalable Genomics with R and Bioconductor (http://arxiv.org/abs/1409.
2864) by Michael Lawrence and Martin Morgan, reviews several of these approaches and
demonstrate implementation with Bioconductor packages. Problem areas include scalable
processing, summarization and visualization. The techniques presented include restricting
queries, compressing data, iterating, and parallel computing.

Ideas are presented in an approachable fashion within a framework of common use cases.
This is a benificial read for anyone anyone tackling genomics problems in R.

For developers

Developers wishing to use BiocParallel in their own packages should include BiocParallel in
the DESCRIPTION file

Imports: BiocParallel

and import the functions they wish to use in the NAMESPACE file, e.g.,
importFrom(BiocParallel, bplapply)

Then invoke the desired function in the code, e.g.,

system.time(x <- bplapply(1l:3, function(i) { Sys.sleep(i); i }))

user system elapsed
#i#t 0.086 0.136 3.122

unlist(x)

[11 1 2 3

This will use the back-end returned by bpparam(), by default a MulticoreParam() instance or
the user's preferred back-end if they have used register(). The MulticoreParam back-end
does not require any special configuration or set-up and is therefore the safest option for
developers. Unfortunately, MulticoreParam provides only serial evaluation on Windows.

Developers should document that their function uses BiocParallel functions on the man
page, and should perhaps include in their function signature an argument BPPARAM=bpparam().
Developers should NOT use ‘register()* in package code — this sets a preference that influences
use of ‘bplapply()* and friends in all packages, not just their package.

Developers wishing to invoke back-ends other than MulticoreParam, or to write code that
works across Windows, macOS and Linux, need to take special care to ensure that required
packages, data, and functions are available and loaded on the remote nodes.

16

http://bioconductor.org/packages/BiocParallel
http://arxiv.org/abs/1409.2864
http://arxiv.org/abs/1409.2864
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/BiocParallel

Introduction to BiocParallel

In bplapply(), the environment of FUN (other than the global environment) is serialized to
the workers. A consequence is that, when FUN is inside a package name space, other functions
available in the name space are available to FUN on the workers.

/ sessionInfo()

toLatex(sessionInfo())

= R version 4.2.1 (2022-06-23), x86_64-pc-linux-gnu

= Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

= Running under: Ubuntu 20.04.5 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.15-bioc/R/1lib/1ibRblas.so

= LAPACK: /home/biocbuild/bbs-3.15-bioc/R/1lib/1libRlapack.so

= Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

= Other packages: AnnotationDbi 1.58.0, Biobase 2.56.0, BiocGenerics 0.42.0,
BiocParallel 1.30.4, Biostrings 2.64.1, GenomelnfoDb 1.32.4,
GenomicAlignments 1.32.1, GenomicFeatures 1.48.4, GenomicRanges 1.48.0,
IRanges 2.30.1, MatrixGenerics 1.8.1, RNAseqData.HNRNPC.bam.chr14 0.34.0,
Rsamtools 2.12.0, S4Vectors 0.34.0, SummarizedExperiment 1.26.1,
TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2, VariantAnnotation 1.42.1,
XVector 0.36.0, matrixStats 0.62.0

= Loaded via a namespace (and not attached): BSgenome 1.64.0, BiocFileCache 2.4.0,
BioclO 1.6.0, BiocManager 1.30.18, BiocStyle 2.24.0, DBI 1.1.3, DelayedArray 0.22.0,
GenomelnfoDbData 1.2.8, KEGGREST 1.36.3, Matrix 1.5-1, R6 2.5.1,

RCurl 1.98-1.9, RSQLite 2.2.18, Rcpp 1.0.9, XML 3.99-0.11, assertthat 0.2.1,
backports 1.4.1, base64url 1.4, batchtools 0.9.15, biomaRt 2.52.0, bit 4.0.4,

bit64 4.0.5, bitops 1.0-7, blob 1.2.3, brew 1.0-8, cachem 1.0.6, checkmate 2.1.0,

cli 3.4.1, codetools 0.2-18, compiler 4.2.1, crayon 1.5.2, curl 4.3.3, data.table 1.14.2,
dbplyr 2.2.1, debugme 1.1.0, digest 0.6.29, dplyr 1.0.10, ellipsis 0.3.2, evaluate 0.17,
fansi 1.0.3, fastmap 1.1.0, filelock 1.0.2, fs 1.5.2, generics 0.1.3, glue 1.6.2, grid 4.2.1,
highr 0.9, hms 1.1.2, htmltools 0.5.3, httr 1.4.4, knitr 1.40, lattice 0.20-45,

lifecycle 1.0.3, magrittr 2.0.3, memoise 2.0.1, parallel 4.2.1, pillar 1.8.1,

pkgconfig 2.0.3, png 0.1-7, prettyunits 1.1.1, progress 1.2.2, rappdirs 0.3.3,

restfulr 0.0.15, rjson 0.2.21, rlang 1.0.6, rmarkdown 2.17, rtracklayer 1.56.1,

snow 0.4-4, stringi 1.7.8, stringr 1.4.1, tibble 3.1.8, tidyselect 1.2.0, tools 4.2.1,

utf8 1.2.2, vctrs 0.4.2, withr 2.5.0, xfun 0.33, xml2 1.3.3, yaml 2.3.5, zlibbioc 1.42.0

17

http://bioconductor.org/packages/BiocParallel

	1 Introduction
	2 Quick start
	3 The BiocParallel Interface
	3.1 Classes
	3.1.1 BiocParallelParam
	3.1.2 register()ing BiocParallelParam instances

	3.2 Functions
	3.2.1 Parallel looping, vectorized and aggregate operations
	3.2.2 Parallel evaluation environment
	3.2.3 Error handling and logging
	3.2.4 Locks and counters

	4 Use cases
	4.1 Single machine
	4.1.1 Forked processes with MulticoreParam
	4.1.2 Clusters of independent processes with SnowParam

	4.2 Ad hoc cluster of multiple machines
	4.2.1 Sockets
	4.2.2 MPI

	4.3 Clusters with schedulers
	4.3.1 Cluster-centric
	4.3.2 R-centric

	5 Analyzing genomic data in Bioconductor
	6 For developers
	7 sessionInfo()

