
Package ‘polyester’
October 18, 2022

Maintainer Jack Fu <jmfu@jhsph.edu>, Jeff Leek

<jtleek@gmail.com>

Author Alyssa C. Frazee, Andrew E. Jaffe, Rory Kirchner, Jeffrey T. Leek

Version 1.32.0

License Artistic-2.0

Title Simulate RNA-seq reads

Description This package can be used to simulate RNA-seq reads from
differential expression experiments with replicates. The reads can then be
aligned and used to perform comparisons of methods for differential
expression.

VignetteBuilder knitr

Depends R (>= 3.0.0)

Imports Biostrings (>= 2.32.0), IRanges, S4Vectors, logspline, limma,
zlibbioc

Suggests knitr, ballgown, markdown

LazyLoad true

biocViews Sequencing, DifferentialExpression

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/polyester

git_branch RELEASE_3_15

git_last_commit dfdd878

git_last_commit_date 2022-04-26

Date/Publication 2022-10-18

R topics documented:
add_error . 2
add_gc_bias . 3
add_platform_error . 4
cdnaf . 5

1

2 add_error

count_transcripts . 6
create_read_numbers . 7
empirical_density . 8
fpkm_to_counts . 8
generate_fragments . 10
getAttributeField . 12
get_params . 13
get_reads . 14
gtf_dataframe . 14
loessfit1 . 15
loessfit2 . 15
loessfit3 . 16
loessfit4 . 17
loessfit5 . 17
loessfit6 . 18
loessfit7 . 18
model1 . 19
model2 . 20
model3 . 20
model4 . 21
model5 . 22
model6 . 22
model7 . 23
NB . 24
polyester . 24
reverse_complement . 25
rnaf . 26
seq_gtf . 26
simulate_experiment . 27
simulate_experiment_countmat . 32
simulate_experiment_empirical . 33
write_reads . 34

Index 36

add_error add sequencing error to simulated reads

Description

simulate sequencing error by randomly changing the sequenced nucleotide on some of the reads

Usage

add_error(tFrags, error_rate = 0.005)

add_gc_bias 3

Arguments

tFrags DNAStringSet representing sequencing reads

error_rate error probability

Value

DNAStringSet equivalent to tFrags but with random sequencing errors inserted

Examples

library(Biostrings)
data(srPhiX174)
set.seed(174)
srPhiX174_withError = add_error(srPhiX174)
#error was introduced in, e.g., position 10 of 2nd string in set.

add_gc_bias add GC bias to a count matrix

Description

Given a matrix with rows corresponding to transcripts and sample-specific GC bias models, bias the
count matrix using the bias model.

Usage

add_gc_bias(readmat, gcbias, transcripts)

Arguments

readmat matrix of counts, with rows corresponding to features (transcripts) and columns
corresponding to replicates

gcbias List of GC bias models to add to readmat. Must have length equal to the number
of columns of readmat. List elements must either be integers 0 through 7, where
0 means no bias and 1-7 correspond to built-in GC bias models, or objects of
class loess which can predict a deviation from overall mean count (on the log
scale) given a GC percentage between 0 and 1.

transcripts DNAStringSet object containing the sequences of the features (transcripts) cor-
responding to the rows of readmat. Length must be equal to the number of rows
in readmat.

Details

Designed for internal use in simulate_experiment functions.

Value

matrix of the same size as readmat, but with counts for each replicate biased according to gcbias.

4 add_platform_error

Examples

library(Biostrings)
fastapath = system.file("extdata", "chr22.fa", package="polyester")
numtx = count_transcripts(fastapath)
transcripts = readDNAStringSet(fastapath)

create a count matrix:
readmat = matrix(20, ncol=10, nrow=numtx)
readmat[1:30, 1:5] = 40

add biases randomly: use built-in bias models
set.seed(137)
biases = sample(0:7, 10, replace=TRUE)
readmat_biased = add_gc_bias(readmat, as.list(biases), transcripts)

add_platform_error Simulate sequencing error using empirical error model

Description

Given a sequencing platform and a set of sequencing reads, add sequencing errors to the reads given
a known error profile from the platform.

Usage

add_platform_error(tFrags, platform, paired, path = NULL)

Arguments

tFrags DNAStringSetList containing error-free sequencing reads. If simulating a paired-
end experiment, mate-pairs should appear next to each other in tFrags.

platform Which sequencing platform should the error model be estimated from? Cur-
rently supports 'illumina4', 'illumina5', 'roche454', and 'custom'.

paired Does tFrags contain paired end reads, with mate pairs next to each other?
(TRUE if yes.)

path if platform is 'custom', provide the path to the error model. After process-
ing the error model with build_error_models.py, you will have either two
files (ending in _mate1 and _mate2, if your model was for paired-end reads)
or one file (ending in _single, if your model was for single-end reads). The
path argument should be the path to the error model up to but not including
_mate1/_mate2/_single.

cdnaf 5

Details

This function adds sequencing error to a set of reads based on the position in the read and the
true nucleotide at that location. Position-specific probabilities of making each possible sequencing
error (reading a T when it should have been A, reading a G when it should have been T, etc.)
were calculated for each of three platforms using the empirical error models available with the
GemSIM software (see references). Users can also estimate an error model from their own data
using GemSIM and can use that error model with Polyester as described in the vignette. (You will
need to run a Python script available at the Polyester GitHub repository to process the error model).

Value

DNAStringSet object that is the same as tFrags except but with sequencing error added.

References

McElroy KE, Luciani F and Thomas T (2012): GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

See Also

add_error for uniform error

Examples

library(Biostrings)
pretend the srPhiX174 DNAStringSet represents 35bp single-end
sequencing reads:
data(srPhiX174)
set.seed(718)
data_with_errors = add_platform_error(srPhiX174, 'illumina4', paired=FALSE)

the 17th read in this set has an error at position 20:
data_with_errors[17][[1]][20] # N
srPhiX174[17][[1]][20] # T

101 reads total have at least one sequencing error:
sum(data_with_errors != srPhiX174)

cdnaf Model of positional bias that can arise when RNA-seq is performed
using protocols relying on cDNA fragmentation.

6 count_transcripts

Description

This positional bias model was estimated in Li and Jiang (2012). With cDNA fragmentation, reads
are more likely to have come from the 3’ end of the transcript. The probabilities included in this
dataset were estimated from Supplementary Figure S3 in Li and Jiang’s manuscript. Data points
from the figure were inferred and exported as CSV files using WebPlotDigitizer. The CSV files
and the code used to process them and create the datasets are available in the Polyester GitHub
repository (https://github.com/alyssafrazee/polyester).

Format

data frame with 100 rows and 2 columns. Column 1 is position along a transcript (in percent), while
Column 2 is the probability of getting a fragment at that position. Column 2 sums to 1.

References

Li W and Jiang T (2012): Transcriptome assembly and isoform expression level estimation from
biased RNA-Seq reads. Bioinformatics 28(22): 2914-2921.

Rohatgi A (2014): WebPlotDigitizer: Version 3.4 of WebPlotDigitizer. ZENODO. 10.5281/zen-
odo.11835

count_transcripts determine how many transcripts are annotated in a FASTA or GTF file

Description

determine how many transcripts are annotated in a FASTA or GTF file

Usage

count_transcripts(
f,
fasta = TRUE,
identifier = "transcript_id",
attrsep = "; "

)

Arguments

f character, path to a file in FASTA or GTF format

fasta TRUE if f is a fasta file; FALSE if f is a GTF file

identifier if f is a GTF file, how are transcripts identified in the attributes field (9th column)
of the file? Default transcript_id.

attrsep if f is a GTF file, how are attributes separated in the attributes field (9th column)
of the file? Default "; ".

https://github.com/alyssafrazee/polyester

create_read_numbers 7

Value

Number of transcripts annotated in f

Examples

fastapath = system.file("extdata", "chr22.fa", package="polyester")
count_transcripts(fastapath) #918

create_read_numbers Generate a simulated data set based on known model parameters

Description

Generate a simulated data set based on known model parameters

Usage

create_read_numbers(
mu,
fit,
p0,
m = NULL,
n = NULL,
mod = NULL,
beta = NULL,
seed = NULL

)

Arguments

mu Baseline mean expression for negative binomial model

fit Fitted relationship between log mean and log size

p0 A vector of the probabilities a count is zero

m Number of genes/transcripts to simulate (not necessary if mod, beta are speci-
fied)

n Number of samples to simulate (not necessary if mod, beta are specified)

mod Model matrix you would like to simulate from without an intercept

beta set of coefficients for the model matrix (must have same number of columns as
mod)

seed optional seed to set (for reproducibility)

Value

counts Data matrix with counts for genes in rows and samples in columns

8 fpkm_to_counts

Author(s)

Jeff Leek

Examples

library(ballgown)
data(bg)
countmat = fpkm_to_counts(bg, mean_rps=400000)
params = get_params(countmat)
Ntranscripts = 50
Nsamples = 10
custom_readmat = create_read_numbers(mu=params$mu, fit=params$fit,

p0=params$p0, m=Ntranscripts, n=Nsamples, seed=103)

empirical_density Estimated distribution of fragment lengths

Description

Empirical fragment length distribution was estimated using 7 randomly selected RNA-seq samples
from the GEUVADIS dataset (’t Hoen et al 2013). One sample was selected from each of the
7 laboratories that performed the sequencing. We used Picard’s "CollectInsertSizeMetrics" tool
(http://broadinstitude.github.io/picard/), version 1.121, to estimate the fragment size distribution
based on read alignments. Code we used to estimate this distribution is available at https://
github.com/alyssafrazee/polyester/blob/master/make_fraglen_model.R.

Format

logspline object (created with logspline) specifying the empirical density of fragment lengths
in the 7 GEUVADIS samples.

References

’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and small RNA sequencing
across laboratories. Nature Biotechnology 31(11): 1015-1022.

fpkm_to_counts Turn FPKMs from a ballgown object into estimated counts for tran-
scripts

Description

Turn FPKMs from a ballgown object into estimated counts for transcripts

https://github.com/alyssafrazee/polyester/blob/master/make_fraglen_model.R
https://github.com/alyssafrazee/polyester/blob/master/make_fraglen_model.R

fpkm_to_counts 9

Usage

fpkm_to_counts(
bg = NULL,
mat = NULL,
tlengths = NULL,
mean_rps = 1e+08,
threshold = 0

)

Arguments

bg ballgown object created from real RNA-seq dataset

mat matrix of isoform-level FPKMs from which to derive counts. Rows should rep-
resent transcripts and columns should represent counts. Provide exactly one of
bg or mat.

tlengths if using mat instead of bg, vector of transcript lengths. Entries correspond to
the rows of mat. Lengths should only count the nucleotides within transcripts’
exons.

mean_rps This should be the number of reads per sample in total for use in backing out the
FPKM calculations.

threshold only estimate parameters from transcripts with mean FPKM measurements at
least as large as threshold.

Details

If transcripts/exons are represented by GRanges or GRangesList objects, the width function is
really useful in calculating transcript lengths.

Value

A matrix of counts with the same number of rows and columns as the ballgown object

Author(s)

Jeff Leek

Examples

library(ballgown)
data(bg)
countmat = fpkm_to_counts(bg, mean_rps=400000)

10 generate_fragments

generate_fragments generate a set of fragments from a set of transcripts

Description

Convert each sequence in a DNAStringSet to a "fragment" (subsequence)

Usage

generate_fragments(
tObj,
fraglen = 250,
fragsd = 25,
readlen = 100,
distr = "normal",
custdens = NULL,
bias = "none",
frag_GC_bias = "none"

)

Arguments

tObj DNAStringSet of sequences from which fragments should be extracted

fraglen Mean fragment length, if drawing fragment lengths from a normal distribution.

fragsd Standard deviation of fragment lengths, if drawing lengths from a normal distri-
bution. Note: fraglen and fragsd are ignored unless distr is ’normal’.

readlen Read length. Default 100. Used only to label read positions.

distr One of ’normal’, ’empirical’, or ’custom’. If ’normal’, draw fragment lengths
from a normal distribution with mean fraglen and standard deviation fragsd.
If ’empirical’, draw fragment lengths from a fragment length distribution esti-
mated from a real data set. If ’custom’, draw fragment lengths from a custom
distribution, provided as the custdens argument, which should be a density fit-
ted using logspline.

custdens If distr is ’custom’, draw fragments from this density. Should be an object of
class logspline.

bias One of ’none’, ’rnaf’, or ’cdnaf’ (default ’none’). ’none’ represents uniform
fragment selection (every possible fragment in a transcript has equal probability
of being in the experiment); ’rnaf’ represents positional bias that arises in pro-
tocols using RNA fragmentation, and ’cdnaf’ represents positional bias arising
in protocols that use cDNA fragmentation (Li and Jiang 2012). Using the ’rnaf’
model, coverage is higher in the middle of the transcript and lower at both ends,
and in the ’cdnaf’ model, coverage increases toward the 3’ end of the transcript.
The probability models used come from Supplementary Figure S3 of Li and
Jiang (2012).

frag_GC_bias See explanation in simulate_experiment.

generate_fragments 11

Details

The empirical fragment length distribution was estimated using 7 randomly selected RNA-seq sam-
ples from the GEUVADIS dataset (’t Hoen et al 2013), one sample from each laboratory that per-
formed sequencing for that data set. We used Picard’s "CollectInsertSizeMetrics" (http://broadinstitute.github.io/picard/),
version 1.121, to estimate the insert size distribution based on the read alignments.

Value

DNAStringSet consisting of one randomly selected subsequence per element of tObj.

References

’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and small RNA sequencing
across laboratories. Nature Biotechnology 31(11): 1015-1022.

Li W and Jiang T (2012): Transcriptome assembly and isoform expression level estimation from
biased RNA-Seq reads. Bioinformatics 28(22): 2914-2921.

See Also

logspline

Examples

library(Biostrings)
data(srPhiX174)

get fragments with lengths drawn from normal distrubution
set.seed(174)
srPhiX174_fragments = generate_fragments(srPhiX174, fraglen=15, fragsd=3,

readlen=4)
srPhiX174_fragments
srPhiX174

get fragments with lengths drawn from an empirical distribution
empirical_frags = generate_fragments(srPhiX174, distr='empirical')
empirical_frags

get fragments with lengths from a normal distribution, but include
positional bias from cDNA fragmentation:
biased_frags = generate_fragments(srPhiX174, bias='cdnaf')
biased_frags

12 getAttributeField

getAttributeField extract a specific field of the "attributes" column of a data frame cre-
ated from a GTF/GFF file

Description

extract a specific field of the "attributes" column of a data frame created from a GTF/GFF file

Usage

getAttributeField(x, field, attrsep = "; ")

Arguments

x vector representing the "attributes" column of GTF/GFF file

field name of the field you want to extract from the "attributes" column

attrsep separator for the fields in the attributes column. Defaults to ’; ’, the separator for
GTF files outputted by Cufflinks.

Value

vector of nucleotide positions included in the transcript

Author(s)

Wolfgang Huber, in the davidTiling package (LGPL license)

See Also

http://useast.ensembl.org/info/website/upload/gff.html, for specifics of the GFF/GTF
file format.

Examples

library(ballgown)
gtfPath = system.file('extdata', 'annot.gtf.gz', package='ballgown')
gffdata = gffRead(gtfPath)
gffdata$transcriptID = getAttributeField(gffdata$attributes,

field = "transcript_id")

http://useast.ensembl.org/info/website/upload/gff.html

get_params 13

get_params Estimate zero-inflated negative binomial parameters from a real
dataset

Description

This function estimates the parameters of a zero inflated negative binomial distribution based on a
real count data set based on the method of moments. The function also returns a spline fit of log
mean to log size which can be used when generating new simulated data.

Usage

get_params(counts, threshold = NULL)

Arguments

counts A matrix of counts. If you want to simulate from a ballgown object, see fpkm_to_counts

threshold Only estimate parameters from transcripts with row means greater than thresh-
old

Value

p0 A vector of probabilities that the count will be zero, one for each gene/transcript.

mu The estimated negative binomial mean by method of moments for the non-zero counts

size The estimated negative binomial size by method of moments for the non-zero counts

fit A fit relating log mean to log size for use in simulating new data.

Author(s)

Jeff Leek

Examples

library(ballgown)
data(bg)
countmat = fpkm_to_counts(bg, mean_rps=400000)
params = get_params(countmat)

14 gtf_dataframe

get_reads get sequencing reads from fragments

Description

simulate the sequencing process by returning the sequence of one or both ends of provided frag-
ments

Usage

get_reads(tFrags, readlen, paired = TRUE)

Arguments

tFrags DNAStringSet representing fragments

readlen Read length.

paired If FALSE, return only the first readlen bases of each element of tFrags in the
result; if TRUE, also return last readlen bases.

Value

DNAStringSet representing simulated RNA-seq reads

See Also

simulate_experiment, simulate_experiment_countmat

Examples

library(Biostrings)
data(srPhiX174)
set.seed(174)
srPhiX174_reads = get_reads(srPhiX174, readlen=15, paired=FALSE)
srPhiX174_reads
set of single-end, 15bp reads, treating srPhiX174 as the fragments

gtf_dataframe data frame (in gtf-inspired format) for chromosome 22, hg19

Description

In the data frame gtf_dataframe, each row corresponds to an exon / coding sequence / start codon
/ stop codon, and the columns correspond to standard GTF columns denoting annotated genomic
features. See http://www.ensembl.org/info/website/upload/gff.html.

http://www.ensembl.org/info/website/upload/gff.html

loessfit1 15

Format

data frame, 9 columns, 17769 rows

Source

Illumina iGenomes, hg19, 6 March 2013 version: http://ccb.jhu.edu/software/tophat/igenomes.
shtml.

loessfit1 Empirical GC bias model, NA06985

Description

Loess model for log counts measuring transcript expression as a function of the transcript’s GC
content. The model was created using sample NA06985 in the Ballgown obtained at http://
files.figshare.com/1625419/fpkm.rda

Format

Object of class loess

Source

Constructed using the code available at https://github.com/alyssafrazee/polyester/blob/
master/gc_bias.R

References

GEUVADIS data set: ’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and
small RNA sequencing across laboratories. Nature Biotechnology 31(11): 1015-1022.

Lappalainen, et al (2013): Transcriptome and genome sequencing uncovers functional variation in
humans. Nature 501: 506-511.

loessfit2 Empirical GC bias model, NA12144

Description

Loess model for log counts measuring transcript expression as a function of the transcript’s GC
content. The model was created using sample NA12144 in the Ballgown obtained at http://
files.figshare.com/1625419/fpkm.rda

Format

Object of class loess

http://ccb.jhu.edu/software/tophat/igenomes.shtml
http://ccb.jhu.edu/software/tophat/igenomes.shtml
http://files.figshare.com/1625419/fpkm.rda
http://files.figshare.com/1625419/fpkm.rda
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
http://files.figshare.com/1625419/fpkm.rda
http://files.figshare.com/1625419/fpkm.rda

16 loessfit3

Source

Constructed using the code available at https://github.com/alyssafrazee/polyester/blob/
master/gc_bias.R

References

GEUVADIS data set: ’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and
small RNA sequencing across laboratories. Nature Biotechnology 31(11): 1015-1022.

Lappalainen, et al (2013): Transcriptome and genome sequencing uncovers functional variation in
humans. Nature 501: 506-511.

loessfit3 Empirical GC bias model, NA12776

Description

Loess model for log counts measuring transcript expression as a function of the transcript’s GC
content. The model was created using sample NA12776 in the Ballgown obtained at http://
files.figshare.com/1625419/fpkm.rda

Format

Object of class loess

Source

Constructed using the code available at https://github.com/alyssafrazee/polyester/blob/
master/gc_bias.R

References

GEUVADIS data set: ’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and
small RNA sequencing across laboratories. Nature Biotechnology 31(11): 1015-1022.

Lappalainen, et al (2013): Transcriptome and genome sequencing uncovers functional variation in
humans. Nature 501: 506-511.

https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
http://files.figshare.com/1625419/fpkm.rda
http://files.figshare.com/1625419/fpkm.rda
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R

loessfit4 17

loessfit4 Empirical GC bias model, NA18858

Description

Loess model for log counts measuring transcript expression as a function of the transcript’s GC
content. The model was created using sample NA18858 in the Ballgown obtained at http://
files.figshare.com/1625419/fpkm.rda

Format

Object of class loess

Source

Constructed using the code available at https://github.com/alyssafrazee/polyester/blob/
master/gc_bias.R

References

GEUVADIS data set: ’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and
small RNA sequencing across laboratories. Nature Biotechnology 31(11): 1015-1022.

Lappalainen, et al (2013): Transcriptome and genome sequencing uncovers functional variation in
humans. Nature 501: 506-511.

loessfit5 Empirical GC bias model, NA20542

Description

Loess model for log counts measuring transcript expression as a function of the transcript’s GC
content. The model was created using sample NA20542 in the Ballgown obtained at http://
files.figshare.com/1625419/fpkm.rda

Format

Object of class loess

Source

Constructed using the code available at https://github.com/alyssafrazee/polyester/blob/
master/gc_bias.R

http://files.figshare.com/1625419/fpkm.rda
http://files.figshare.com/1625419/fpkm.rda
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
http://files.figshare.com/1625419/fpkm.rda
http://files.figshare.com/1625419/fpkm.rda
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R

18 loessfit7

References

GEUVADIS data set: ’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and
small RNA sequencing across laboratories. Nature Biotechnology 31(11): 1015-1022.

Lappalainen, et al (2013): Transcriptome and genome sequencing uncovers functional variation in
humans. Nature 501: 506-511.

loessfit6 Empirical GC bias model, NA20772

Description

Loess model for log counts measuring transcript expression as a function of the transcript’s GC
content. The model was created using sample NA20772 in the Ballgown obtained at http://
files.figshare.com/1625419/fpkm.rda

Format

Object of class loess

Source

Constructed using the code available at https://github.com/alyssafrazee/polyester/blob/
master/gc_bias.R

References

GEUVADIS data set: ’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and
small RNA sequencing across laboratories. Nature Biotechnology 31(11): 1015-1022.

Lappalainen, et al (2013): Transcriptome and genome sequencing uncovers functional variation in
humans. Nature 501: 506-511.

loessfit7 Empirical GC bias model, NA20815

Description

Loess model for log counts measuring transcript expression as a function of the transcript’s GC
content. The model was created using sample NA20815 in the Ballgown obtained at http://
files.figshare.com/1625419/fpkm.rda

Format

Object of class loess

http://files.figshare.com/1625419/fpkm.rda
http://files.figshare.com/1625419/fpkm.rda
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
http://files.figshare.com/1625419/fpkm.rda
http://files.figshare.com/1625419/fpkm.rda

model1 19

Source

Constructed using the code available at https://github.com/alyssafrazee/polyester/blob/
master/gc_bias.R

References

GEUVADIS data set: ’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and
small RNA sequencing across laboratories. Nature Biotechnology 31(11): 1015-1022.

Lappalainen, et al (2013): Transcriptome and genome sequencing uncovers functional variation in
humans. Nature 501: 506-511.

model1 Empirical error model for Illumina Genome Analyzer IIx with Illumina
Sequencing Kit v4 chemistry, read mate 1 of a pair

Description

for each position in mate 1 of a paired-end read generated with the specified Illumina chemistry,
this data frame contains the probability of not making a sequencing error, and of making each
of the 4 possible types of sequencing errors. The reference base (truth) is in column 1, and the
probabilities of sequencing that base given its read position (column 7) as each of the 5 possible
bases (A, T, G, C, and N) is given in columns 2 through 6, respectively. So for example, at position
8 in mate 1 of a read where the true base is A, the probability of correctly calling that base an A is
0.9998, the probability of making an error by sequencing a T is 2.64e-05, the probability of making
an error by sequencing a G is 1.58e-04, the probability of making an error by sequencing a C is
3.05e-05, and the probability of reading an ’N’ at position 8 is 0. This can be seen by looking at
model1[model1$pos == 8,]. Note that position indexing is 1-based, though a 0 position is included
as described in the GemSIM documentation.

Format

data frame named model1, 7 columns, 505 rows

Source

processed from the Illumina v4 error model that ships with GemSIM (see references)

References

McElroy KE, Luciani F, Thomas T (2012). GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/gc_bias.R

20 model3

model2 Empirical error model for Illumina Genome Analyzer IIx with Illumina
Sequencing Kit v4 chemistry, read mate 2 of a pair

Description

for each position in mate 2 of a paired-end read generated with the specified Illumina chemistry,
this data frame contains the probability of not making a sequencing error, and of making each
of the 4 possible types of sequencing errors. The reference base (truth) is in column 1, and the
probabilities of sequencing that base given its read position (column 7) as each of the 5 possible
bases (A, T, G, C, and N) is given in columns 2 through 6, respectively. So for example, at position
8 in mate 1 of a read where the true base is A, the probability of correctly calling that base an
A is 0.9995, the probability of making an error by sequencing a T is 0.00017, the probability of
making an error by sequencing a G is 0.00023, the probability of making an error by sequencing a
C is 6.02e-05, and the probability of reading an ’N’ at position 8 is 1.15e-05. This can be seen by
looking at model2[model2$pos == 8,]. Note that position indexing is 1-based, though a 0 position
is included as described in the GemSIM documentation.

Format

data frame named model2, 7 columns, 505 rows

Source

processed from the Illumina v4 error model that ships with GemSIM (see references)

References

McElroy KE, Luciani F, Thomas T (2012). GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

model3 Empirical error model for Illumina Genome Analyzer IIx with Illumina
Sequencing Kit v4 chemistry, single-end read

Description

for each position in a single-end read generated with the specified Illumina chemistry, this data
frame contains the probability of not making a sequencing error, and of making each of the 4
possible types of sequencing errors. The reference base (truth) is in column 1, and the probabilities
of sequencing that base given its read position (column 7) as each of the 5 possible bases (A,
T, G, C, and N) is given in columns 2 through 6, respectively. So for example, at position 8 in
mate 1 of a read where the true base is A, the probability of correctly calling that base an A is
0.9998, the probability of making an error by sequencing a T is 2.95e-05, the probability of making
an error by sequencing a G is 1.27e-04, the probability of making an error by sequencing a C is

model4 21

1.85e-05, and the probability of reading an ’N’ at position 8 is 0. This can be seen by looking at
model3[model3$pos == 8,]. Note that position indexing is 1-based, though a 0 position is included
as described in the GemSIM documentation.

Format

data frame named model3, 7 columns, 505 rows

Source

processed from the Illumina v4 error model that ships with GemSIM (see references)

References

McElroy KE, Luciani F, Thomas T (2012). GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

model4 Empirical error model for Illumina Genome Analyzer IIx with TrueSeq
SBS Kit v5-GA chemistry, read mate 1 of a pair

Description

for each position in mate 1 of a paired-end read generated with the specified Illumina chemistry,
this data frame contains the probability of not making a sequencing error, and of making each
of the 4 possible types of sequencing errors. The reference base (truth) is in column 1, and the
probabilities of sequencing that base given its read position (column 7) as each of the 5 possible
bases (A, T, G, C, and N) is given in columns 2 through 6, respectively. So for example, at position
8 in mate 1 of a read where the true base is A, the probability of correctly calling that base an A is
0.9998, the probability of making an error by sequencing a T is 4.00e-05, the probability of making
an error by sequencing a G is 1.58e-04, the probability of making an error by sequencing a C is
1.46e-05, and the probability of reading an ’N’ at position 8 is 0. This can be seen by looking at
model4[model4$pos == 8,]. Note that position indexing is 1-based, though a 0 position is included
as described in the GemSIM documentation.

Format

data frame named model4, 7 columns, 505 rows

Source

processed from the Illumina v5 error model that ships with GemSIM (see references)

References

McElroy KE, Luciani F, Thomas T (2012). GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

22 model6

model5 Empirical error model for Illumina Genome Analyzer IIx with TrueSeq
SBS Kit v5-GA chemistry, read mate 2 of a pair

Description

for each position in mate 2 of a paired-end read generated with the specified Illumina chemistry,
this data frame contains the probability of not making a sequencing error, and of making each
of the 4 possible types of sequencing errors. The reference base (truth) is in column 1, and the
probabilities of sequencing that base given its read position (column 7) as each of the 5 possible
bases (A, T, G, C, and N) is given in columns 2 through 6, respectively. So for example, at position
8 in mate 1 of a read where the true base is A, the probability of correctly calling that base an
A is 0.9992, the probability of making an error by sequencing a T is 0.0002, the probability of
making an error by sequencing a G is 0.0002, the probability of making an error by sequencing
a C is 0.0001, and the probability of reading an ’N’ at position 8 is 0.0002. This can be seen by
looking at model5[model5$pos == 8,]. Note that position indexing is 1-based, though a 0 position
is included as described in the GemSIM documentation.

Format

data frame named model5, 7 columns, 505 rows

Source

processed from the Illumina v5 error model that ships with GemSIM (see references)

References

McElroy KE, Luciani F, Thomas T (2012). GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

model6 Empirical error model for Illumina Genome Analyzer IIx with TrueSeq
SBS Kit v5-GA chemistry, single-end read

Description

for each position in a single-end read generated with the specified Illumina chemistry, this data
frame contains the probability of not making a sequencing error, and of making each of the 4
possible types of sequencing errors. The reference base (truth) is in column 1, and the probabilities
of sequencing that base given its read position (column 7) as each of the 5 possible bases (A,
T, G, C, and N) is given in columns 2 through 6, respectively. So for example, at position 8 in
mate 1 of a read where the true base is A, the probability of correctly calling that base an A is
0.9998, the probability of making an error by sequencing a T is 3.04e-05, the probability of making
an error by sequencing a G is 1.36e-04, the probability of making an error by sequencing a C is

model7 23

1.27e-05, and the probability of reading an ’N’ at position 8 is 0. This can be seen by looking at
model6[model6$pos == 8,]. Note that position indexing is 1-based, though a 0 position is included
as described in the GemSIM documentation.

Format

data frame named model6, 7 columns, 505 rows

Source

processed from the Illumina v5 error model that ships with GemSIM (see references)

References

McElroy KE, Luciani F, Thomas T (2012). GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

model7 Empirical error model Roche/454 FLX Titanium, single-end read

Description

for each position in a single-end read generated with the specified chemistry, this data frame con-
tains the probability of not making a sequencing error, and of making each of the 4 possible types
of sequencing errors. The reference base (truth) is in column 1, and the probabilities of sequencing
that base given its read position (column 7) as each of the 5 possible bases (A, T, G, C, and N) is
given in columns 2 through 6, respectively. So for example, at position 8 in mate 1 of a read where
the true base is C, the probability of correctly calling that base a C is 0.9994, the probability of
making an error by sequencing a T is 0.0002, the probability of making an error by sequencing a
G is 0.0001, the probability of making an error by sequencing an A is 0.0002, and the probability
of reading an ’N’ at position 8 is 0. This can be seen by looking at model7[model7$pos == 8,].
Note that position indexing is 1-based, though a 0 position is included as described in the GemSIM
documentation.

Format

data frame named model7, 7 columns, 505 rows

Source

processed from the Roche 454 error model that ships with GemSIM (see references)

References

McElroy KE, Luciani F, Thomas T (2012). GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

24 polyester

NB Draw nonzero negative binomial random numbers

Description

Draw nonzero negative binomial random numbers

Usage

NB(basemeans, size, seed = NULL)

Arguments

basemeans vector of means, one per draw

size vector of size parameters (controlling the mean/variance relationship); one per
draw

seed optional seed to set before drawing

Value

vector of negative binomial draws from specified distributions, where any zero draw is replaced
with a 1. Length of return vector is equal to length(basemeans).

Examples

randomNBs = NB(c(100, 4, 29), size=c(50, 2, 4), seed=21)
randomNBs # 115, 5, 15

polyester Polyester: simulating RNA-seq reads including differential expression

Description

Polyester is an R package designed to simulate an RNA sequencing experiment. Given a set of
annotated transcripts, polyester will simulate the steps of an RNA-seq experiment (fragmentation,
reverse-complementing, and sequencing) and produce files containing simulated RNA-seq reads.
Simulated reads can be analyzed using any of several downstream analysis tools.

Details

A single function call produces RNA-seq reads in FASTA format from a case/control experiment
including biological replicates. Differential expression between cases and controls can be set by the
user, facilitating comparisons of statistical differential expression methods for RNA-seq data. See
detailed documentation for simulate_experiment and simulate_experiment_countmat.

See the vignette by typing browseVignettes("polyester") in the R prompt.

reverse_complement 25

Author(s)

Alyssa Frazee, Andrew Jaffe, Rory Kirchner, Jeff Leek

References

Alyssa C Frazee, Geo Pertea, Andrew E Jaffe, Ben Langmead, Steven L Salzberg, Jeffrey T Leek
(2014). Flexible isoform-level differential expression analysis with Ballgown. BioRxiv preprint:
http://biorxiv.org/content/early/2014/03/30/003665.

reverse_complement reverse-complement some fragments

Description

randomly reverse-complement half of the sequences in a DNAStringSet

Usage

reverse_complement(tObj, seed = NULL)

Arguments

tObj DNAStringSet representing sequences.

seed optional seed to set before randomly selecting the sequences to be reverse-
complemented.

Value

DNAStringSet that is the same as tObj, but with about half the sequences reverse-complemented.

Examples

library(Biostrings)
data(srPhiX174)
srPhiX174_halfrc = reverse_complement(srPhiX174, seed=174)

http://biorxiv.org/content/early/2014/03/30/003665

26 seq_gtf

rnaf Model of positional bias that can arise when RNA-seq is performed
using protocols relying on RNA fragmentation.

Description

This positional bias model was estimated in Li and Jiang (2012). With RNA fragmentation, reads
are more likely to have come from the middle of the transcript than either end. The probabilities
included in this dataset were estimated from Supplementary Figure S3 in Li and Jiang’s manuscript.
Data points from the figure were inferred and exported as CSV files using WebPlotDigitizer. The
CSV files and the code used to process them and create the datasets are available in the Polyester
GitHub repository (https://github.com/alyssafrazee/polyester).

Format

data frame with 100 rows and 2 columns. Column 1 is position along a transcript (in percent), while
Column 2 is the probability of getting a fragment at that position. Column 2 sums to 1.

References

Li W and Jiang T (2012): Transcriptome assembly and isoform expression level estimation from
biased RNA-Seq reads. Bioinformatics 28(22): 2914-2921.

Rohatgi A (2014): WebPlotDigitizer: Version 3.4 of WebPlotDigitizer. ZENODO. 10.5281/zen-
odo.11835

seq_gtf Get transcript sequences from GTF file and sequence info

Description

Given a GTF file (for transcript structure) and DNA sequences, return a DNAStringSet of transcript
sequences

Usage

seq_gtf(
gtf,
seqs,
feature = "transcript",
exononly = TRUE,
idfield = "transcript_id",
attrsep = "; "

)

https://github.com/alyssafrazee/polyester

simulate_experiment 27

Arguments

gtf one of path to GTF file, or data frame representing a canonical GTF file.

seqs one of path to folder containing one FASTA file (.fa extension) for each chro-
mosome in gtf, or named DNAStringSet containing one DNAString per chro-
mosome in gtf, representing its sequence. In the latter case, names(seqs)
should contain the same entries as the seqnames (first) column of gtf.

feature one of 'transcript' or 'exon' (default transcript), depending on desired re-
turn.

exononly if TRUE (as it is by default), only create transcript sequences from the features
labeled exon in gtf.

idfield in the attributes column of gtf, what is the name of the field identifying
transcripts? Should be character. Default "transcript_id".

attrsep in the attributes column of gtf, how are attributes separated? Default "; ".

Value

If feature is 'transcript', DNAStringSet containing transcript sequences, with names corre-
sponding to idfield in gtf. If feature is 'exon', DNAStringSet containing exon sequences from
gtf, named by exon location (chr, start, end, strand).

References

http://www.ensembl.org/info/website/upload/gff.html

Examples

Not run:
library(Biostrings)
system('wget https://www.dropbox.com/s/04i6msi9vu2snif/chr22seq.rda')
load('chr22seq.rda')
data(gtf_dataframe)
chr22_processed = seq_gtf(gtf_dataframe, chr22seq)

End(Not run)

simulate_experiment simulate RNA-seq experiment using negative binomial model

Description

create FASTA files containing RNA-seq reads simulated from provided transcripts, with optional
differential expression between two groups

http://www.ensembl.org/info/website/upload/gff.html

28 simulate_experiment

Usage

simulate_experiment(
fasta = NULL,
gtf = NULL,
seqpath = NULL,
outdir = ".",
num_reps = c(10, 10),
reads_per_transcript = 300,
size = NULL,
fold_changes,
paired = TRUE,
reportCoverage = FALSE,
...

)

Arguments

fasta path to FASTA file containing transcripts from which to simulate reads. See
details.

gtf path to GTF file containing transcript structures from which reads should be
simulated. See details.

seqpath path to folder containing one FASTA file (.fa extension) for each chromosome
in gtf. See details.

outdir character, path to folder where simulated reads should be written, with *no*
slash at the end. By default, reads are written to current working directory.

num_reps How many biological replicates should be in each group? The length num_reps
determines how many groups are in the experiment. For example, num_reps =
c(5,6,5) specifies a 3-group experiment with 5 samples in group 1, 6 samples
in group 2, and 5 samples in group 3. Defaults to a 2-group experiment with 10
reps per group (i.e., c(10,10)).

reads_per_transcript

baseline mean number of reads to simulate from each transcript. Can be an in-
teger, in which case this many reads are simulated from each transcript, or an
integer vector whose length matches the number of transcripts in fasta. Default
300. You can also leave reads_per_transcript empty and set meanmodel=TRUE
to draw baseline mean numbers from a model based on transcript length.

size the negative binomial size parameter (see NegBinomial) for the number of
reads drawn per transcript. It can be a matrix (where the user can specify the
size parameter per transcript, per group), a vector (where the user can spec-
ify the size per transcript, perhaps relating to reads_per_transcript), or a single
number, specifying the size for all transcripts and groups. If left NULL, defaults
to reads_per_transcript * fold_changes / 3. Negative binomial variance is
mean + mean^2 / size.

fold_changes Matrix specifying multiplicative fold changes between groups. There is no de-
fault, so you must provide this argument. In real data sets, lowly-expressed
transcripts often show high fold changes between groups, so this can be kept

simulate_experiment 29

in mind when setting fold_changes and reads_per_transcript. This argu-
ment must have the same number of columns as there are groups as specified
by num_reps, and must have the same number of rows as there are transcripts
in fasta. A fold change of X in matrix entry i,j means that for replicate j, the
baseline mean number of reads (reads_per_transcript[i]) will be multiplied by
X. Note that the multiplication happens before the negative binomial value (for
the number of reads that *actually will* be drawn from transcript i, for replicate
j) is drawn. This argument is ignored if length(num_reps) is 1 (meaning you
only have 1 group in your simulation).

paired If TRUE, paired-end reads are simulated; else single-end reads are simulated.
Default TRUE

reportCoverage whether to write out coverage information to sample_coverages.rda file in the
outdir. defaults to FALSE

... any of several other arguments that can be used to add nuance to the simulation.
See details.

Details

Reads can either be simulated from a FASTA file of transcripts (provided with the fasta argument)
or from a GTF file plus DNA sequences (provided with the gtf and seqpath arguments). Simulat-
ing from a GTF file and DNA sequences may be a bit slower: it took about 6 minutes to parse the
GTF/sequence files for chromosomes 1-22, X, and Y in hg19.

Several optional parameters can be passed to this function to adjust the simulation. The options are:

• readlen: read length. Default 100.

• lib_sizes: Library size factors for the biological replicates. lib_sizes should have length
equal to the total number of replicates in the experiment, i.e., sum(num_reps). For each
replicate, once the number of reads to simulate from each transcript for that replicate is known,
all read numbers across all transcripts from that replicate are multiplied by the corresponding
entry in lib_sizes.

• distr One of ’normal’, ’empirical’, or ’custom’, which specifies the distribution from which
to draw RNA fragment lengths. If ’normal’, draw fragment lengths from a normal distribution.
You can provide the mean of that normal distribution with fraglen (defaults to 250) and the
standard deviation of that normal distribution with fragsd (defaults to 25). You can provide
a single number for each, or a vector with length equal to the total number of samples. If
’empirical’, draw fragment lengths from a fragment length distribution estimated from a real
data set. If ’custom’, draw fragment lengths from a custom distribution, which you can provide
as the custdens argument. custdens should be a density fitted using logspline.

• error_model: The error model can be one of:

– 'uniform': errors are distributed uniformly across reads. You can also provide an
'error_rate' parameter, giving the overall probability of making a sequencing error
at any given nucleotide. This error rate defaults to 0.005.

– 'illumina4' or 'illumina5': Empirical error models. See ?add_platform_error for
more information.

– 'custom': A custom error model you’ve estimated from an RNA-seq data set using
GemErr. See ?add_platform_error for more info. You will need to provide both

30 simulate_experiment

model_path and model_prefix if using a custom error model. model_path is the out-
put folder you provided to build_error_model.py. This path should contain either two
files suffixed _mate1 and _mate2, or a file suffixed _single. model_prefix is the ’pre-
fix’ argument you provided to build_error_model.py and is whatever comes before the
_mate1/_mate2 or _single files in model_path.

• bias One of ’none’, ’rnaf’, or ’cdnaf’. ’none’ represents uniform fragment selection (ev-
ery possible fragment in a transcript has equal probability of being in the experiment); ’rnaf’
represents positional bias that arises in protocols using RNA fragmentation, and ’cdnaf’ rep-
resents positional bias arising in protocols that use cDNA fragmentation (Li and Jiang 2012).
Using the ’rnaf’ model, coverage is higher in the middle of the transcript and lower at both
ends, and in the ’cdnaf’ model, coverage increases toward the 3’ end of the transcript. The
probability models used come from Supplementary Figure S3 of Li and Jiang (2012). Defaults
to ’none’ if you don’t provide this.

• gcbias list indicating which samples to add GC bias to, and from which models. Should
be the same length as sum(num_reps); entries can be either numeric or of class loess. A
numeric entry of 0 indicates no GC bias. Numeric entries 1 through 7 correspond to the 7
empirical GC models that ship with Polyester, estimated from GEUVADIS HapMap sam-
ples NA06985, NA12144, NA12776, NA18858, NA20542, NA20772, and NA20815, respec-
tively. The code used to derive the empirical GC models is available at https://github.
com/alyssafrazee/polyester/blob/master/make_gc_bias.R. A loess entry should be a
loess prediction model that takes a GC content percent value (between 0 and 1) a transcript’s
deviation from overall mean read count based on that GC value. Counts for each replicate will
be adjusted based on the GC bias model specified for it. Numeric and loess entries can be
mixed. By default, no bias is included.

• frag_GC_bias Either a matrix of dimensions 101 x sum(num_reps) or ’none’. The default
is ’none’. If specified, the matrix contains the probabilities (a number in the range [0,1]) that
a fragment will appear in the output given its GC content. The first row corresponds to a
fragment with GC content of 0 percent, the second row 1 percent, the third row 2 percent,
etc., and the last row 100 percent. The columns correspond to different probabilites for each
sample. Internally, a coin flip (a Bernoulli trial) determines if each fragment is kept, depending
on its GC content. Note that the final library size will depend on the elements of the matrix,
and it might make sense to scale up the lib_size of the samples with low probabilites in the
matrix in the range of the transcriptome GC content distribution. Note that the count_matrix
written to outdir contains the counts before applying fragment GC bias.

• strand_specific defaults to FALSE, which means fragments are generated with equal prob-
ability from both strands of the transcript sequence. set to TRUE for strand-specific simulation
(1st read forward strand, 2nd read reverse strand with respect to transcript sequence).

• meanmodel: set to TRUE if you’d like to set reads_per_transcripts as a function of tran-
script length. We fit a linear model regressing transcript abundance on transcript length, and
setting meanmodel=TRUE means we will use transcript lengths to draw transcript abundance
based on that linear model. You can see our modeling code at http://htmlpreview.github.
io/?https://github.com/alyssafrazee/polyester_code/blob/master/length_simulation.
html

• write_info: set to FALSE if you do not want files of simulation information written to disk.
By default, transcript fold changes and expression status, replicate library sizes and group
identifiers, and an R data object of the counts matrix (before application of fragment GC bias)
are written to outdir.

https://github.com/alyssafrazee/polyester/blob/master/make_gc_bias.R
https://github.com/alyssafrazee/polyester/blob/master/make_gc_bias.R
http://htmlpreview.github.io/?https://github.com/alyssafrazee/polyester_code/blob/master/length_simulation.html
http://htmlpreview.github.io/?https://github.com/alyssafrazee/polyester_code/blob/master/length_simulation.html
http://htmlpreview.github.io/?https://github.com/alyssafrazee/polyester_code/blob/master/length_simulation.html

simulate_experiment 31

• seed: specify a seed (e.g. seed=142 or some other integer) to set before randomly drawing
read numbers, for reproducibility.

• transcriptid: optional vector of transcript IDs to be written into sim_info.txt and used as
transcript identifiers in the output fasta files. Defaults to names(readDNAStringSet(fasta)).
This option is useful if default names are very long or contain special characters.

• gzip: pass gzip=TRUE to write gzipped fasta files as output (by default, fasta output files are
not compressed when written to disk).

• exononly: (passed to seq_gtf) if TRUE (as it is by default), only create transcript sequences
from the features labeled exon in gtf.

• idfield: (passed to seq_gtf)in the attributes column of gtf, what is the name of the field
identifying transcripts? Should be character. Default "transcript_id".

• attrsep: (passed to seq_gtf) in the attributes column of gtf, how are attributes sepa-
rated? Default "; ".

Value

No return, but simulated reads and a simulation info file are written to outdir. Note that reads
are written out transcript by transcript and so need to be shuffled if used as input to quantification
algorithms such as eXpress or Salmon.

References

’t Hoen PA, et al (2013): Reproducibility of high-throughput mRNA and small RNA sequencing
across laboratories. Nature Biotechnology 31(11): 1015-1022.

Li W and Jiang T (2012): Transcriptome assembly and isoform expression level estimation from
biased RNA-Seq reads. Bioinformatics 28(22): 2914-2921.

McElroy KE, Luciani F and Thomas T (2012): GemSIM: general, error-model based simulator of
next-generation sequencing data. BMC Genomics 13(1), 74.

Examples

simulate a few reads from chromosome 22

fastapath = system.file("extdata", "chr22.fa", package="polyester")
numtx = count_transcripts(fastapath)
set.seed(4)
fold_change_values = sample(c(0.5, 1, 2), size=2*numtx,

prob=c(0.05, 0.9, 0.05), replace=TRUE)
fold_changes = matrix(fold_change_values, nrow=numtx)
library(Biostrings)
remove quotes from transcript IDs:
tNames = gsub("'", "", names(readDNAStringSet(fastapath)))

simulate_experiment(fastapath, reads_per_transcript=10,
fold_changes=fold_changes, outdir='simulated_reads',
transcriptid=tNames, seed=12)

32 simulate_experiment_countmat

simulate_experiment_countmat

Simulate RNA-seq experiment

Description

create FASTA files containing RNA-seq reads simulated from provided transcripts, with optional
differential expression between two groups (designated via read count matrix)

Usage

simulate_experiment_countmat(
fasta = NULL,
gtf = NULL,
seqpath = NULL,
readmat,
outdir = ".",
paired = TRUE,
seed = NULL,
...

)

Arguments

fasta path to FASTA file containing transcripts from which to simulate reads. See
details.

gtf path to GTF file or data frame containing transcript structures from which reads
should be simulated. See details and seq_gtf.

seqpath path to folder containing one FASTA file (.fa extension) or DNAStringSet con-
taining one entry for each chromosome in gtf. See details and seq_gtf.

readmat matrix with rows representing transcripts and columns representing samples.
Entry i,j specifies how many reads to simulate from transcript i for sample j.

outdir character, path to folder where simulated reads should be written, without a slash
at the end of the folder name. By default, reads written to the working directory.

paired If TRUE, paired-end reads are simulated; else single-end reads are simulated.
seed Optional seed to set before simulating reads, for reproducibility.
... Additional arguments to add nuance to the simulation, as described extensively

in the details of simulate_experiment, or to pass to seq_gtf, if gtf is not
NULL.

Details

Reads can either be simulated from a FASTA file of transcripts (provided with the fasta argument)
or from a GTF file plus DNA sequences (provided with the gtf and seqpath arguments). Simulat-
ing from a GTF file and DNA sequences may be a bit slower: it took about 6 minutes to parse the
GTF/sequence files for chromosomes 1-22, X, and Y in hg19.

simulate_experiment_empirical 33

Value

No return, but simulated reads are written to outdir.

References

Li W and Jiang T (2012): Transcriptome assembly and isoform expression level estimation from
biased RNA-Seq reads. Bioinformatics 28(22): 2914-2921.

Examples

fastapath = system.file("extdata", "chr22.fa", package="polyester")
numtx = count_transcripts(fastapath)
readmat = matrix(20, ncol=10, nrow=numtx)
readmat[1:30, 1:5] = 40

simulate_experiment_countmat(fasta=fastapath,
readmat=readmat, outdir='simulated_reads_2', seed=5)

simulate_experiment_empirical

Simulate RNA-seq experiment based on abundances from a data set

Description

Create fasta files representing reads from a two-group experiment, where abundances and differen-
tial expression are estimated from a real data set

Usage

simulate_experiment_empirical(
bg = NULL,
fpkmMat = NULL,
mean_rps = 5e+06,
grouplabels = NULL,
decut = 1.5,
outdir = ".",
...

)

Arguments

bg Ballgown object containing estimated transcript abundances in FPKM. Reads
will be simulated for the same number of replicates that are in bg. Must provide
exactly one of bg and fpkmMat.

fpkmMat transcript-by-sample matrix containing abundances (in FPKM) estimated from
a real data set. MUST have row names identifying transcripts. The number of
columns is the number of samples that will be simulated.

34 write_reads

mean_rps Number of reads per sample to use in converting FPKM measurements to counts.
Should be somewhat close to the number of reads per sample in the experiment
that generated the estimated FPKMs. Defaults to 5 million (5e6).

grouplabels vector indicating the group labels for each replicate in the experiment. Must be
convertible to a factor with exactly 2 levels.

decut A transcript will be recorded as truly differentially expressed if its fold change
between the two groups is more extreme than decut, in either direction.

outdir character, path to folder where simulated reads should be written, without a slash
at the end of the folder name. By default, reads written to the working directory.

... Additional arguments to pass to simulate_experiment_countmat

Value

No return, but reads are written to outdir.

Examples

Not run:

library(ballgown)
data(bg)
bg = subset(bg, "chr=='22'")

load gtf file:
gtfpath = system.file('extdata', 'bg.gtf.gz', package='polyester')
gtf = subset(gffRead(gtfpath), seqname=='22')

load/download chromosome sequence (just for this example)
system('wget https://www.dropbox.com/s/04i6msi9vu2snif/chr22seq.rda')
load('chr22seq.rda')
names(chr22seq) = '22'

simulate reads based on this experiment's FPKMs
simulate_experiment_empirical(bg, grouplabels=pData(bg)$group, gtf=gtf,

seqpath=chr22seq, mean_rps=5000, outdir='simulated_reads_3', seed=1247)

End(Not run)

write_reads write sequencing reads to disk

Description

given a DNAStringSet representing simulated sequencing reads, write FASTA files to disk repre-
senting the simulated reads.

Usage

write_reads(reads, fname, readlen, paired = TRUE, gzip, offset = 1L)

write_reads 35

Arguments

reads DNAStringSet representing sequencing reads
fname file path/prefix specifying where sequencing reads should be written. Should

not contain ".fasta" (this is appended automatically).
readlen maximum length of the reads in reads.
paired If TRUE, reads are assumed to be in pairs: i.e., read 1 and read 2 in reads are

the left and right mate (respectively) of a read pair; same with read 3 and read
4, etc. The odd-numbered reads are written to fname_1.fasta and the even-
numbered reads are written to fname_2.fasta. If FALSE, reads are assumed to
be single-end and just one file, fname.fasta, is written.

gzip If TRUE, gzip the output fasta files.
offset An integer number greater or equal to 1 to start assigning read numbers at.

Details

The get_reads function returns a DNAStringSet object representing sequencing reads that can be
directly passed to write_reads. If output other than that from get_reads is used and paired is
TRUE, make sure reads is ordered properly (i.e., that mate pairs appear together and that the left
mate appears first).

Value

No return, but FASTA file(s) containing the sequences in reads are written to fname.fasta (if
paired is FALSE) or fname_1.fasta and fname_2.fasta if paired is TRUE.

See Also

get_reads

Examples

library(Biostrings)
data(srPhiX174) # pretend srPhiX174 represents a DNAStringSet of *reads*
readlen = unique(width(srPhiX174)) #35
write_reads(srPhiX174, fname='./srPhiX174', readlen=readlen, paired=FALSE,

gzip=FALSE)

If the file is too big, you can subset it and write it in chunks.
Here we split our 'reads' into two chunks and save them to the same file.
write_reads(srPhiX174[1:100], fname='./srPhiX174-offset', readlen=readlen,

paired=FALSE, gzip=FALSE, offset = 1L)
write_reads(srPhiX174[101:length(srPhiX174)], fname='./srPhiX174-offset',

readlen=readlen, paired=FALSE, gzip=FALSE, offset = 101L)

We can verify that we get the same results
srPhi <- readDNAStringSet('./srPhiX174.fasta')
srPhiOffset <- readDNAStringSet('./srPhiX174-offset.fasta')
identical(srPhi, srPhiOffset)

Index

add_error, 2, 5
add_gc_bias, 3
add_platform_error, 4

cdnaf, 5
count_transcripts, 6
create_read_numbers, 7

empirical_density, 8

fpkm_to_counts, 8, 13

generate_fragments, 10
get_params, 13
get_reads, 14, 35
getAttributeField, 12
gtf_dataframe, 14

loessfit1, 15
loessfit2, 15
loessfit3, 16
loessfit4, 17
loessfit5, 17
loessfit6, 18
loessfit7, 18
logspline, 8, 10, 11, 29

model1, 19
model2, 20
model3, 20
model4, 21
model5, 22
model6, 22
model7, 23

NB, 24
NegBinomial, 28

polyester, 24

reverse_complement, 25

rnaf, 26

seq_gtf, 26, 31, 32
simulate_experiment, 10, 14, 24, 27, 32
simulate_experiment_countmat, 14, 24, 32
simulate_experiment_empirical, 33

write_reads, 34

36

	add_error
	add_gc_bias
	add_platform_error
	cdnaf
	count_transcripts
	create_read_numbers
	empirical_density
	fpkm_to_counts
	generate_fragments
	getAttributeField
	get_params
	get_reads
	gtf_dataframe
	loessfit1
	loessfit2
	loessfit3
	loessfit4
	loessfit5
	loessfit6
	loessfit7
	model1
	model2
	model3
	model4
	model5
	model6
	model7
	NB
	polyester
	reverse_complement
	rnaf
	seq_gtf
	simulate_experiment
	simulate_experiment_countmat
	simulate_experiment_empirical
	write_reads
	Index

