Package 'orthogene'

October 18, 2022

Type Package

Title Interspecies gene mapping

Version 1.2.1

Description

orthogene is an R package for easy mapping of orthologous genes across hundreds of species. It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms. It also provides various utility functions to map common objects (e.g. data.frames, gene expression matrices, lists) onto 1:1 gene orthologs from any other species.

URL https://github.com/neurogenomics/orthogene

BugReports https://github.com/neurogenomics/orthogene/issues

License GPL-3

Depends R (>= 4.1)

VignetteBuilder knitr

biocViews Genetics, ComparativeGenomics, Preprocessing, Phylogenetics, Transcriptomics, GeneExpression

- **Imports** dplyr, methods, stats, utils, Matrix, jsonlite, homologene, gprofiler2, babelgene, data.table, parallel, ggplot2, ggpubr, patchwork, DelayedArray, DelayedMatrixStats, Matrix.utils, grr, repmis, ggtree, tools
- Suggests remotes, knitr, BiocStyle, covr, markdown, rmarkdown, here, testthat (>= 3.0.0), piggyback, badger, magick, desc, hrbrthemes, Cairo, yulab.utils, haven, GenomeInfoDbData, ape, phytools, rphylopic, TreeTools, RColorBrewer, ggimage

RoxygenNote 7.1.2

Encoding UTF-8

Config/testthat/edition 3

Config/rcmdcheck/_R_CHECK_FORCE_SUGGESTS_ false

git_url https://git.bioconductor.org/packages/orthogene

git_branch RELEASE_3_15

git_last_commit 1dc2ecb
git_last_commit_date 2022-10-02
Date/Publication 2022-10-18
Author Brian Schilder [cre] (<https://orcid.org/0000-0001-5949-2191>)
Maintainer Brian Schilder <brian_schilder@alumni.brown.edu>

R topics documented:

orthogene-package	2
aggregate_mapped_genes	3
all_genes	4
convert_orthologs	5
create_background	9
exp_mouse	10
exp_mouse_enst	11
gprofiler_orgs	12
infer_species	12
map_genes	14
map_orthologs	15
map_species	16
plot_orthotree	17
prepare_tree	19
report_orthologs	20
	23

Index

orthogene-package orthogene: Interspecies gene mapping

Description

orthogene is an R package for easy mapping of orthologous genes across hundreds of species.

Details

It pulls up-to-date interspecies gene ortholog mappings across 700+ organisms. It also provides various utility functions to map common objects (e.g. data.frames, gene expression matrices, lists) onto 1:1 gene orthologs from any other species.

Author(s)

Maintainer: Brian Schilder <brian_schilder@alumni.brown.edu> (ORCID)

Source

- GitHub : Source code and Issues submission.
- Author Site : or thogene was created by Brian M. Schilder.

See Also

Useful links:

- https://github.com/neurogenomics/orthogene
- Report bugs at https://github.com/neurogenomics/orthogene/issues

aggregate_mapped_genes

Aggregate a gene matrix by gene symbols

Description

Map matrix rownames to standardised gene symbols, and then aggregate many-to-one rows into a new matrix.

Usage

```
aggregate_mapped_genes(
  gene_df,
  species = "human",
  FUN = "sum",
  method = c("monocle3", "stats"),
  transpose = FALSE,
  gene_map = NULL,
  gene_map_col = "name",
  non121_strategy = "drop_output_species",
  as_sparse = TRUE,
  as_DelayedArray = FALSE,
  dropNA = TRUE,
  sort_rows = FALSE,
  verbose = TRUE
)
```

Arguments

gene_df	Input matrix where row names are genes.
species	Species to map against.
FUN	Aggregation function (DEFAULT: "sum").
method	Aggregation method.
transpose	Transpose gene_df before mapping genes.
gene_map	A user-supplied gene_map. If NULL (<i>DEFAULT</i>)), map_genes will be used to create a gene_map.
gene_map_col	Column in gene_map to aggregate gene_df by.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3 : Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4 : Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5 : Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

as_sparse Convert aggregated matrix to sparse matrix.

as_DelayedArray

	Convert aggregated matrix to DelayedArray.
dropNA	Drop genes assigned to NA in groupings.
sort_rows	Sort gene_df rows alphanumerically.
verbose	Print messages.

Value

Aggregated matrix

Examples

```
data("exp_mouse")
X_agg <- aggregate_mapped_genes(gene_df = exp_mouse, species = "mouse")</pre>
```

all_genes

Get all genes

Description

Return all known genes from a given species.

convert_orthologs

Usage

```
all_genes(
  species,
  method = c("gprofiler", "homologene", "babelgene"),
  ensure_filter_nas = FALSE,
  run_map_species = TRUE,
  verbose = TRUE,
  ...
)
```

Arguments

species	Species to get all genes for. Will first be standardised with map_species.	
method	R package to to use for gene mapping: "gprofiler" (slower but more species and genes) or "homologene" (faster but fewer species and genes).	
ensure_filter_nas		
	Perform an extra check to remove genes that are NAs of any kind.	
run_map_species		
	Standardise species names with map_species first (Default: TRUE).	
verbose	Print messages.	
	Additional arguments to be passed to gconvert when method="gprofiler".	

Details

References homologeneData or gconvert.

Value

Table with all gene symbols from the given species.

Examples

```
genome_mouse <- all_genes(species = "mouse")
genome_human <- all_genes(species = "human")</pre>
```

convert_orthologs	Map genes from or	<i>ie species to another</i>
-------------------	-------------------	------------------------------

Description

Currently supports ortholog mapping between any pair of 700+ species. Use map_species to return a full list of available organisms.

Usage

```
convert_orthologs(
  gene_df,
  gene_input = "rownames",
  gene_output = "rownames",
  standardise_genes = FALSE,
  input_species,
  output_species = "human",
  method = c("gprofiler", "homologene", "babelgene"),
  drop_nonorths = TRUE,
  non121_strategy = "drop_both_species",
  mthreshold = Inf,
  as_sparse = FALSE,
  sort_rows = FALSE,
  verbose = TRUE,
  . . .
)
```

Arguments

8	
gene_df	Data object containing the genes (see gene_input for options on how the genes can be stored within the object). Can be one of the following formats:
	can be one of the following formats.
	 matrix: A sparse or dense matrix. data.frame: A data.frame, data.table. or tibble. codelist: A list or character vector.
	Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the arguments. <i>Note</i> : If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.
gene_input	Which aspect of gene_df to get gene names from:
2010-11pac	 "rownames" : From row names of data.frame/matrix. "colnames" : From column names of data.frame/matrix. <column name=""> : From a column in gene_df, e.g. "gene_names".</column>
gene_output	How to return genes. Options include:

6

- "rownames": As row names of gene_df.
- "colnames":
 - As column names of gene_df.
- "columns":

As new columns "input_gene", "ortholog_gene" (and "input_gene_standard" if standardise_genes=TRUE) in gene_df.

• "dict":

As a dictionary (named list) where the names are input_gene and the values are ortholog_gene.

• "dict_rev":

As a reversed dictionary (named list) where the names are ortholog_gene and the values are input_gene.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

- input_species Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.
- output_species Name of the output species (e.g. "human", "chicken"). Use map_species to return a full list of available species.
- method R package to to use for gene mapping:
 - "gprofiler" : Slower but more species and genes.
 - "homologene" : Faster but fewer species and genes.
 - "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

drop_nonorths Drop genes that don't have an ortholog in the output_species.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3 : Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4 : Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

	 "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.
mthreshold	Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (<i>DEFAULT</i> : Inf).
as_sparse	Convert gene_df to a sparse matrix. Only works if gene_df is one of the fol- lowing classes:
	• matrix
	• Matrix
	• data.frame
	• data.table
	• tibble
	If gene_df is a sparse matrix to begin with, it will be returned as a sparse matrix (so long as gene_output= "rownames" or "colnames").
sort_rows	Sort gene_df rows alphanumerically.
verbose	Print messages.
	Additional arguments to be passed to gorth or homologene.
	<i>NOTE</i> : To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Value

gene_df with orthologs converted to the output_species. Instead returned as a dictionary (named list) if gene_output="dict" or "dict_rev".

Examples

```
data("exp_mouse")
gene_df <- convert_orthologs(
    gene_df = exp_mouse,
    input_species = "mouse"
)</pre>
```

Description

Create a gene background as the union/intersect of all orthologs between input species (species1 and species2), and the output_species. This can be useful when generating random lists of background genes to test against in analyses with data from multiple species (e.g. enrichment of mouse cell-type markers gene sets in human GWAS-derived gene sets).

Usage

```
create_background(
  species1,
  species2,
  output_species = "human",
  as_output_species = TRUE,
  use_intersect = TRUE,
  bg = NULL,
  gene_map = NULL,
  method = "homologene",
  non121_strategy = "drop_both_species",
  verbose = TRUE
)
```

Arguments

species1	First species.
species2	Second species.
output_species	Species to convert all genes from species1 and species2 to first. Default="human", but can be to either any species supported by orthogene , including species1 or species2.
as_output_spec:	ies
	Return background gene list as output_species orthologs, instead of the gene names of the original input species.
use_intersect	When species1 and species2 are both different from output_species, this argument will determine whether to use the intersect (TRUE) or union (FALSE) of all genes from species1 and species2.
bg	User supplied background list that will be returned to the user after removing duplicate genes.
gene_map	User-supplied gene_map data table from map_orthologs or map_genes.
method	R package to to use for gene mapping:
	 "gprofiler" : Slower but more species and genes. "homologene" : Faster but fewer species and genes.

	• "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
non121_strateg	у
	How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:
	• "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
	 "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
	 "drop_output_species" or "dos" or 3 : Only drop genes that have duplicate mappings in the output_species.
	 "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species.
	 "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs. "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species)
	after dropping any duplicate genes in the output_species.
verbose	Print messages.

Value

Background gene list.

Examples

exp_mouse

Gene expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq gene expression matrix. Data originally comes from Zeisel et al., 2018 (Cell). exp_mouse_enst

Usage

data("exp_mouse")

Format

sparse matrix

Source

```
Publication ctd <- ewceData::ctd() exp_mouse <- as(ctd[[1]]$mean_exp, "sparseMatrix")
usethis::use_data(exp_mouse, overwrite = TRUE)</pre>
```

exp_mouse_enst

Transcript expression data: mouse

Description

Mean pseudobulk single-cell RNA-seq Transcript expression matrix.

Data originally comes from Zeisel et al., 2018 (Cell).

Usage

data("exp_mouse_enst")

Format

sparse matrix

Source

Publication data("exp_mouse") mapped_genes <- map_genes(genes = rownames(exp_mouse)[seq(1,100)], target = "ENST", species = "mouse", drop_na = FALSE) exp_mouse_enst <- exp_mouse[mapped_genes\$input,] rownames(exp_mouse_enst) <- mapped_genes\$target all_nas <- orthogene:::find_all_nas(rownames(exp_mouse exp_mouse_enst <- exp_mouse_enst[!all_nas,] exp_mouse_enst <- phenomix::add_noise(exp_mouse_enst) usethis::use_data(exp_mouse_enst, overwrite = TRUE) gprofiler_orgs

Description

Organism for which gene references are available via gProfiler API.

Used as a backup if API is not available.

Usage

gprofiler_orgs

Format

data.frame URL <- 'https://biit.cs.ut.ee/gprofiler/api/util/organisms_list' gprofiler_orgs <- jsonlite::fromJSON(URL) gprofiler_orgs <- dplyr::arrange(gprofiler_orgs, scientific_name) usethis::use_data(gprofiler_orgs, overwrite = TRUE, internal=TRUE)

Source

gProfiler site

infer_species Infer species from gene names

Description

Infers which species the genes within gene_df is from. Iteratively test the percentage of gene_df genes that match with the genes from each test_species.

Usage

```
infer_species(
  gene_df,
  gene_input = "rownames",
  test_species = c("human", "monkey", "rat", "mouse", "zebrafish", "fly"),
  method = c("homologene", "gprofiler", "babelgene"),
  make_plot = TRUE,
  show_plot = TRUE,
  verbose = TRUE
)
```

Arguments

guineitas	
gene_df	Data object containing the genes (see gene_input for options on how the genes can be stored within the object). Can be one of the following formats:
	 matrix: A sparse or dense matrix. data.frame: A data.frame, data.table. or tibble. codelist: A list or character vector.
	Genes, transcripts, proteins, SNPs, or genomic ranges can be provided in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to gene symbols unless specified otherwise with the arguments. <i>Note</i> : If you set method="homologene", you must either supply genes in gene symbol format (e.g. "Sox2") OR set standardise_genes=TRUE.
gene_input	Which aspect of gene_df to get gene names from:
	 "rownames": From row names of data.frame/matrix. "colnames": From column names of data.frame/matrix. <column name="">:</column>
	From a column in gene_df, e.g. "gene_names".
test_species	Which species to test for matches with. If set to NULL, will default to a list of humans and 5 common model organisms. If test_species is set to one of the following options, it will automatically pull all species from that respective package and test against each of them:
	 "homologene"20+ species (default) "gprofiler"700+ species
	"babelgene"19 species
method	R package to to use for gene mapping:
	 "gprofiler": Slower but more species and genes. "homologene": Faster but fewer species and genes. "babelgene": Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
make_plot	Make a plot of the results.
show_plot	Print the plot of the results.
verbose	Print messages.

Value

An ordered dataframe of test_species from best to worst matches.

Examples

```
data("exp_mouse")
matches <- infer_species(gene_df = exp_mouse[1:200,])</pre>
```

map_genes

Map genes

Description

Input a list of genes, transcripts, proteins, SNPs, or genomic ranges in any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and return a table with standardised gene symbols (the "names" column).

Usage

```
map_genes(
  genes,
  species = "hsapiens",
  target = "ENSG",
  mthreshold = Inf,
  drop_na = FALSE,
  numeric_ns = "",
  run_map_species = TRUE,
  verbose = TRUE
)
```

Arguments

genes	Gene list.	
species	Species to map against.	
target	target namespace.	
mthreshold	maximum number of results per initial alias to show. Shows all by default.	
drop_na	Drop all genes without mappings. Sets gprofiler2::gconvert(filter_na=) as well an additional round of more comprehensive NA filtering by orthogene .	
numeric_ns	namespace to use for fully numeric IDs (list of available namespaces).	
<pre>run_map_species</pre>		
	Standardise species names with map_species first (Default: TRUE).	
verbose	Print messages.	

Details

Uses gconvert. The exact contents of the output table will depend on target parameter. See ?gprofiler2::gconvert for more details.

Value

Table with standardised genes.

14

map_orthologs

Examples

```
genes <- c(
    "Klf4", "Sox2", "TSPAN12", "NM_173007", "Q8BKT6",
    "ENSMUSG0000012396", "ENSMUSG0000074637"
)
mapped_genes <- map_genes(
    genes = genes,
    species = "mouse"
)</pre>
```

map_orthologs Map orthologs

Description

Map orthologs from one species to another.

Usage

```
map_orthologs(
  genes,
  standardise_genes = FALSE,
  input_species,
  output_species = "human",
  method = c("gprofiler", "homologene"),
  mthreshold = Inf,
  verbose = TRUE,
  ...
)
```

Arguments

genes	can be a mixture of any format (HGNC, Ensembl, RefSeq, UniProt, etc.) and will be automatically converted to standardised HGNC symbol format.
standardise_ger	nes
	If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.
<pre>input_species</pre>	Name of the input species (e.g., "mouse", "fly"). Use map_species to return a full list of available species.
<pre>output_species</pre>	Name of the output species (e.g. "human", "chicken"). Use map_species to re- turn a full list of available species.
method	R package to to use for gene mapping:
	 "gprofiler" : Slower but more species and genes. "homologene" : Faster but fewer species and genes.

	• "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
mthreshold	Maximum number of ortholog names per gene to show. Passed to gorth. Only used when method="gprofiler" (<i>DEFAULT</i> : Inf).
verbose	Print messages.
	Additional arguments to be passed to gorth or homologene.
	<i>NOTE</i> : To return only the most "popular" interspecies ortholog mappings, supply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.

For more details, please see here.

Details

map_orthologs() is a core function within convert_orthologs(), but does not have many of the extra checks, such as non121_strategy) and drop_nonorths.

Value

Ortholog map data.frame with at least the columns "input_gene" and "ortholog_gene".

Examples

```
data("exp_mouse")
gene_map <- map_orthologs(
   genes = rownames(exp_mouse),
    input_species = "mouse"
)</pre>
```

map_species

Standardise species names

Description

Search gprofiler database for species that match the input text string. Then translate to a standardised species ID.

Usage

```
map_species(
  species = NULL,
  search_cols = c("display_name", "id", "scientific_name", "taxonomy_id"),
  output_format = c("scientific_name", "id", "display_name", "taxonomy_id", "version"),
  method = c("homologene", "gprofiler", "babelgene"),
  use_local = TRUE,
  verbose = TRUE
)
```

plot_orthotree

Arguments

species	Species query (e.g. "human", "homo sapiens", "hapiens", or 9606). If given a list, will iterate queries for each item. Set to NULL to return all species.
search_cols	Which columns to search for species substring in metadata API.
output_format	Which column to return.
method	R package to to use for gene mapping:
	• "gprofiler" : Slower but more species and genes.
	• "homologene" : Faster but fewer species and genes.
	• "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
use_local	If TRUE <i>default</i> , map_species uses a locally stored version of the species meta- data table instead of pulling directly from the gprofiler API. Local version may not be fully up to date, but should suffice for most use cases.
verbose	Print messages.

Value

Species ID of type output_format

Examples

```
ids <- map_species(species = c(
    "human", 9606, "mus musculus",
    "fly", "C elegans"
))</pre>
```

plot_orthotree Create a phylogenetic tree of shared orthologs

Description

Automatically creates a phylogenetic tree plot annotated with metadata describing how many orthologous genes each species shares with the reference_species ("human" by default).

Usage

```
plot_orthotree(
  tree = NULL,
  orth_report = NULL,
  species = NULL,
  method = c("homologene", "gprofiler", "babelgene"),
  reference_species = "human",
  clades = list(Primates = c("Homo sapiens", "Macaca mulatta"), Eutherians =
      c("Homo sapiens", "Mus musculus", "Bos taurus"), Mammals = c("Homo sapiens",
      "Mus musculus", "Bos taurus", "Ornithorhynchus anatinus", "Monodelphis domestica"),
```

```
Tetrapods = c("Homo sapiens", "Mus musculus", "Gallus gallus", "Anolis carolinensis",
    "Xenopus tropicalis"), Vertebrates = c("Homo sapiens", "Mus musculus",
    "Gallus gallus", "Anolis carolinensis", "Xenopus tropicalis", "Danio rerio")),
    show_plot = TRUE,
    save_paths = c(tempfile(fileext = ".ggtree.pdf"), tempfile(fileext = ".ggtree.png")),
    width = 10,
    height = 10,
    mc.cores = 1,
    verbose = TRUE
```

Arguments

)

tree	A phylogenetic tree of class phylo. If no tree is provided (NULL) a 100-way multiz tree will be imported from UCSC Genome Browser.
orth_report	An ortholog report from one or more species generated by report_orthologs.
species	Species to include in the final plot. If NULL, then all species from the given database (method) will be included (via map_species), so long as they also exist in the tree.
method	R package to to use for gene mapping:
	• "gprofiler" : Slower but more species and genes.
	• "homologene" : Faster but fewer species and genes.
	• "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
reference_spec:	ies
	Reference species.
clades	A named list of clades each containing list fo species to define the respective clade using MRCA.
show_plot	Whether to print the final tree plot.
save_paths	Paths to save plot to.
width	Plot size in units ("in", "cm", "mm", or "px"). If not supplied, uses the size of current graphics device.
height	Plot size in units ("in", "cm", "mm", or "px"). If not supplied, uses the size of current graphics device.
mc.cores	Number of cores to parallelise different steps with.
verbose	Print messages.

Value

A list containing:

- plot : Annotated ggtree object.
- tree : The pruned, standardised phylogenetic tree used in the plot.
- orth_report : Ortholog reports for each species against the reference_species.
- metadata : Metadata used in the plot, including silhouette PNG ids from phylopic.

prepare_tree

- clades : Metadata used for highlighting clades.
- method : method used.
- reference_species : reference_species used.
- save_paths : save_paths to plot.

Source

ggtree tutorial

Examples

```
orthotree <- orthogene::plot_orthotree(species = c("human", "monkey", "mouse"))</pre>
```

prepare_tree Prepare a phylogenetic tree

Description

Import a phylogenetic tree and then conduct a series of optional standardisation steps. Optionally, if output_format is not NULL, species names from both the tree and the species argument will first be standardised using map_species.

Usage

```
prepare_tree(
    tree_path = file.path("http://hgdownload.soe.ucsc.edu/goldenPath",
        "hg38/multiz100way", "hg38.100way.scientificNames.nh"),
    species = NULL,
    output_format = "scientific_name",
    run_map_species = c(TRUE, TRUE),
    method = c("gprofiler", "homologene", "babelgene"),
    force_ultrametric = TRUE,
    age_max = NULL,
    show_plot = TRUE,
    verbose = TRUE,
    ...
)
```

Arguments

tree_path	Local path or URL to tree to import with read.tree.
species	Species names to subset the tree by (after standardise_species step).
output_format	Which column to return.
<pre>run_map_species</pre>	
	Whether to first standardise species names with map_species.
method	R package to to use for gene mapping:

	 "gprofiler": Slower but more species and genes.
	 "homologene": Faster but fewer species and genes.
	• "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.
force_ultrametric	
	Whether to force the tree to be ultrametric (i.e. make all tips the same date) using force.ultrametric.
age_max	Rescale the edges of the tree into units of millions of years (MY) instead than evolutionary rates (e.g. dN/dS ratios). Only used if age_max, the max number, is numeric. Times are computed using makeChronosCalib and chronos.
show_plot	Show a basic plot of the resulting tree.
verbose	Print messages.
	Additional arguments passed to makeChronosCalib.

Value

A filtered tree of class "phylo" (with standardised species names).

Examples

```
species <- c("human","chimp","mouse")
tr <- orthogene::prepare_tree(species = species)</pre>
```

report_orthologs Report orthologs

Description

Identify the number of orthologous genes between two species.

Usage

```
report_orthologs(
   target_species = "mouse",
   reference_species = "human",
   standardise_genes = FALSE,
   method_all_genes = c("homologene", "gprofiler", "babelgene"),
   method_convert_orthologs = method_all_genes,
   drop_nonorths = TRUE,
   non121_strategy = "drop_both_species",
   round_digits = 2,
   return_report = TRUE,
   mc.cores = 1,
   verbose = TRUE,
   ...
)
```

report_orthologs

Arguments

target_species Target species.

reference_species

Reference species.

standardise_genes

If TRUE AND gene_output="columns", a new column "input_gene_standard" will be added to gene_df containing standardised HGNC symbols identified by gorth.

method_all_genes

R package to to use in all_genes step:

- "gprofiler" : Slower but more species and genes.
- "homologene" : Faster but fewer species and genes.
- "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

method_convert_orthologs

R package to to use in convert_orthologs step:

- "gprofiler" : Slower but more species and genes.
- "homologene" : Faster but fewer species and genes.
- "babelgene" : Faster but fewer species and genes. Also gives consensus scores for each gene mapping based on a several different data sources.

drop_nonorths Drop genes that don't have an ortholog in the output_species.

non121_strategy

How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include:

- "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT).
- "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species.
- "drop_output_species" or "dos" or 3 : Only drop genes that have duplicate mappings in the output_species.
- "keep_both_species" or "kbs" or 4 : Keep all genes regardless of whether they have duplicate mappings in either species.
- "keep_popular" or "kp" or 5 : Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
- "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species.

round_digits	Number of digits to round to when printing percentages.
return_report	Return just the ortholog mapping between two species (FALSE) or return both the ortholog mapping as well a data.frame of the report statistics (TRUE).
mc.cores	Number of cores to parallelise each target_species with.
verbose	Print messages.
	Additional arguments to be passed to gorth or homologene.
	<i>NOTE</i> : To return only the most "popular" interspecies ortholog mappings, sup- ply mthreshold=1 here AND set method="gprofiler" above. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs.
	For more details, please see here.

Value

A list containing:

- map : A table of inter-species gene mappings.
- report : A list of aggregate orthology report statistics.

If >1 target_species are provided, then a table of aggregated report statistics concatenated across species will be returned instead.

Examples

```
orth_fly <- orthogene::report_orthologs(
    target_species = "fly",
    reference_species = "human"
)</pre>
```

Index

* datasets exp_mouse, 10 $exp_mouse_enst, 11$ gprofiler_orgs, 12 aggregate_mapped_genes, 3 all_genes, 4, 21 chronos, 20 convert_orthologs, 5, 21 create_background, 9 DelayedArray, 4 $exp_mouse, 10$ exp_mouse_enst, 11 force.ultrametric, 20 gconvert, *5*, *14* gorth, 7, 8, 15, 16, 21, 22 gprofiler_orgs, 12 homologene, 8, 16, 22 homologeneData, 5 infer_species, 12 makeChronosCalib, 20 map_genes, *3*, *9*, 14 map_orthologs, 9, 15 map_species, 5, 7, 14, 15, 16, 17-19 MRCA, 18 orthogene (orthogene-package), 2 orthogene-package, 2 phylo, 18 plot_orthotree, 17 prepare_tree, 19

read.tree, 19
report_orthologs, 18, 20