Package ‘iSEE’

October 18, 2022

Title Interactive SummarizedExperiment Explorer
Version 2.8.0
Date 2021-10-12

Description Create an interactive Shiny-based graphical user interface
for exploring data stored in SummarizedExperiment objects, including
row- and column-level metadata. The interface supports transmission of
selections between plots and tables, code tracking, interactive tours,
interactive or programmatic initialization, preservation of app state,
and extensibility to new panel types via S4 classes. Special attention
is given to single-cell data in a SingleCellExperiment object with
visualization of dimensionality reduction results.

Depends SummarizedExperiment, SingleCellExperiment

Imports methods, BiocGenerics, S4Vectors, utils, stats, shiny,
shinydashboard, shinyAce, shinyjs, DT, rintrojs, ggplot2,
ggrepel, colourpicker, igraph, vipor, mgcv, graphics,
grDevices, viridisLite, shinyWidgets, ComplexHeatmap, circlize,
grid

Suggests testthat, BiocStyle, knitr, rmarkdown, scRNAseq,
TENxPBMCData, scater, DelayedArray, HDF5Array, RColorBrewer,
viridis, htmltools

URL https://github.com/iSEE/iSEE

BugReports https://github.com/iSEE/iSEE/issues

biocViews ImmunoOncology, Visualization, GUI, DimensionReduction,
FeatureExtraction, Clustering, Transcription, GeneExpression,
Transcriptomics, SingleCell, CellBasedAssays

License MIT + file LICENSE

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/iSEE
git_branch RELEASE_3_15

https://github.com/iSEE/iSEE
https://github.com/iSEE/iSEE/issues

2 R topics documented:

git_last_commit adce814
git_last_commit_date 2022-04-26
Date/Publication 2022-10-18

Author Kevin Rue-Albrecht [aut, cre] (<https://orcid.org/0000-0003-3899-3872>),
Federico Marini [aut] (<https://orcid.org/0000-0003-3252-7758>),
Charlotte Soneson [aut] (<https://orcid.org/0000-0003-3833-2169>),
Aaron Lun [aut] (<https://orcid.org/0000-0002-3564-4813>)

Maintainer Kevin Rue-Albrecht <kevinrue67@gmail.com>

R topics documented:

.addCustomLabelsCommands 3
.addLabelCentersCommands 4
.addMultiSelectionPlotCommands 5
addTourStep L 6
JbuildLabs . . . o L e 6
.conditionalOnRadio 8
.createCustomDimnamesModalObservers 9
.createUnprotectedParameterObservers 10
.extractAssaySubmatrix oL 11
JullName e 12
panelColor . . . L oL 13
processMultiSelections L 14
replaceMissingWithFirst L L 15
requestUpdate Lo 16
retrieveOutput oL L L e e e e 17
.setCachedCommonInfo 18
aes-Utils . . . oL L e e e e e 19
cache-utils L 20
checkColormapCompatibility 21
class-utils L e e e e 22
cleanDataset e 23
collapseBOX 24
ColumnDataPlot-class e 26
ColumnDataTable-class e 28
ColumnDotPlot-class e 30
columnSelectionColorMap 32
ColumnTable-class e e e e 33
ComplexHeatmapPlot-class 34
createCustomPanels e 38
createLandingPage 41
defaultTour e 43
documentation-generics e e e e e 44
DotPlot-class e e e 45
ExperimentColorMap-class L 49

FeatureAssayPlot-class 52

https://orcid.org/0000-0003-3899-3872
https://orcid.org/0000-0003-3252-7758
https://orcid.org/0000-0003-3833-2169
https://orcid.org/0000-0002-3564-4813

.addCustomLabelsCommands 3

Index

filterDTColumn e 55
interface-generics e e 57
interface-wrappers L. e e 58
ISEE . . . e 59
iISEE-pkg e 62
ISEEOptions e e e e 63
jitterSquarePoints oL L L L 64
lassoPoints 66
manage_commands Lo e e 67
metadata-plot-generics Lol 68
multi-select-generics e 68
multiSelectionToFactor 70
ODSETVET-ZENETICS . . « . v v v v v e e e e e e e e e e e e e e e e 71
OULPUL-ZENEIICS . . .« v o v v v e v e e e e e e e e e e e e e 72
Panel-class L 75
panelDefaults e 78
plot-generics e 80
plot-utils e e e e e 83
ReducedDimensionPlot-class L 84
registerAppOptions 86
RowDataPlot-class 88
RowDataTable-class 90
RowDotPlot-class 92
RowTable-class e 94
SampleAssayPlot-class L 96
SEtUP-ZENETICS . « « . v v v v v e e e e e e e e e e e e e e 98
single-select-genericsl 99
SPECIfic-tOUrS L e e e e e e e 101
subsetPointsByGrid 102
Synchronize Assays e 103
Table-class 105
table-generics L. e e e e 107
track-utils L 108
validate-utils 109
visual-parameters-generics e e 110

112

.addCustomlLabelsCommands

Add custom label plotting commands

Description

Add ggplot instructions to add custom labels to specified points in a DotPlot. This is a utility
function that is intended for use in . generateDotPlot.

4 .addLabelCentersCommands

Usage

.addCustomLabelsCommands(x, commands, plot_type)

Arguments
X An instance of a DotPlot class.
commands A character vector representing the sequence of commands to create the ggplot
object.
plot_type String specifying the type of plot, e.g., "scatter”, "square”, "violin".
Value

A character vector containing commands plus any additional commands required to generate the
labels.

Author(s)
Kevin Rue-Albrecht, Aaron Lun

.addLabelCentersCommands
Add centered label plotting commands

Description
Add ggplot instructions to label the center of each group on a scatter plot. This is a utility function
that is intended for use in . generateDotPlot.

Usage

.addLabelCentersCommands(x, commands)

Arguments
X An instance of a DotPlot class.
commands A character vector representing the sequence of commands to create the ggplot
object.
Value

A character vector containing commands plus any additional commands required to generate the
labels.

Author(s)

Aaron Lun

.addMultiSelectionPlotCommands 5

.addMultiSelectionPlotCommands
Add multiple selection plotting commands

Description

Add ggplot instructions to create brushes and lassos for both saved and active mutliple selections in
a DotPlot panel.

Usage

.addMultiSelectionPlotCommands(x, envir, commands, flip = FALSE)

Arguments
X An instance of a DotPlot class.
envir The environment in which the ggplot commands are to be evaluated.
commands A character vector representing the sequence of commands to create the ggplot
object.
flip A logical scalar indicating whether the x- and y-axes are flipped, only relevant
to horizontal violin plots.
Details

This is a utility function that is intended for use in .generateDotPlot. It will modify envir by
adding all_active and all_saved variables, so developers should not use these names for their
own variables in envir.

If no self-selection structures exist in x, commands is returned directly without modification.

Value
A character vector containing commands plus any additional commands required to draw the self
selections.

Author(s)

Aaron Lun

6 .buildLabs

.addTourStep Add a step to the tour

Description

Utility to add a step to the panel-specific rintrojs tour, generating the element tag automatically.

Usage

.addTourStep(x, field, text, is_selectize = FALSE)

Arguments
X A Panel object to be toured.
field String containing the name of the slot of x, itself corresponding to an interface
element to highlight.
text String containing the text to show in the corresponding step of the tour.

is_selectize Logical scalar indicating whether field corresponds to a selectize element.

Value

Character vector of length two. The first entry contains the element tag to identify the interface
element to highlight, while the second entry contains the text.

Alternatively, NULL may be returned if .hideInterface(x, field) indicates that the correspond-
ing interface element has been hidden.

Author(s)

Aaron Lun

.buildLabs Generate ggplot title and label instructions

Description

Generate ggplot title and label instructions

.buildLabs

Usage
.buildLabs(
x = NULL,
y = NULL,
color = NULL,
shape = NULL,
size = NULL,
fill = NULL,
group = NULL,
title = NULL,
subtitle = NULL
)
Arguments
X The character label for the horizontal axis.
y x The character label for the vertical axis.
color The character title for the color scale legend.
shape The character title for the point shape legend.
size The character title for the point size legend.
fill The character title for the color fill legend.
group The character title for the group legend.
title The character title for the plot title.
subtitle The character title for the plot subtitle
Details

If any argument is NULL, the corresponding label is not set.

Value

Title and label instructions for ggplot as a character value.

Author(s)

Kevin Rue-Albrecht

Examples

cat(.buildLabs(y = "Title for Y axis"”, color = "Color label”))

8 .conditionalOnRadio

.conditionalOnRadio Conditional elements on radio or checkbox selection

Description

Creates a conditional Ul element that appears when the user picks a certain choice in a radio button,
single checkbox or checkbox group interface element.

Usage
.conditionalOnRadio(id, choice, ...)
.conditionalOnCheckSolo(id, on_select = TRUE, ...)
.conditionalOnCheckGroup(id, choice, ...)
Arguments
id String containing the ID of the UI element controlling the relevant choice.
choice String containing the choice for the radio button or checkbox group on which to
show the conditional element(s).
Ul elements to show conditionally.
on_select Logical scalar specifying whether the conditional element should be shown upon
selection in a check box, or upon de-selection (if FALSE).
Details

These functions are just wrappers around conditionalPanel, with the added value coming from
the pre-written conditional expressions in Javascript. They are useful for hiding elements that are
only relevant when the right radio button or checkbox is selected. This means that we avoid clutter-
ing the UI with options that are not immediately useful to the user.

Value

A HTML object containing interface elements in . . . that only appear when the relevant condition
is satisfied.

Author(s)

Aaron Lun

See Also

conditionalPanel, which is used under the hood.

.createCustomDimnamesModalObservers 9

.createCustomDimnamesModalObservers

Create observers for a modal for custom dimnames

Description

Create observers to launch a modal where users can input a list of custom row or column names.
These observers register input changes in the app’s memory and request an update to the affected

panel.

Usage

.createCustomDimnamesModalObservers(

plot_name,
slot_name,
button_name,
se,

input,
session,
pObjects,
rObjects,
source_type

Arguments

plot_name

slot_name

button_name
se

input
session
pObjects
rObjects

source_type

Details

String containing the name of the current panel.

String specifying the slot of containing the names of the custom features. This
will be modified by user interactions with the modal.

String containing the name of the button in the panel UI that launches the modal.
A SummarizedExperiment object after running . cacheCommonInfo.

The Shiny input object from the server function.

The Shiny session object from the server function.

An environment containing global parameters generated in the iSEE app.

A reactive list of values generated in the iSEE app.

String specifying the type of the panel that is source of the selection, either
"row” or "column”.

This should be called in . createObservers for the target panel. It assumes that a button element
with the suffix button_name is available in the UI (i.e., the full name is created by concatenated
plot_name with button_name).

10 .createUnprotectedParameterObservers

The modal UI provides options to sort the dimnames, validate them, clear the current text and
import a selection from a specified row transmitter. These are all transient until “Apply” is clicked,
at which point the app’s memory is modified and an update is requested.

The custom names are stored in the slot_name as a single string with names separated by newlines.
Hashes are treated as comments and any content after a hash is ignored when interpreting the names.
Any leading and trailing whitespace is also ignored during interpretation.

Value

Observers are set up to launch the modal and monitor its UI elements. A NULL is invisibly returned.

Author(s)

Kevin Rue-Albrecht

.createUnprotectedParameterObservers

Define parameter observers

Description

Define a series of observers to track “protected” or “unprotected” parameters for a given panel.
These will register input changes to each specified parameter in the app’s memory and request an
update to the output of the affected panel.

Usage

.createUnprotectedParameterObservers(
panel_name,
fields,
input,
pObjects,
rObjects,
ignorelnit
ignoreNULL

TRUE,
TRUE

.createProtectedParameterObservers(
panel_name,
fields,
input,
pObjects,
rOobjects,
ignorelnit
ignoreNULL

TRUE,
TRUE

.extractAssaySubmatrix 11

Arguments
panel_name String containing the name of the panel.
fields Character vector of names of parameters for which to set up observers.
input The Shiny input object from the server function.
pObjects An environment containing global parameters generated in the iSEE app.
robjects A reactive list of values generated in the iSEE app.

ignorelnit, ignoreNULL
Further arguments to pass to observeEvent.

Details

A protected parameter is one that breaks existing multiple selections, e.g., by changing the actual
data being plotted. Alterations to protected parameters will clear all active and saved selections
in the panel, as those existing selections are assumed to not make any sense in the context of the
modified output of that panel.

By comparison, an unprotected parameter only changes the aesthetics and will not clear existing
selections.

Value

Observers are set up to monitor the UI elements that can change the protected and non-fundamental
parameters. A NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

.requestUpdate and .requestCleanUpdate, used to trigger updates to the panel output.

.extractAssaySubmatrix
Extract assay submatrix

Description

Extract an assay submatrix based on the multiple row/column selection and any custom specifica-
tions from . createCustomDimnamesModalObservers.

Usage

.extractAssaySubmatrix(x, se, envir, use_custom_row_slot, custom_row_text_slot)

12 .fullName

Arguments
X A Panel instance that uses the row selection modal.
se The current SummarizedExperiment object.
envir The evaluation environment. This assumes that .processMultiSelections

has already been run.
use_custom_row_slot

String specifying the name of the slot indicating whether to use custom rows.
custom_row_text_slot

String specifying the name of the slot holding the custom row names. This is ex-
pected to be of the same format as described in ?. createCustomDimnamesModalObservers.

Details

This is designed to extract a matrix of assay values for a subset of rows/columns of interest, most
typically for a ComplexHeatmapPlot. It assumes that the class of x contains a slot indicating
whether custom rows should be used, plus a slot to hold the selected custom row names (usually
from a modal, see .createCustomDimnamesModalObservers).

If a multiple row selection is present in envir and custom rows are not to be used, that selection
is used to define the rows of the submatrix. All columns are returned in the submatrix unless a
multiple column selection is present in envir and the SelectEffect in x is “Restrict”, in which
case only the selected columns are returned.

Value

A character vector of commands to set up the assay submatrix. The submatrix itself is generated
within envir as the plot.data variable.

Author(s)
Kevin Rue-Albrecht

.fullName Get panel names

Description

Get panel names

Usage
.fullName(x)

.getEncodedName (x)

.getFullName(x)

.panelColor 13

Arguments

X An instance of a Panel class.

Details

The encoded name is used internally as the name of various fields in input, output and reactive
lists.

The full name is what should be shown in the interface and visible to the end-user.

Value

For .getEncodedName, a string containing the encoded panel name of x.
For . fullName, a string containing the full (plain-English) name of the class.

For .getFullName, a string containing the full name of x.

Author(s)

Aaron Lun

.panelColor Get panel colors

Description

Functions to get/set panel colors at the user and developer level. This determines the color of the
panel header as well as (for DotPlots) the color and fill of the brush.

Usage
.panelColor(x)

.getPanelColor(x)

Arguments

X An instance of a Panel class.

Details

For developers: .panelColor is a method that should be subclassed for each Panel subclass. This
determines the color theme for all instances of that class for use in, e.g., headers and box shadings.
Developers should choose a color that is dark enough to serve as a background for white text. We
recommend defining colors as hex color codes for full compatibility with both HTML elements and
R plots.

For users: by default, . getPanelColor will return the default color of each panel as specified by
the developer in . panelColor. However, users can override this by setting the panel.color global

14 .processMultiSelections

option to a named character vector of colors (see Examples). This can be used to customize the
color scheme for any given call to 1SEE. The names of the vector should be set to the name of class
to be overridden; if a class is not named here, its default color is used.

Value

A string containing the color assigned to the class of x.

Author(s)

Aaron Lun

Examples

rdp <- ReducedDimensionPlot()

Default color, as specified by the developer:
.panelColor(rdp)

Still the default color:
.getPanelColor(rdp)

Overriding the default colors:
sce <- SingleCellExperiment(list(logcounts=matrix(rnorm(1000), ncol=100)))
reducedDim(sce, "PCA") <- matrix(runif(200), ncol=2)

sce <- registerAppOptions(sce, panel.color=c(ReducedDimensionPlot="#1e90ff"))
if (interactive()) {
iSEE(sce, initial=list(rdp))

.processMultiSelections
Process multiple selections

Description
Generate and execute commands to process multiple selections, creating variables in the evaluation
environment with the identity of the selected rows or columns.

Usage

.processMultiSelections(x, all_memory, all_contents, envir)

.replaceMissing WithFirst 15

Arguments
X An instance of a Panel class.
all_memory A named list of Panel instances containing parameters for the current app state.

all_contents A named list of arbitrary contents with one entry per panel.

envir The evaluation environment. This is assumed to already contain se, the Sum-
marizedExperiment object for the current dataset.
Details

This function is primarily intended for use by developers of new panels. It should be called inside
.generateOutput to easily process row/column multiple selections. Developers can check whether
row_selected or col_selected exists in envir to determine whether any row or column selection
was performed (and adjust the behavior of . generateOutput accordingly).

Value

envir is populated with one, none or both of col_selected and/or row_selected, depending on
whether x is receiving a multiple selection on the rows and/or columns. The return value is the
character vector of commands required to construct those variables.

Author(s)

Aaron Lun

See Also

.generateOutput and its related generic . renderOutput, where this function should generally be
used.

.replaceMissingWithFirst
Replace with first choice

Description
Replace an NA or invalid value in a slot of a Panel object with the first valid choice. This is usually
called in .refineParameters.

Usage

.replaceMissingWithFirst(x, field, choices)

Arguments
X An instance of a Panel class.
field String containing the name of the relevant slot.

choices Character vector of permissible values for this slot.

16 .requestUpdate

Value

x where the slot named field is replaced with choices[1] if its value was previously NA or did not
exist in choices.

Author(s)

Aaron Lun

.requestUpdate Request Panel updates

Description

Request a re-rendering of the Panel output via reactive variables.

Usage

.requestUpdate(panel_name, rObjects)
.requestCleanUpdate(panel_name, pObjects, rObjects)

.requestActiveSelectionUpdate(

panel_name,
session,
pObjects,
rObjects,
update_output = TRUE
)
Arguments
panel_name String containing the panel name.
rObjects A reactive list of values generated in the iSEE app.
pObjects An environment containing global parameters generated in the iSEE app.
session The Shiny session object from the server function.

update_output A logical scalar indicating whether to call . requestUpdate as well.

Details

.requestUpdate should be used in various observers to request a re-rendering of the panel, usually
in response to user-driven parameter changes in . createObservers.

.requestCleanUpdate is used for changes to protected parameters that invalidate existing multiple
selections, e.g., if the coordinates change in a DotPlot, existing brushes and lassos are usually not
applicable.

.requestActiveSelectionUpdate should be used in the observer expression that implements the
panel’s multiple selection mechanism.

.retrieveOutput 17

Value

.requestUpdate will modify rObjects to request a re-rendering of the specified panel.
.requestCleanUpdate will also remove all active/saved selections in the chosen panel.

.requestActiveSelectionUpdate will modify rObjects to indicate that the active multiple se-
lection for panel_name has changed. If update_output=TRUE, it will also request a re-rendering
of the panel.

All functions will invisibly return NULL.

Author(s)

Aaron Lun

See Also

.createProtectedParameterObservers, for examples where the update-requesting functions are
used.

.retrieveOutput Retrieve the panel output

Description

Retrieve the results of a previous .generateOutput call on this panel.

Usage

.retrieveOutput(panel_name, se, pObjects, rObjects)

Arguments
panel_name String containing the panel name.
se A SummarizedExperiment object containing the current dataset.
pObjects An environment containing global parameters generated in the iSEE app.
rObjects A reactive list of values generated in the iSEE app.

Details

This function should be used in the rendering expression in .renderOutput. It takes care of a
number of house-keeping tasks required to satisfy . renderOutput’s requirements, e.g., responding
to .requestUpdate modifictions to rObjects, setting the commands and contents and varname
in pObjects.

This function will attempt to retrieve the cached output of .generateQutput if it was used else-
where in the app. After retrieval, the cached value is wiped to ensure that it does not go stale. If no
cached value is found, . generateOutput is called directly.

18 .setCachedCommonlInfo

Value
The output of running . generateOutput for the current panel. Several fields in pObjects are also
modified as a side-effect.

Author(s)

Aaron Lun

See Also

.renderOutput, where this function should be called.

.generateOQutput, which is called by this function.

.setCachedCommonInfo Set and get cached commons

Description

Get and set common cached information for each class. The setter should only ever be called in
.cacheCommonInfo. The getter can be called anywhere but most usually in .defineInterface.

Usage

.setCachedCommonInfo(se, cls, ...)

.getCachedCommonInfo(se, cls)

Arguments
se A SummarizedExperiment object containing the current dataset.
cls String containing the name of the class for which this information is cached.
Any number of named R objects to cache.
Value
.setCachedCommonInfo returns se with . .. added to its int_metadata.

.getCachedCommonInfo retrieves the cached common information for class cls.

Author(s)

Aaron Lun

See Also

?"cache-utils”, for utilities to define some cached variables.

aes-utils

Examples

19

se <- SummarizedExperiment()
se <- .setCachedCommonInfo(se, "SomePanelClass”,

something=1,

more_things=TRUE, something_else="A")

.getCachedCommonInfo(se, "SomePanelClass”)

aes-utils

Generate ggplot aesthetic instructions

Description

Generate ggplot aesthetic instructions

Usage
.buildAes(
x = TRUE,
y = TRUE,

color = FALSE
shape = FALSE
size = FALSE,
fill = FALSE,
group = FALSE
alt = NULL

Arguments

X

color

shape

size

fill

group

alt

’

’

’

A logical that indicates whether to enable x in the aesthetic instructions (de-
fault: TRUE).

A logical that indicates whether to enable y in the aesthetic instructions (de-
fault: TRUE).

A logical that indicates whether to enable color in the aesthetic instructions
(default: FALSE).

A logical that indicates whether to enable shape in the aesthetic instructions
(default: FALSE).

A logical that indicates whether to enable size in the aesthetic instructions
(default: FALSE).

A logical that indicates whether to enable fill in the aesthetic instructions
(default: FALSE).

A logical that indicates whether to enable group in the aesthetic instructions
(default: FALSE).

Alternative aesthetics, supplied as a named character vector.

20 cache-utils

Value

Aesthetic instructions for ggplot as a character value.

Author(s)
Kevin Rue-Albrecht

Examples

.buildAes()

cache-utils Caching utilities

Description

Utility functions to be used in a . cacheCommonInfo method, usually to identify names of elements
of the SummarizedExperiment for later use in .defineInterface to populate the user interface.

Usage
.findAtomicFields(x)
.whichGroupable(x, max_levels = Inf)
.whichNumeric(x)

.isAssayNumeric(se, i)

Arguments
X A data.frame or DataFrame, most typically the rowData or colData.
max_levels Integer scalar specifying the maximum number unique values for x to be cate-
gorical.
se The SummarizedExperiment object.
i An integer scalar or string specifying the assay of interest in se.
Details

.findAtomicFields is necessary as many of the widgets used by iSEE (e.g., ggplot, datatable)
do not know how to handle more complex types being stored as columns. Similarly, . whichNumeric
and .whichGroupable can be used to specify options for visualization modes that only make sense
for continuous or discrete variables respectively (e.g., sizing, faceting).

checkColormapCompatibility 21

Value

For . findAtomicFields, a character vector of names of columns in x containing atomic R types.
For .whichNumeric, an integer vector containing the indices of the numeric columns.
For .whichGroupable, an integer vector containing the indices of the categorical columns.

For .isAssayNumeric, a logical scalar indicating whether the specified assay as numeric.

Author(s)

Aaron Lun, Kevin Rue-Albrecht, Charlotte Soneson

Examples

x <- DataFrame(
A = rnorm(10),
B = sample(letters, 10),
DataFrame = I(DataFrame(
C = rnorm(10),
D = sample(letters, 10)

)
)

.findAtomicFields(x)
.whichGroupable(x)
.whichNumeric(x)

checkColormapCompatibility
Check compatibility between ExperimentColorMap and Summarized-
Experiment objects

Description

This function compares a pair of ExperimentColorMap and SingleCellExperiment objects, and ex-
amines whether all of the assays, colData, and rowData defined in the ExperimentColorMap
object exist in the SingleCellExperiment object.

Usage

checkColormapCompatibility(ecm, se)

Arguments
ecm An ExperimentColorMap.
se A SingleCellExperiment.
Value

A character vector of incompability error messages, if any.

22 class-utils

Author(s)

Kevin Rue-Albrecht

Examples

Example colormaps ----

count_colors <- function(n){
c("black”,"brown”,"red","orange", "yellow")

3

gc_color_fun <- function(n){
gc_colors <- c("forestgreen”, "firebrick1")
names(qc_colors) <- c("Y", "N")
return(qc_colors)

3

ecm <- ExperimentColorMap(
assays = list(
tophat_counts = count_colors

)7
colData = list(
passes_qgc_checks_s = gc_color_fun
)
Example SingleCellExperiment ----

library(scRNAseq)
sce <- ReprocessedAllenData(assays="tophat_counts")

Test for compatibility ----

checkColormapCompatibility(ecm, sce)

class-utils Set default slot values

Description
A utility function to set slots to default values if their values are not provided to initialize meth-
ods.

Usage

.emptyDefault(args, field, default)

cleanDataset 23

Arguments
args A named list of arguments to pass to the initialize method for a given class.
field String specifying the field to set.
default The default value of the slot in field.

Details

A more natural approach would be to have the default values in the arguments of the initialize
method. However, this would require us to hard-code the slot names in the function signature,
which would break our current DRY model of only specifying the slot names once.

Value

args is returned with the named field set to default if it was previously absent.

Author(s)
Aaron Lun, Kevin Rue-Albrecht

Examples
showMethods("initialize"”, classes = "ReducedDimensionPlot”, includeDefs = TRUE)
cleanDataset Clean the dataset
Description

Clean the SummarizedExperiment by making sure that names of various fields are available and
unique.

Usage
cleanDataset(se)

S4 method for signature 'SummarizedExperiment'’
cleanDataset(se)

S4 method for signature 'SingleCellExperiment’
cleanDataset(se)

Arguments

se A SummarizedExperiment object or one of its subclasses.

24 collapseBox

Details

Various Panels assume that the row and column names of the input SummarizedExperiment are
available and unique. This function enforces that, adding consecutive integer names if not available
and calling make . unique if they are duplicated.

Various Panels further assume that the assay, rowData, colData names are unique; if this is not
the case, selectInput behaves in unexpected (and incorrect) ways. This function enforces that as
well by running them through make.unique.

For SingleCellExperiment object, we enforce uniqueness in the reducedDims.

All changes result in warnings as a “sensible” object is not expected to require any work.

Value

A cleaned version of se.

Author(s)

Aaron Lun

Examples

Creating a very naughty SE.

se <- SummarizedExperiment(list(cbind(1:10, 2:11), cbind(2:11, 3:12)),
colData=DataFrame(A=1:2, A=3:4, check.names=FALSE),
rowData=DataFrame(B=1:10, B=1:10, check.names=FALSE))

se

cleanDataset(se)

collapseBox A collapsible box

Description

A custom collapsible box with Shiny inputs upon collapse, more or less stolen from shinyBS.

Usage
collapseBox(id, title, ..., open = FALSE, style = NULL)
Arguments
id String specifying the identifier for this object, to use as a field of the Shiny input.
title String specifying the title of the box for use in the UL
Additional UI elements to show inside the box.
open Logical scalar indicating whether this box should be open upon initialization.

style String specifying the box style, defaults to "default”.

collapseBox 25

Details

Collapsible boxes are used to hold parameters in the “parameter boxes” described in . defineInterface.
It is recommended to format the id as PANEL_SLOT where PANEL is the name of the panel associated
with the box and SLOT is the name of the slot that specifies whether this box should be open or not

at initialization. (See Panel for some examples with DataBoxOpen.)

Do not confuse these boxes with the shinydashboard: :boxes, which are used to hold the plot
and table panels. Adding to the nomenclature confusion is the fact that our collapsible boxes are
implemented in Javascript using the Bootstrap “panel” classes, which in turn has nothing to do with
our Panel classes.

Value

A HTML tag object containing a collapsible box.

Comments on shinyBS

We would have preferred to use bsCollapse from shinyBS. However, that package does not seem to
be under active maintenance, and there are several aspects that make it difficult to use. Specifically,
it does not seem to behave well with conditional elements inside the box, and it also does needs a
Depends: relationship with shinyBS.

For these reasons, we created our own collapsible box, taking code from shinyBS where appropri-
ate. The underlying Javascript code for this object is present in inst/www and is attached to the
search path for Shiny resources upon loading iSEE.

Author(s)

Aaron Lun

See Also

shinyBS, from which the Javascript code was derived.

.defineInterface, which should return a list of these collapsible boxes.

Examples

library(shiny)
collapseBox ("SomePanelTypel_ParamBoxOpen”,
title="Custom parameters”,
open=FALSE,
selectInput (”SomePanelTypel_Thing",
label="What thing?",
choices=LETTERS, selected="A"

26 ColumnDataPlot-class

ColumnDataPlot-class The ColumnDataPlot panel

Description

The ColumnDataPlot is a panel class for creating a ColumnDotPlot where the y-axis represents a
variable from the colData of a SummarizedExperiment object. It provides slots and methods for
specifying which variable to use on the y-axis (and, optionally, also the x-axis), as well as a method
to create the data.frame in preparation for plotting.

Slot overview

The following slots control the column data information that is used:

* YAxis, a string specifying the column of the colData to show on the y-axis. If NA, defaults to
the first valid field (see ?".refineParameters,ColumnDotPlot-method").

* XAxis, string specifying what should be plotting on the x-axis. This can be any one of "None",
"Column data"” or "Column selection”. Defaults to "None".

* XAxisColumnData, string specifying the column of the colData to show on the x-axis. If NA,
defaults to the first valid field.

In addition, this class inherits all slots from its parent ColumnDotPlot, DotPlot and Panel classes.

Constructor

ColumnDataPlot(...) creates an instance of a ColumnDataPlot class, where any slot and its value
can be passed to . .. as a named argument.

Supported methods

In the following code snippets, x is an instance of a ColumnDataPlot class. Refer to the documen-
tation for each method for more details on the remaining arguments.

For setting up data values:

e .refineParameters(x, se) returns x after replacing any NA value in YAxis or XAxisColumnData

with the name of the first valid colData variable. This will also call the equivalent Column-
DotPlot method for further refinements to x. If no valid column metadata variables are avail-
able, NULL is returned instead.

For defining the interface:
e .defineDatalnterface(x, se, select_info) returns a list of interface elements for ma-
nipulating all slots described above.
* .panelColor(x) will return the specified default color for this panel class.

» .allowableXAxisChoices(x, se) returns a character vector specifying the acceptable vari-
ables in colData(se) that can be used as choices for the x-axis. This consists of all variables
with atomic values.

ColumnDataPlot-class 27

* .allowableYAxisChoices(x, se) returns a character vector specifying the acceptable vari-
ables in colData(se) that can be used as choices for the y-axis. This consists of all variables
with atomic values.

For monitoring reactive expressions:

* .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots described above and in the parent classes. This will also call the equivalent Column-
DotPlot method.

For controlling selections:

e .multiSelectionInvalidated(x) returns TRUE if the x-axis uses multiple column selec-
tions, such that the point coordinates may change upon updates to upstream selections in
transmitting panels. Otherwise, it dispatches to the ColumnDotPlot method.

For defining the panel name:
e .fullName(x) will return "Column data plot”.
For creating the plot:

e .generateDotPlotData(x, envir) will create a data.frame of column metadata variables in
envir. It will return the commands required to do so as well as a list of labels.

For documentation:

» .definePanelTour(x) returns an data.frame containing a panel-specific tour.

Subclass expectations

Subclasses do not have to provide any methods, as this is a concrete class.

Author(s)

Aaron Lun

See Also

ColumnDotPlot, for the immediate parent class.

Examples

S
For end-users
W

x <- ColumnDataPlot()
x[["XAxis"]1]
x[["XAxis"]] <- "Column data”

HHHEHHEEEE
For developers
HHHHHHAEEE

28

ColumnDataTable-class

library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)

old_cd <- colData(sce)
colData(sce) <- NULL

Spits out a NULL and a warning if there is nothing to plot.
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce0)

Replaces the default with something sensible.
colData(sce) <- old_cd

sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce0)

ColumnDataTable-class The ColumnDataTable panel

Description

The ColumnDataTable is a panel class for creating a ColumnTable where the value of the table
is defined as the colData of the SummarizedExperiment. It provides functionality to extract the
colData to coerce it into an appropriate data.frame in preparation for rendering.

Slot overview

This class inherits all slots from its parent ColumnTable and Table classes.

Constructor

ColumnDataTable(...) creates an instance of a ColumnDataTable class, where any slot and its
value can be passed to . .. as a named argument.

Note that ColSearch should be a character vector of length equal to the total number of columns in
the colData, though only the entries for the atomic fields will actually be used.

Supported methods

In the following code snippets, x is an instance of a ColumnDataTable class. Refer to the documen-
tation for each method for more details on the remaining arguments.

For setting up data values:
* .cacheCommonInfo(x) addsa "ColumnDataTable" entry containing valid.colData.names,

a character vector of names of atomic columns of the colData. This will also call the equiva-
lent ColumnTable method.

ColumnDataTable-class 29

e .refineParameters(x, se) adjusts ColSearch to a character vector of length equal to the
number of atomic fields in the colData. This will also call the equivalent ColumnTable
method for further refinements to x.

For defining the interface:

e . fullName(x) will return "Column data table”.

* .panelColor(x) will return the specified default color for this panel class.
For creating the output:

e .generateTable(x, envir) will modify envir to contain the relevant data.frame for display,
while returning a character vector of commands required to produce that data.frame. Each row
of the data.frame should correspond to a column of the SummarizedExperiment.

For documentation:
e .definePanelTour (x) returns an data.frame containing the steps of a panel-specific tour.

Unless explicitly specialized above, all methods from the parent class Panel are also available.

Author(s)

Aaron Lun

Examples

S
For end-users
S

x <- ColumnDataTable()
x[["Selected”]]
x[["Selected”]] <- "SOME_SAMPLE_NAME"

HHHEHHEREE
For developers
HHHHHHEEEE

library(scater)
sce <- mockSCE()

Search column refinement works as expected.
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce@)

30 ColumnDotPlot-class

ColumnDotPlot-class The ColumnDotPlot virtual class

Description

The ColumnDotPlot is a virtual class where each column in the SummarizedExperiment is repre-
sented by no more than one point (i.e., a “dot”) in a brushable ggplot plot. It provides slots and
methods to extract colData fields to control the per-point aesthetics on the plot. This panel will
transmit column identities in both its single and multiple selections, and it can receive multiple
column selections but not multiple row selections.

Slot overview

The following slots control coloring of the points:

* ColorByColumnData, a string specifying the colData field for controlling point color, if
ColorBy="Column data" (see the Panel class). Defaults to the first valid field (see . cacheCommonInfo
below).

* ColorByFeatureNameAssay, a string specifying the assay of the SummarizedExperiment ob-
ject containing values to use for coloring, if ColorBy="Feature name". Defaults to "logcounts”
in getPanelDefault, falling back to the name of the first valid assay (see ?" . cacheCommonInfo,DotPlot-method”
for the definition of validity).

* ColorBySampleNameColor, a string specifying the color to use for coloring an individual
sample on the plot, if ColorBy="Sample name". Defaults to "red” in getPanelDefault.

The following slots control other metadata-related aesthetic aspects of the points:

* ShapeByColumnData, a string specifying the colData field for controlling point shape, if
ShapeBy="Column data” (see the Panel class). The specified field should contain categorical
values; defaults to the first such valid field.

» SizeByColumnData, a string specifying the colData field for controlling point size, if SizeBy="Column
data” (see the Panel class). The specified field should contain continuous values; defaults to
the first such valid field.

In addition, this class inherits all slots from its parent DotPlot and Panel classes.

Supported methods

In the following code snippets, x is an instance of a ColumnDotPlot class. Refer to the documenta-
tion for each method for more details on the remaining arguments.

For setting up data values:

* .cacheCommonInfo(x) adds a "ColumnDotPlot” entry containing valid.colData.names, a
character vector of names of columns that are valid (i.e., contain atomic values); discrete.colData.names,
a character vector of names for columns with discrete atomic values; and continuous.colData.names,
a character vector of names of columns with continuous atomic values. This will also call the
equivalent DotPlot method.

ColumnDotPlot-class 31

e .refineParameters(x, se) replaces NA values in ColorByFeatAssay with the first valid
assay name in se. This will also call the equivalent DotPlot method.

For defining the interface:

e .hideInterface(x, field) returns a logical scalar indicating whether the interface element
corresponding to field should be hidden. This returns TRUE for row selection parame-
ters ("RowSelectionSource” and "RowSelectionRestrict"), otherwise it dispatches to the
Panel method.

For monitoring reactive expressions:

* .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots described above and in the parent classes. This will also call the equivalent DotPlot
method.

For controlling selections:
e .multiSelectionRestricted(x) returns a logical scalar indicating whether x is restricting

the plotted points to those that were selected in a transmitting panel.

e .multiSelectionDimension(x) returns "column” to indicate that a multiple column selec-
tion is being transmitted.

e .multiSelectionInvalidated(x) returns TRUE if the faceting options use multiple column
selections, such that the point coordinates/domain may change upon updates to upstream se-
lections in transmitting panels.

» .singleSelectionDimension(x) returns "sample” to indicate that a sample identity is be-
ing transmitted.

For documentation:

e .definePanelTour(x) returns an data.frame containing the steps of a tour relevant to sub-
classes, mostly tuning the more generic descriptions from the same method of the parent
DotPlot.

* .getDotPlotColorHelp(x, color_choices) returns a data.frame containing the documen-
tation for the "ColorBy" Ul element, specialized for column-based dot plots.

Unless explicitly specialized above, all methods from the parent classes DotPlot and Panel are also
available.

Subclass expectations

Subclasses are expected to implement methods for, at least:

e .generateDotPlotData
e .fullName
e .panelColor

The method for . generateDotPlotData should create a plot.data data.frame with one row per
column in the SummarizedExperiment object.

32 columnSelectionColorMap

Author(s)

Aaron Lun

See Also

DotPlot, for the immediate parent class that contains the actual slot definitions.

columnSelectionColorMap
Define the selection colormap

Description

Define the colormap when coloring points in a DotPlot based on their assigned multiple row/column
selection.

Usage

columnSelectionColorMap(x, levels)

rowSelectionColorMap(x, levels)

Arguments
X An ExperimentColorMap object.
levels Character vector containing the available levels of a ColorBy column derived
from a series of multiple selections, usually generated by multiSelectionToFactor
on the selection information in row_selected or col_selected.
Details

The "unselected” level is always assigned the grey color; colors for all other levels are generated
by colDataColorMap(x) or rowDataColorMap(x). The "active” level is always assigned the
first color from these functions, regardless of whether it is present in levels. This aims to provide
some consistency in the coloring when the selections change.

Value

A named character vector of colors for each level in levels.

Author(s)

Aaron Lun

ColumnTable-class 33

Examples

ecm <- ExperimentColorMap()

columnSelectionColorMap(ecm, c("active”, "unselected"”))
columnSelectionColorMap(ecm, c("active”, "saved1”, "unselected"”))
columnSelectionColorMap(ecm, c("saved1”, "unselected"))

columnSelectionColorMap(ecm, c("savedl"))

ColumnTable-class The ColumnTable class

Description

The ColumnTable is a virtual class where each column in the SummarizedExperiment is represented
by no more than row in a datatable widget. In panels of this class, single and multiple selections
can only be transmitted on the samples.

Slot overview

No new slots are added. All slots provided in the Table parent class are available.

Supported methods

In the following code snippets, x is an instance of a ColumnTable class. Refer to the documentation
for each method for more details on the remaining arguments.

For setting up data values:

* .refineParameters(x, se) replaces NA values in Selected with the first column name of
se. This will also call the equivalent Table method.

For defining the interface:

e .hideInterface(x, field) returns a logical scalar indicating whether the interface element
corresponding to field should be hidden. This returns TRUE for row selection parame-
ters ("RowSelectionSource” and "RowSelectionRestrict”), otherwise it dispatches to the
Panel method.

For monitoring reactive expressions:

* .createObservers(x, se, input, session, pObjects, rObjects) sets up observers to prop-
agate changes in the Selected to linked plots. This will also call the equivalent Table method.

For controlling selections:

e .multiSelectionDimension(x) returns "column” to indicate that a column selection is be-
ing transmitted.

e .singleSelectionDimension(x) returns "sample” to indicate that a sample identity is be-
ing transmitted.

34 ComplexHeatmapPlot-class

For rendering output:

» .showSelectionDetails(x) returns a HTML element containing details about the selected
row. This requires a function to be registered by registerAppOptions under the option name
"ColumnTable.select.details"”. The function should take a string containing the name of
a feature (i.e., the current selection in the ColumnTable) and returns a HTML element. If no
function is registered, NULL is returned.

Unless explicitly specialized above, all methods from the parent classes Table and Panel are also
available.

Subclass expectations

Subclasses are expected to implement methods for:

e .generateTable
e .fullName

e .panelColor

The method for .generateTable should create a tab data.frame where each row corresponds to a
column in the SummarizedExperiment object.

Author(s)

Aaron Lun

See Also

Table, for the immediate parent class that contains the actual slot definitions.

ComplexHeatmapPlot-class
The ComplexHeatmapPlot panel

Description

The ComplexHeatmapPlot is a panel class for creating a Panel that displays an assay of a Summa-
rizedExperiment object as a Heatmap with features as rows and samples and columns, respectively.
It provides slots and methods for specifying the features of interest, which assay to display in the
main heatmap, any transformations to perform on the data, and which metadata variables to display
as row and column heatmap annotations.

ComplexHeatmapPlot-class 35

ComplexHeatmapPlot slot overview
The following slots control the rows that are used:

* CustomRows, a logical scalar indicating whether the custom list of rows should be used. If
FALSE, the incoming selection is used instead. Defaults to TRUE.

* CustomRowsText, string containing newline-separated row names. This specifies which rows
of the SummarizedExperiment object are to be shown in the heatmap. If NA, defaults to the
first row name of the SummarizedExperiment.

The following slots control the metadata variables that are used:

* ColumnData, a character vector specifying columns of the colData to show as columnAnnotation.
Defaults to character(9).

* RowData, a character vector specifying columns of the rowData to show as rowAnnotation.
Defaults to character(0).

* ShowColumnSelection, a logical vector indicating whether the column selection should be
shown as an extra annotation bar. Defaults to TRUE.

* OrderColumnSelection, a logical vector indicating whether the column selection should be
used to order columns in the heatmap. Defaults to TRUE.

The following slots control the choice of assay values:

* Assay, string specifying the name of the assay to use for obtaining expression values. De-
faults to "logcounts” in getPanelDefault, falling back to the first valid assay name (see
.cacheCommonInfo below).

The following slots control the clustering of rows:

* ClusterRows, a logical scalar indicating whether rows should be clustered by their assay
values. Defaults to FALSE.

* ClusterRowsDistance, string specifying a distance measure to use. This can be any one of

non non non non non

"euclidean”, "maximum”, "manhattan”, "canberra”, "binary", "minkowski", "pearson”,
"spearman”, or "kendall”. Defaults to "spearman”.

* ClusterRowsMethod, string specifying a linkage method to use. This can be any one of

non non non

"ward.D", "ward.D2", "single”, "complete”, "average”,
Defaults to "ward.D2".

non

mcquitty”, "median”, or "centroid”.

The following control transformations applied to rows:
* AssayCenterRows is a logical scalar indicating whether assay values should be centered for
each row.
* AssayScaleRows is a logical scalar indicating whether assay values should be scaled for each
row. This transformation is only applicable if AssayCenterRows is TRUE.
The following slots control the color scale:
» CustomBounds is logical scale indicating whether the color scale should be constrained by an
upper and/or a lower bounds.

* LowerBound is a numerical value setting the lower bound of the color scale; or NA to disable
the lower bound when CustomBounds is TRUE.

36 ComplexHeatmapPlot-class
* UpperBound is a numerical value setting the lower bound of the color scale; or NA to disable
the upper bound when CustomBounds is TRUE.
* DivergentColormap is a character scalar indicating a 3-color divergent colormap to use when
AssayCenterRows is TRUE.
The following slots refer to general plotting parameters:
» ShowDimNames, a character vector specifying the dimensions for which to display names. This
can contain zero or more of "Rows"” and "Columns”. Defaults to "Rows".
* NamesRowFontSize, a numerical value setting the font size of the row names.
* NamesColumnFontSize, a numerical value setting the font size of the column names.
* LegendPosition, string specifying the position of the legend on the plot. Defaults to "Bottom”
in getPanelDefault but can also be "Right".
* LegendDirection, string specifying the orientation of the legend on the plot for continuous
covariates. Defaults to "Horizontal" in getPanelDefault but can also be "Vertical”.
The following slots control some aspects of the user interface:
* DataBoxOpen, a logical scalar indicating whether the data parameter box should be open.
Defaults to FALSE.
* VisualBoxOpen, a logical scalar indicating whether the visual parameter box should be open.
Defaults to FALSE.
In addition, this class inherits all slots from its parent Panel class.
Constructor
ComplexHeatmapPlot(...) creates an instance of a ComplexHeatmapPlot class, where any slot
and its value can be passed to ... as a named argument.
Supported methods

In the following code snippets, x is an instance of a ComplexHeatmapPlot class. Refer to the
documentation for each method for more details on the remaining arguments.

For setting up data values:

e .cacheCommonInfo(x) adds a "ComplexHeatmapPlot" entry containing valid.assay.names,

a character vector of valid (i.e., non-empty) assay names; discrete.assay.names, a char-

acter vector of valid assay names with discrete atomic values; continuous.assay.names, a

character vector of valid assay names with continuous atomic values; valid.colData.names,

a character vector of names of columns in colData that are valid; discrete.colData.names,

a character vector of names for columns in colData with discrete atomic values; continuous.colData.names,
a character vector of names of columns in colData with continuous atomic values; valid. rowData.names,

a character vector of names of columns in rowData that are valid; discrete.rowData.names,

a character vector of names for columns in rowData with discrete atomic values; continuous.rowData.names,
a character vector of names of columns in rowData with continuous atomic values. Valid as-

say names are defined as those that are non-empty, i.e., not ""; valid columns in colData and

rowData are defined as those that contain atomic values. This will also call the equivalent

Panel method.

ComplexHeatmapPlot-class 37

* .refineParameters(x, se) replaces any NA value in "Assay” with the first valid assay name;
and NA value in "CustomRowsText" with the first row name. This will also call the equivalent
Panel method for further refinements to x. If no valid column metadata fields are available,
NULL is returned instead.

For defining the interface:

e .definelnterface(x, se, select_info) defines the user interface for manipulating all slots
described above and in the parent classes. TODO It will also create a data parameter box that
can respond to specialized .defineDatalnterface, and a visual parameter box and a selec-
tion parameter box both specific to the ComplexHeatmapPlot panel. This will override the
Panel method.

e .defineDatalnterface(x, se, select_info) returns a list of interface elements for ma-
nipulating all slots described above.

» .defineOQutput(x) returns a UI element for a brushable plot.
* .panelColor(x) will return the specified default color for this panel class.

e .hideInterface(x, field) returns a logical scalar indicating whether the interface ele-
ment corresponding to field should be hidden. This returns TRUE for the selection history
("SelectionHistory"), otherwise it dispatches to the Panel method.

For generating the output:

» .generateOutput(x, se, all_memory, all_contents) returns a list containing plot, a Heatmap
object; commands, a list of character vector containing the R commands required to generate
contents and plot; and contents and varname, both set to NULL as this is not a transmitting
panel.

e .exportOutput(x, se, all_memory, all_contents) will create a PDF file containing the
current plot, and return a string containing the path to that PDF. This assumes that the plot
field returned by . generateOutput is a Heatmap object.

For monitoring reactive expressions:

* .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots described above and in the parent classes. This will also call the equivalent Panel
method.

* .renderOutput(x, se, output, pObjects, rObjects) will add a rendered plot element to
output. The reactive expression will add the contents of the plot to pObjects$contents
and the relevant commands to pObjects$commands. This will also call the equivalent Panel
method to render the panel information text boxes.

For defining the panel name:
e .fullName(x) will return "Complex heatmap".
For documentation:

» .definePanelTour(x) returns an data.frame containing a panel-specific tour.

Author(s)
Kevin Rue-Albrecht

38 createCustomPanels

See Also

Panel, for the immediate parent class.

Examples

S
For end-users
S

x <- ComplexHeatmapPlot()
x[["ShowDimNames"]]
x[["ShowDimNames"”]] <- c("Rows"”, "Columns")

HHHEHHEEEE
For developers
HHHHHHEEEE

library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)

old_cd <- colData(sce)
colData(sce) <- NULL

Spits out a NULL and a warning if there is nothing to plot.
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce®)

Replaces the default with something sensible.
colData(sce) <- old_cd

sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce0)

createCustomPanels Create custom panels

Description

Helper functions for quick-and-dirty creation of custom panels, usually in the context of a one-off
application. This creates a new class with specialized methods for showing content based on a
user-specified function.

Usage

createCustomTable(
FUN,
restrict = NULL,
className = "CustomTable”,

createCustomPanels 39

fullName = "Custom table”,
where = topenv(parent.frame())

)

createCustomPlot(
FUN,
restrict = NULL,
className = "CustomPlot”,

fullName = "Custom plot”,
where = topenv(parent.frame())

)
Arguments
FUN A function that generates a data.frame or a ggplot, for createCustomTable and
createCustomPlot respectively. See Details for the expected arguments.
restrict Character vector of names of optional arguments in FUN to which the UI is re-
stricted. If specified, only the listed arguments receive Ul elements in the inter-
face.
className String containing the name of the new Panel class.
fullName String containing the full name of the new class.
where An environment indicating where the class and method definitions should be
stored.
Details

FUN is expected to have the following first 3 arguments:

* se, a SummarizedExperiment object for the current dataset of interest.

* rows, a list of row selections received from the transmitting panel. This contains one or more
character vectors of row names in active and saved selections. Alternatively, this may be NULL
if no selection has been made in the transmitter.

* columns, a list of column selections received from the transmitting panel. This contains one
or more character vectors of column names in active and saved selections. Alternatively, this
may be NULL if no selection has been made in the transmitter.

Any number of additional named arguments may also be present in FUN. All such arguments should
have default values, as these are used to automatically generate Ul elements in the panel:

* Character vectors will get a selectInput.

 Strings will get a textInput.

* Numeric scalars will get a numericInput.

* Logical scalars will get a checkboxInput.
Arguments with other types of default values are ignored. If restrict is specified, arguments will

only have corresponding Ul elements if they are listed in restrict. All user interactions with these
elements will automatically trigger regeneration of the panel contents.

40 createCustomPanels

Classes created via these functions are extremely limited. Only scalar inputs are supported via the
UI and all panels cannot transmit to the rest of the app. We recommend only using these functions
for one-off applications to quickly prototype concepts; serious Panel extensions should be done
explicitly.

Value

A new class and its methods are defined in the global environment. A generator function for creating
new instances of the class is returned.

Author(s)

Aaron Lun

Examples

library(scater)
CUSTOM_DIMRED <- function(se, rows, columns, ntop=500, scale=TRUE,
mode=c(”PCA”, "TSNE”, "UMAP"))

{
if (is.null(columns)) {
return(
ggplot() + theme_void() + geom_text(
aes(x, y, label=label),
data.frame(x=0, y=0, label="No column data selected.”),
size=5)
)
3
mode <- match.arg(mode)
if (mode=="PCA") {
calcFUN <- runPCA
} else if (mode=="TSNE") {
calcFUN <- runTSNE
} else if (mode=="UMAP") {
calcFUN <- runUMAP
3
kept <- se[, unique(unlist(columns))]
kept <- calcFUN(kept, ncomponents=2, ntop=ntop,
scale=scale, subset_row=unique(unlist(rows)))
plotReducedDim(kept, mode)
3

GEN <- createCustomPlot (CUSTOM_DIMRED)
GENQ)

if (interactive()) {
library(scRNAseq)
sce <- ReprocessedAllenData("tophat_counts")
library(scater)
sce <- logNormCounts(sce, exprs_values="tophat_counts")

createLandingPage

41

iSEE(sce, initial=list(
ColumnDataPlot(PanelId=1L),
GEN(ColumnSelectionSource="ColumnDataPlot1")

)

createlLandingPage Create a landing page

Description

Define a function to create a landing page in which users can specify or upload SummarizedExper-

iment objects.

Usage

createlLandingPage(

seUIl = NULL,
seLoad = NULL
initUI = NULL

’

’

initlLoad = NULL,

requireButton

Arguments

seUl

selLoad

initUI

initLoad

requireButton

Details

= TRUE

Function that accepts a single id argument and returns a Ul element for speci-
fying the SummarizedExperiment.

Function that accepts the input value of the Ul element from seUI and returns a
SummarizedExperiment object.

Function that accepts a single id argument and returns a Ul element for speci-
fying the initial state.

Function that accepts the input value of the Ul element from initUI and returns
a list of Panels.

Logical scalar indicating whether the app should require an explicit button press
to initialize, or if it should initialize upon any modification to the Ul element in
seUI.

By default, this function creates a landing page in which users can upload an RDS file containing
a SummarizedExperiment, which is subsequently read by readRDS to launch an instance of iSEE.
However, any source of SummarizedExperiment objects can be used; for example, we can retrieve
them from databases by modifying seUI and selLoad appropriately.

42

createLandingPage

The default landing page also allows users to upload a RDS file containing a list of Panels that
specifies the initial state of the iSEE instance (to be used as the initial argument in iSEE). Again,
any source can be used to create this list if initUI and initlLoad are modified appropriately.

The Ul elements for the SummarizedExperiment and the initial state are named "se"” and "initial”
respectively. This can be used in Shiny bookmarking to initialize an iSEE in a desired state by
simply clicking a link, provided that requireButton=FALSE so that reactive expressions are imme-
diately triggered upon setting se= and initial= in the URL. We do not use bookmarking to set all
individual iSEE parameters as we will run afoul of URL character limits.

Value

A function that generates a landing page upon being passed to iSEE as the landingPage argument.

Defining a custom landing page

We note that createLandingPage is just a limited wrapper around the landing page API. In iSEE,
landingPage can be any function that accepts the following arguments:
* FUN, a function to initialize the iSEE observer architecture. This function expects to be passed:

— SE, a SummarizedExperiment object.

— INITIAL, alist of Panel objects describing the initial application state. If NULL, the initial
state from initial in the top-level iSEE call is used instead.

— TOUR, a data.frame containing a tour to be attached to the app - see defaultTour for an
example. If NULL (the default), no tour is added.

* input, the Shiny input list.
* output, the Shiny output list.

* session, the Shiny session object.

The 1landingPage function should define a renderUI expression that is assigned to output$allPanels.

This should define a Ul that contains all widgets necessary for a user to set up an iSEE session in-
teractively. We suggest that all UI elements have IDs prefixed with "initialize_INTERNAL" to
avoid conflicts.

The function should also define observers to respond to user interactions with the Ul elements.
These are typically used to define a SummarizedExperiment object and an input state as a list of
Panels; any one of these observers may then call FUN on those arguments to launch the main iSEE
instance.

Note that, once the main app is launched, the UI elements constructed here are lost and observers
will never be called again. There is no explicit “unload” mechanism to return to the landing page
from the main app, though a browser refresh is usually sufficient.

Author(s)

Aaron Lun

defaultTour 43

Examples

createlLandingPage()

Alternative approach, to create a landing page

that opens one of the datasets from the scRNAseq package.
library(scRNAseq)

all.data <- 1s("package:scRNAseq")

all.data <- all.datalgrep("Data$”, all.data)l

1pfun <- createlLandingPage(
seUI=function(id) selectInput(id, "Dataset:", choices=all.data),
seLoad=function(x) get(x, as.environment("”package:scRNAseq"))()

)

app <- iSEE(landingPage=1pfun)
if (interactive()) {

shiny: :runApp(app, port=1234)
3

defaultTour Define the default tour

Description
Define the default tour for the subset of the Allen brain dataset. This is only available when run on
the iSEE(sce) example in ?"iSEE".

Usage

defaultTour()

Value

A data.frame where each row is a tour step. The first column specifies the Ul element to be high-
lighted by the tour, while the second column contains the tour text.

Author(s)

Aaron Lun

Examples

defaultTour()

44

documentation-generics

documentation-generics
Documentation generics

Description

The generics power the creation of panel-specific documentation within the iSEE app. Users can
click on an icon next to the panel name to open a self-guided tour for that panel’s functionality.

Defining the panel tour

.definePanelTour(x) takes a Panel x and is expected to return a data.frame with the character
fields "element” and "intro”. Each row corresponds to a step of an rintrojs tour; the "element”
specifies the active UI element to be highlighted in that step, while the "intro” element contains
the HTML-formatted text to show in the tour pop-up.

It is a good idea to callNextMethod() to obtain the tour steps for the parent class to append onto
the current class’s data.frame. In some cases, modification of the parent class’s tour steps may be
necessary if some of the parent’s functionality has been overwritten. Some communication with the
parent’s maintainers may be necessary to establish a stable way to identify the rows corresponding
to the steps to be written, e.g., based on the row names of the data.frame.

A tour for a Panel x is expected to only highlight Ul elements on the same panel. This is very
important as other panels cannot be assumed to exist in an arbitrary instance of iSEE. As such,
these tours are not well-suited to highlighting interactions between different panels.

The observer set-up for the panel tour is done in .createObservers for the base Panel class. No
further action is required on behalf of developers to set up the triggers to launch the tour.

Defining Ul-specific tours

It is possible to provide tours for individual UI elements, which can be more helpful than a sin-
gle large tour for the entire panel. A documented element has a clickable icon (usually gen-
erated by functions like .selectInput.iSEE) that launches a specific tour, typically explaining
the behavior and effects of the associated parameter. The tours themselves should be registered
by .addSpecificTour. This is best done inside the various interface-defining functions (e.g.,
.defineInterface and related methods) where the documentation can be written adjacent to the
definition of the UI element itself.

For a DotPlot instance x, the .getDotPlotColorHelp(x, color_choices) generic should return
a function that returns a data.frame containing the rintrojs tour for the color choice Ul element,
i.e., "ColorBy". This allows downstream Panels to tune the wording of the color documentation,
given that this is commonly specialized. color_choices is a character vector that contains the
valid choices for the "ColorBy" radio button; some input datasets will not have, e.g., any column
data, so the corresponding button will not be shown and its associated tour can be omitted.

Author(s)

Aaron Lun

DotPlot-class 45

DotPlot-class The DotPlot virtual class

Description

The DotPlot is a virtual class for all panels where each row or column in the SummarizedExperiment
is represented by no more than one point (i.e., a “dot”) in a brushable ggplot plot. It provides slots
and methods to create the plot, to control various aesthetics of the dots, and to store the brush or
lasso selection.

Slot overview
The following slots are relevant to coloring of the points:

* ColorBy, a string specifying how points should be colored. This should be one of "None”,
"Feature name”, "Sample name” and either "Column data"” (for ColumnDotPlots) or "Row
data"” (for RowDotPlots). Defaults to "None".

* ColorByDefaultColor, a string specifying the default color to use for all points if ColorBy="None".
Defaults to "black” in getPanelDefault.

* ColorByFeatureName, a string specifying the feature to be used for coloring points when
ColorBy="Feature name"”. For RowDotPlots, this is used to highlight the point correspond-
ing to the selected feature; for ColumnDotPlots, this is used to color each point according to
the expression of that feature. If NA, this defaults to the name of the first row.

* ColorByFeatureSource, a string specifying the name of the panel to use for transmitting the

feature selection to ColorByFeatureName. Defaults to "---".

* ColorBySampleName, a string specifying the sample to be used for coloring points when
ColorBy="Sample name". For RowDotPlots, this is used to color each point according to
the expression of that sample; for ColumnDotPlots, this is used to highlight the point corre-
sponding to the selected sample. If NA, this defaults to the name of the first column.

* ColorBySampleSource, a string specifying the name of the panel to use for transmitting the

n

sample selection to ColorBySampleNameColor. Defaults to "---".

* ColorByFeatureDynamicSource, a logical scalar indicating whether x should dynamically
change its selection source when coloring by feature. Defaults to FALSE in getPanelDefault.

* ColorBySampleDynamicSource, a logical scalar indicating whether x should dynamically
change its selection source when coloring by feature. Defaults to FALSE in getPanelDefault.

* SelectionAlpha, a numeric scalar in [0, 1] specifying the transparency to use for non-selected
points. Defaults to 0.1 in getPanelDefault.

The following slots control other metadata-related aesthetic aspects of the points:

* ShapeBYy, a string specifying how the point shape should be determined. This should be one of
"None" and either "Column data” (for ColumnDotPlots) or "Row data” (for RowDotPlots).
Defaults to "None".

* SizeBy, a string specifying the metadata field for controlling point size. This should be one of
"None" and either "Column data” (for ColumnDotPlots) or "Row data” (for RowDotPlots).
Defaults to "None".

46 DotPlot-class

The following slots control the faceting:

* FacetRowBY, a string indicating what to use for creating row facets. For RowDotPlots, this
should be one of "None"”, "Row data” or "Row selection”. For ColumnDotPlots, this should
be one of "None”, "Column data” or "Column selection”. Defaults to "None", i.e., no row
faceting.

* FacetByColumn, a string indicating what to use for creating column facets. For RowDotPlots,
this should be one of "None", "Row data"” or "Row selection”. For ColumnDotPlots, this
should be one of "None”, "Column data"” or "Column selection”. Defaults to "None", i.e.,
no column faceting.

The following slots control any text to be shown on the plot:

* LabelCenters, alogical scalar indicating whether the label the centers (technically medoids)
of all cells in each group, where groups are defined by a discrete covariate in the relevant
metadata field. Defaults to FALSE.

* LabelCentersBy, a string specifying the metadata field to define the groups when LabelCenters
is TRUE. This should be a discrete variable in rowData or colData for RowDotPlots and
ColumnDotPlots, respectively. Defaults to the name of the first column.

* LabelCentersColor, a string specifying the color used for the labels at the center of each
group. Only used when LabelCenters is TRUE. Defaults to "black”.

* CustomLabels, alogical scalar indicating whether custom labels should be inserted on specific
points. Defaults to FALSE.

e CustomLabelsText, a (possibly multi-line) string with the names of the points to label when
CustomLabels is set to TRUE. Each line should contain the name of a row or column for Row-

DotPlots and ColumnDotPlots, respectively. Leading and trailing whitespace are stripped, and
all text on a line after # is ignored. Defaults to the name of the first row/column.

The following slots control interactions with the plot image:

* ZoomData, a named numeric vector of plot coordinates with "xmin”, "xmax”, "ymin" and
"ymax" elements parametrizing the zoom boundaries. Defaults to an empty vector, i.e., no
zoom.

* BrushData, a list containing either a Shiny brush (see ?brushedPoints) or an iSEE lasso
(see ?lassoPoints). Defaults to an empty list, i.e., no brush or lasso.

* HoverInfo, alogical scalar indicating whether the feature/sample name should be shown upon
mouse-over of the point. Defaults to TRUE.

The following slots control some aspects of the user interface:
* DataBoxOpen, a logical scalar indicating whether the data parameter box should be open.

Defaults to FALSE.

* VisualBoxOpen, a logical scalar indicating whether the visual parameter box should be open.
Defaults to FALSE.

» VisualChoices, a character vector specifying the visible interface elements upon initializa-
tion. This can contain zero or more of "Color"”, "Shape”, "Size", "Point” , "Facet”,
"Text", and "Other". Defaults to "Color".

The following slots control the addition of a contour:

DotPlot-class 47

* ContourAdd, logical scalar indicating whether a contour should be added to a (scatter) plot.
Defaults to FALSE.

* ContourColor, string specifying the color to use for the contour lines. Defaults to "blue”.
The following slots control the general appearance of the points.

* PointSize, positive numeric scalar specifying the relative size of the points. Defaults to 1.

* PointAlpha, non-negative numeric scalar specifying the transparency of the points. Defaults
to 1, i.e., not transparent.

» Downsample, logical scalar indicating whether to downsample points for faster plotting. De-
faults to FALSE in getPanelDefault.

* DownsampleResolution, numeric scalar specifying the resolution of the downsampling grid
(see ?subsetPointsByGrid) if Downsample=TRUE. Larger values correspond to reduced down-
sampling at the cost of plotting speed. Defaults to 200 in getPanelDefault.

The following slots refer to general plotting parameters:

* FontSize, positive numeric scalar specifying the relative font size. Defaults to 1 in getPanelDefault.
* PointSize, positive numeric scalar specifying the relative point size. Defaults to 1 in getPanelDefault.
* LegendPosition, string specifying the position of the legend on the plot. Defaults to "Bottom”

in getPanelDefault. The other valid choice is "Right".

In addition, this class inherits all slots from its parent Panel class.

Supported methods

In the following code snippets, x is an instance of a DotPlot class. Refer to the documentation for
each method for more details on the remaining arguments.

For setting up the objects:

* .cacheCommonInfo(x) adds a "DotPlot” entry containing valid.assay.names, a character

vector of valid assay names. Valid names are defined as those that are non-empty, i.e., not "".
This method will also call the equivalent Panel method.

* .refineParameters(x, se) replaces NA values in ColorByFeatureName and ColorBySampleNameColor
with the first row and column name, respectively, of se. This will also call the equivalent Panel
method.

For defining the interface:

* .defineInterface(x, se, select_info) defines the user interface for manipulating all slots
described above and in the parent classes. It will also create a data parameter box that can re-
spond to specialized .defineDatalnterface. This will override the Panel method.

e .defineVisualColorInterface(x, se, select_info) defines the user interface subpanel
for manipulating the color of the points.

e .defineVisualShapeInterface(x, se) defines the user interface subpanel for manipulating
the shape of the points.

e .defineVisualSizeInterface(x, se) defines the user interface subpanel for manipulating
the size of the points.

48

DotPlot-class

e .defineVisualPointInterface(x, se) defines the user interface subpanel for manipulating
other point-related parameters.

» .defineVisualFacetInterface(x, se) defines the user interface subpanel for manipulating
facet-related parameters.

e .defineVisualTextInterface(x, se) defines the user interface subpanel for manipulating
text-related parameters.

e .defineVisualOtherInterface(x, se) defines the user interface subpanel for manipulating
other parameters. Currently this returns NULL.

* .defineQutput(x) returns a UI element for a brushable plot.

* .allowableColorByDataChoices(x, se) returns a character vector containing all atomic
variables in the relevant xData dimension.

For generating the output:

* .generateOutput(x, se, all_memory, all_contents) returns a list containing contents,
a data.frame with one row per point currently present in the plot; plot, a ggplot object;
commands, a list of character vector containing the R commands required to generate contents
and plot; and varname, a string containing the name of the variable in commands that was used
to obtain contents.

e .generateDotPlot(x, labels, envir) returns a list containing plot and commands, as de-
scribed above. This is called within . generateOutput for all DotPlot instances by default.
Methods are also guaranteed to generate a dot.plot variable in envir containing the ggplot
object corresponding to plot.

e .prioritizeDotPlotData(x, envir) returns NULL.
e .colorByNoneDotPlotField(x) returns NULL.
e .colorByNoneDotPlotScale(x) returns NULL.

e .exportOutput(x, se, all_memory, all_contents) will create a PDF file containing the
current plot, and return a string containing the path to that PDF. This assumes that the plot
field returned by .generateOutput is a ggplot object.

For defining reactive expressions:

* .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
some (but not all!) of the slots. This will also call the equivalent Panel method.

e .renderOutput(x, se, output, pObjects, rObjects) will add a rendered plot element to
output. The reactive expression will add the contents of the plot to pObjects$contents
and the relevant commands to pObjects$commands. This will also call the equivalent Panel
method to render the panel information text boxes.

For controlling selections:

e .multiSelectionCommands(x, index) returns a character vector of R expressions that -
when evaluated - returns a character vector of the names of selected points in the active and/or
saved selections of x. The active selection is returned if index=NA, otherwise one of the saved
selection is returned.

e .multiSelectionActive(x) returns x[["BrushData”]] or NULL if there is no brush or
closed lasso.

ExperimentColorMap-class 49

e .multiSelectionClear(x) returns x after setting the BrushData slot to an empty list.

e .singleSelectionValue(x, contents) returns the name of the first selected element in the
active brush. If no brush is active, NULL is returned instead.

e .singleSelectionSlots(x) will return a list specifying the slots that can be updated by
single selections in transmitter panels, mostly related to the choice of coloring parameters.
This includes the output of callNextMethod.

For documentation:

e .definePanelTour(x) returns an data.frame containing the steps of a tour relevant to sub-
classes, mostly describing the specification of visual effects and the creation of a brush or
lasso.

Unless explicitly specialized above, all methods from the parent class Panel are also available.

Subclass expectations

The DotPlot is a rather vaguely defined class for which the only purpose is to avoid duplicating
code for ColumnDotPlots and RowDotPlots. We recommend extending those subclasses instead.

Author(s)

Aaron Lun

See Also

RowDotPlot and ColumnDotPlot, which are more amenable to extension.

ExperimentColorMap-class
ExperimentColorMap class

Description

ExperimentColorMap class

Usage

ExperimentColorMap(
assays = list(),
colData = list(),
rowData = list(),
all_discrete = list(assays = NULL, colData = NULL, rowData = NULL),
all_continuous = list(assays = NULL, colData = NULL, rowData = NULL),
global_discrete = NULL,
global_continuous = NULL,

50 ExperimentColorMap-class

Arguments
assays List of colormaps for assays.
colData List of colormaps for colData.
rowData List of colormaps for rowData.

all_discrete Colormaps applied to all undefined categorical assays, colData, and rowData,
respectively.

all_continuous Colormaps applied to all undefined continuous assays, colData, and rowData,
respectively.

global_discrete
Colormap applied to all undefined categorical covariates.

global_continuous
Colormap applied to all undefined continuous covariates.

additional arguments passed on to the ExperimentColorMap constructor

Details

Colormaps must all be functions that take at least one argument: the number of (named) colours to
return as a character vector. This argument may be ignored in the body of the colormap function
to produce constant colormaps.

Value

An object of class ExperimentColorMap

Categorical colormaps

The default categorical colormap emulates the default ggplot2 categorical color palette (Credit:
https://stackoverflow.com/questions/8197559/emulate-ggplot2-default-color-palette).
This palette returns a set of colors sampled in steps of equal size that correspond to approximately
equal perceptual changes in color:

function(n) {
hues=seq(15, 375, length=(n + 1))
hcl(h=hues, 1=65, c=100)[seq_len(n)]

To change the palette for all categorical variables, users must supply a colormap that returns a
similar value; namely, an unnamed character vector of length n. For instance, using the base R
palette rainbow. colors

function(n) {
rainbow(n)

}

https://stackoverflow.com/questions/8197559/emulate-ggplot2-default-color-palette

ExperimentColorMap-class 51

Accessors

In the following code snippets, x is an ExperimentColorMap object.

assayColorMap(x, i, ..., discrete=FALSE): Get an assays colormap for the specified assay
i.

colDataColorMap(x, i, ..., discrete=FALSE): Geta colData colormap for the specified colData
column 1i.

rowDataColorMap(x, i, ..., discrete=FALSE): Geta rowData colormap for the specified rowData
column i.

If the colormap for i cannot be found, one of the default colormaps is returned. In this case,
discrete is a logical scalar that indicates whether the colormap should be categorical. The more
specialized default is first attempted - e.g., for assayColorMap, this would be the assay colormap
specified in assays of all_discrete or all_continuous - before falling back to the global de-
fault in global_discrete or global_continuous. Similarly, if i is missing, the default dis-
crete/continuous colormap is returned.

Setters

In the following code snippets, x is an ExperimentColorMap object, and i is a character or numeric

index.

assayColorMap(x, i, ...) <-value: Setan assays colormap.

colDataColorMap(x, i, ...) <- value: Seta colData colormap.

rowDataColorMap(x, i, ...) <-value: Seta rowData colormap.

assay(x, i, ...) <-value: Alias. Set an assays colormap.
Examples

Example colormaps ----

count_colors <- function(n){
c("black”, "brown", "red", "orange", "yellow")

3
fpkm_colors <- viridis::inferno
tpm_colors <- viridis::plasma

gc_color_fun <- function(n){

gc_colors <- c("forestgreen”, "firebrickl")
names(qc_colors) <- c("Y", "N")
return(qc_colors)

}

Constructor ----

ecm <- ExperimentColorMap(
assays=list(
counts=count_colors,
tophat_counts=count_colors,

52 FeatureAssayPlot-class

cufflinks_fpkm=fpkm_colors,
rsem_tpm=tpm_colors

),

colData=1list(
passes_qgc_checks_s=gc_color_fun

)

Accessors ----

assay colormaps

assayColorMap(ecm, "logcounts”) # [undefined --> default]
assayColorMap(ecm, "counts")

assayColorMap(ecm, "cufflinks_fpkm")

assay(ecm, "cufflinks_fpkm"”) # alias

colData colormaps
colDataColorMap(ecm, "passes_gc_checks_s")
colDataColorMap(ecm, "undefined”)

rowData colormaps
rowDataColorMap(ecm, "undefined”)

generic accessors
assays(ecm)
assayNames (ecm)

Setters ----

assayColorMap(ecm, "counts”) <- function(n){c("blue”, "white", "red")}
assay(ecm, 1) <- function(n){c("blue”, "white”, "red")}

colDataColorMap(ecm, "passes_qc_checks_s") <- function(n){NULL}
rowDataColorMap(ecm, "undefined") <- function(n){NULL}

Categorical colormaps ----

Override all discrete colormaps using the base rainbow palette

ecm <- ExperimentColorMap(global_discrete = rainbow)

n<-10

plot(1:n, col=assayColorMap(ecm, "undefined”, discrete = TRUE)(n), pch=20, cex=3)

FeatureAssayPlot-class
The FeatureAssayPlot panel

Description

The FeatureAssayPlot is a panel class for creating a ColumnDotPlot where the y-axis represents
the expression of a feature of interest, using the assay values of the SummarizedExperiment. It

FeatureAssayPlot-class 53

provides slots and methods to specify the feature and what to plot on the x-axis, as well as a method
to actually create a data.frame containing those pieces of data in preparation for plotting.

Slot overview

The following slots control the values on the y-axis:
* YAxisFeatureName, a string specifying the name of the feature to plot on the y-axis. If NA,
defaults to the first row name of the SummarizedExperiment object.

* Assay, string specifying the name of the assay to use for obtaining expression values. Defaults
to "logcounts” in getPanelDefault, falling back to the name of the first valid assay (see
?".cacheCommonInfo,DotPlot-method"” for the definition of validity).

* YAxisFeatureSource, string specifying the encoded name of the transmitting panel to obtain
a single selection that replaces YAxisFeatureName. Defaults to "---", i.e., no transmission
is performed.

* YAxisFeatureDynamicSource, alogical scalar indicating whether x should dynamically change
its selection source for the y-axis. Defaults to FALSE in getPanelDefault.
The following slots control the values on the x-axis:
* XAxis, string specifying what should be plotting on the x-axis. This can be any one of "None”,
"Feature name”, "Column data” or "Column selection”. Defaults to "None".

* XAxisColumnData, string specifying which column of the colData should be shown on the x-
axis, if XAxis="Column data"”. Defaults to the first valid colData field (see ?".refineParameters,ColumnDotPlot-n
for details).

* XAaxisFeatureName, string specifying the name of the feature to plot on the x-axis, if XAxis="Feature
name". Defaults to the first row name.

* XAxisFeatureSource, string specifying the encoded name of the transmitting panel to obtain
a single selection that replaces XAxisFeatureName. Defaults to "---", i.e., no transmission
is performed.

* XAxisFeatureDynamicSource, alogical scalar indicating whether x should dynamically change
its selection source for the x-axis. Defaults to FALSE in getPanelDefault.

In addition, this class inherits all slots from its parent ColumnDotPlot, DotPlot and Panel classes.

Constructor

FeatureAssayPlot(...) creates an instance of a FeatureAssayPlot class, where any slot and its
value can be passed to ... as a named argument.

Supported methods

In the following code snippets, x is an instance of a FeatureAssayPlot class. Refer to the documen-
tation for each method for more details on the remaining arguments.

For setting up data values:

54 FeatureAssayPlot-class

* .refineParameters(x, se) replaces any NA values in XAxisFeatureName and YAxisFeatureName
with the first row name; any NA value in Assay with the first valid assay name; and any NA value
in XAxisColumnData with the first valid column metadata field. This will also call the equiv-
alent ColumnDotPlot method for further refinements to x. If no rows or assays are present,
NULL is returned instead.
For defining the interface:

e .defineDatalnterface(x, se, select_info) returns a list of interface elements for ma-
nipulating all slots described above.

* .panelColor(x) will return the specified default color for this panel class.
For monitoring reactive expressions:

e .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots described above and in the parent classes. This will also call the equivalent Column-
DotPlot method.

For defining the panel name:
e . fullName(x) will return "Feature assay plot”.

For creating the plot:

* .generateDotPlotData(x, envir) will create a data.frame of feature expression values in
envir. It will return the commands required to do so as well as a list of labels.

For managing selections:
e .singleSelectionSlots(x) will return a list specifying the slots that can be updated by

single selections in transmitter panels, mostly related to the choice of feature on the x- and
y-axes. This includes the output of the method for the parent ColumnDotPlot class.

e .multiSelectionInvalidated(x) returns TRUE if the x-axis uses multiple column selec-
tions, such that the point coordinates may change upon updates to upstream selections in
transmitting panels. Otherwise, it dispatches to the ColumnDotPlot method.

For documentation:

* .definePanelTour(x) returns an data.frame containing a panel-specific tour.

Author(s)

Aaron Lun

See Also

ColumnDotPlot, for the immediate parent class.

filterDTColumn

Examples

S
For end-users
W

x <- FeatureAssayPlot()
x[["XAxis"]1]

x[["Assay"]1] <- "logcounts”
x[["XAxisColumnData"]] <- "stuff”

HHHHHHAEE
For developers
S

library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)

old_assay_names <- assayNames(sce)
assayNames(sce) <- character(length(old_assay_names))

Spits out a NULL and a warning if no assays are named.
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce®)

Replaces the default with something sensible.
assayNames(sce) <- old_assay_names

sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce®)

filterDTColumn Filter DT columns

Description

Filter a data.frame based on the DT datatable widget column search string.

Usage

filterDTColumn(x, search)

filterDT(df, column, global)

Arguments
X A numeric or character vector, usually representing a column of a data.frame.
search A string specifying the search filter to apply to x.

df A data.frame that was used in the datatable widget.

56 filterDTColumn
column A character vector of per-column search strings to apply to df. If any entry is an
empty string, the corresponding column is not used for any filtering.
global String containing a regular expression to search for across all columns in df (and
row names, if present). If an empty string, no filtering is performed.
Details

For character x, search is treated as a regular expression.

For numeric x, search should have the form LOWER ... UPPER where all elements in [LOWER,
UPPER] are retained.

For factor x, search should have the form ["choice_1", "choice_2", etc.]. This is also the
case for logical x, albeit with the only choices being "true” or "false”.

filterDT will retain all rows where (i) any value in any column (after coercion to a string) matches
global, and (ii) the value in each column satisfies the filter specified in the corresponding entry
of column. Setting global to an empty string will skip requirement (i) while setting any entry of
column to an empty string will skip requirement (ii) for the affected column.

Ideally, ncol (df) and length(searches) would be the same, but if not, filterDT will simply
filter on the first N entries where N is the smaller of the two.

Any NA element in x will be treated as a no-match. The same applies for each column of df that
has non-empty column. Note that a no-match in one column does not preclude a successful match
in another column by global.

Value

A logical vector indicating which entries of x or rows of df are to be retained.

Author(s)

Aaron Lun

See Also

datatable and associated documentation for more details about column searches.

Examples

Regular expression:
filterDTColumn(LETTERS, "A|B|C")

Range query:
filterDTColumn(runif(20), "0.1 ... ©.5")

Factor query:
filterDTColumn(factor(letters), "['a', 'b', 'c']")

Works on DataFrames:

X <- data.frame(row.names=LETTERS, thing=runif(26),
stuff=sample(letters[1:3], 26, replace=TRUE),
stringsAsFactors=FALSE)

interface-generics 57

filterDT(X, c("@ ... 0.5", "a|b"), global="")
filterDT(X, "", global="A")
interface-generics Generics for the panel interface
Description

An overview of the generics for defining the user interface (UI) for each panel as well as some
recommendations on their implementation.

Defining the parameter interface

.defineInterface(x, se, select_info) defines the Ul for modifying all parameters for a given
panel. The required arguments are:

¢ x, an instance of a Panel class.

* se, a SummarizedExperiment object containing the current dataset. This can be assumed to
have been produced by running . refineParameters(x, se).

e select_info, a list of two lists, single and multiple, each of which contains the character
vectors row and column. This specifies the panels available for transmitting single/multiple se-
lections on the rows/columns, see ?.multiSelectionDimensionand ?.singleSelectionDimension
for more details.

Methods for this generic are expected to return a list of collapseBox elements. Each parameter
box can contain arbitrary numbers of additional UI elements, each of which is expected to modify
one slot of x upon user interaction.

The ID of each interface element should follow the form of PANEL_SLOT where PANEL is the panel
name (from .getEncodedName(x)) and SLOT is the name of the slot modified by the interface
element, e.g., "ReducedDimensionPlot1_Type". Each interface element should have an equivalent
observer in .createObservers unless they are hidden by .hideInterface (see below).

It is the developer’s responsibility to call callNextMethod to obtain interface elements for par-
ent classes. A common strategy is to combine the output of callNextMethod with additional
collapseBox elements to achieve the desired UI structure.

Defining the data parameter interface

.defineDatalnterface(x, se, select_info) defines the Ul for data-related (i.e., non-aesthetic)
parameters. The required arguments are the same as those for .defineInterface. Methods for
this generic are expected to return a list of UI elements for altering data-related parameters, which
are automatically placed inside the “Data parameters™ collapsible box. Each element’s ID should
still follow the PANEL_SLOT pattern described above.

This generic aims to provide a simpler alternative to specializing .defineInterface for the most
common use case. New panels can write methods for this generic to add their own interface ele-
ments for altering the contents of the panel, without needing to reimplement other Ul elements in

58 interface-wrappers

the parent class’s .defineInterface method. Conversely, there is no obligation to write a method
for this generic if one is planning to specialize .defineInterface.

It is the developer’s responsibility to call callNextMethod to obtain interface elements for parent
classes.

Hiding interface elements

.hideInterface(x, field) determines whether certain Ul elements should be hidden from the
user. The required arguments are:

¢ X, an instance of a Panel class.

» field, string containing the name of a slot of x.
Methods for this generic are expected to return a logical scalar indicating whether the interface ele-
ment corresponding to field should be hidden from the user. This is useful for hiding UI elements
that cannot be changed or have no effect, especially in highly specialized subclasses where some

concepts in the parent class may no longer be relevant. (The alternative would be to reimplement
all of the parent’s .defineInterface method just to omit a handful of Ul elements!)

It is the developer’s responsibility to call callNextMethod to hide the same interface elements as
parent classes. This is not strictly required if one wishes to expose previously hidden elements.

Author(s)

Aaron Lun

interface-wrappers iSEE Ul element wrappers

Description

Wrapper functions to create the standard shiny user interface elements, accompanied by an optional
help icon that opens an interactive tour describing the purpose of the element. Also responds to
requests to hide a particular element via .hideInterface.

Usage

.selectInput.iSEE(x, field, label, ..., help = TRUE)
.selectizelnput.iSEE(x, field, label, ..., help = TRUE)
.checkboxInput.iSEE(x, field, label, ..., help = TRUE)
.checkboxGroupInput.iSEE(x, field, label, ..., help = TRUE)
.sliderInput.iSEE(x, field, label, ..., help = TRUE)
.numericInput.iSEE(x, field, label, ..., help = TRUE)
.radioButtons.iSEE(x, field, label, ..., help = TRUE)

iSEE 59

Arguments
X A Panel object for which to construct an interface element.
field String containing the name of the parameter controlled by the interface element.
label String specifying the label to be shown.
Further arguments to be passed to the corresponding shiny function.
help Logical scalar indicating whether a help icon should be added to the label.
Value

The output of FUN(id, ..) is returned where FUN is set the corresponding shiny function, e.g.,
selectInput for .selectInput.iSEE. id is defined by concatenating .getEncodedName(x) and
field (separated by an underscore).

If .hideInterface(x, field) is TRUE, the output is wrapped inside a hidden call.

Author(s)

Aaron Lun

iSEE iSEE: interactive SummarizedExperiment Explorer

Description

Interactive and reproducible visualization of data contained in a SummarizedExperiment object,
using a Shiny interface.

Usage
iSEE(
se,
initial = NULL,
extra = NULL,

colormap = ExperimentColorMap(),
landingPage = createlLandingPage(),
tour = NULL,

appTitle = NULL,

runLocal = TRUE,

voice = FALSE,

bugs = FALSE,

saveState = NULL,

60 iSEE

Arguments

se A SummarizedExperiment object, ideally with named assays. If missing, an app
is launched with a landing page generated by the landingPage argument.

initial A list of Panel objects specifying the initial state of the app. The order of panels
determines the sequence in which they are laid out in the interface. Defaults to
one instance of each panel class available from iSEE.

extra A list of additional Panel objects that might be added after the app has started.
Defaults to one instance of each panel class available from iSEE.

colormap An ExperimentColorMap object that defines custom colormaps to apply to indi-
vidual assays, colData and rowData covariates.

landingPage A function that renders a landing page when iSEE is started without any speci-
fied se. Ignored if se is supplied.

tour A data.frame with the content of the interactive tour to be displayed after starting
up the app. Ignored if se is not supplied.

appTitle A string indicating the title to be displayed in the app. If not provided, the app
displays the version info of iSEE.

runLocal A logical indicating whether the app is to be run locally or remotely on a server,
which determines how documentation will be accessed.

voice A logical indicating whether the voice recognition should be enabled.

bugs Set to TRUE to enable the bugs Easter egg. Alternatively, a named numeric vector
control the respective number of each bug type (e.g., c(bugs=3L, spiders=1L)).

saveState A function that accepts a single argument containing the current application state
and saves it to some appropriate location.
Further arguments to pass to shinyApp.

Details

Configuring the initial state of the app is as easy as passing a list of Panel objects to initial. Each
element represents one panel and is typicall constructed with a command like ReducedDimensionPlot ().
Panels are filled from left to right in a row-wise manner depending on the available width. Each
panel can be easily customized by modifying the parameters in each object.

The extra argument should specify Panel classes that might not be shown during initialization but
can be added interactively by the user after the app has started. The first instance of each new class
in extra will be used as a template when the user adds a new panel of that class. Note that initial
will automatically be appended to extra to form the final set of available panels, so it is not strictly
necessary to re-specify instances of those initial panels in extra. (unless we want the parameters
of newly created panels to be different from those at initialization).

Value

A Shiny app object is returned for interactive data exploration of se, either by simply printing the
object or by explicitly running it with runApp.

iSEE 61

Setting up a tour

The tour argument allows users to specify a custom tour to walk their audience through various
panels. This is useful for describing different aspects of the dataset and highlighting interesting
points in an interactive manner.

We use the format expected by the rintrojs package - see https://github.com/carlganz/
rintrojs#usage for more information. There should be two columns, element and intro, with
the former describing the element to highlight and the latter providing some descriptive text. The
defaultTour also provides the default tour that is used in the Examples below.

Creating a landing page

If se is not supplied, a landing page is generated that allows users to upload their own RDS file to
initialize the app. By default, the maximum request size for file uploads defaults to SMB (https:
//shiny.rstudio.com/reference/shiny/@.14/shiny-options.html). To raise the limit (e.g.,
50MB), run options(shiny.maxRequestSize=50%1024"2).

The landingPage argument can be used to alter the landing page, see createlLandingPage for
more details. This is useful for creating front-ends that can retrieve SummarizedExperiments from
a database on demand for interactive visualization.

Saving application state

If users want to record the application state, they can download an RDS file containing a list with
the entries:

* memory, a list of Panel objects containing the current state of the application. This can be
directly re-used as the initial argument in a subsequent iSEE call.

* se, the SummarizedExperiment object of interest. This is optional and may not be present in
the list, depending on the user specifications.

» colormap, the ExperimentColorMap object being used. This is optional and may not be
present in the list, depending on the user specifications.

We can also provide a custom function in saveState that accepts a single argument containing this
list. This is most useful when iSEE is deployed in an enterprise environment where sessions can
be saved in a persistent location; combined with a suitable landingPage specification, this allows
users to easily reload sessions of interest. The idea is very similar to Shiny bookmarks but is more
customizable and can be used in conjunction with URL-based bookmarking.

References

Rue-Albrecht K, Marini F, Soneson C, Lun ATL. iSEE: Interactive SummarizedExperiment Ex-
plorer F1000Research 7.

Javascript code for bugs was based on https://github.com/Auz/Bug.

Examples

library(scRNAseq)

Example data ----

https://github.com/carlganz/rintrojs#usage
https://github.com/carlganz/rintrojs#usage
https://shiny.rstudio.com/reference/shiny/0.14/shiny-options.html
https://shiny.rstudio.com/reference/shiny/0.14/shiny-options.html
https://github.com/Auz/Bug

62 iSEE-pkg
sce <- ReprocessedAllenData(assays="tophat_counts")
class(sce)
library(scater)
sce <- logNormCounts(sce, exprs_values="tophat_counts")
sce <- runPCA(sce, ncomponents=4)
sce <- runTSNE(sce)
rowData(sce)$ave_count <- rowMeans(assay(sce, "tophat_counts”))
rowData(sce)$n_cells <- rowSums(assay(sce, "tophat_counts”) > 0)
sce
launch the app itself ----
app <- iSEE(sce)
if (interactive()) {
shiny: :runApp(app, port=1234)
}
iSEE-pkg iSEE: interactive SummarizedExperiment/SingleCellExperiment Ex-
plorer
Description
iSEE is a Bioconductor package that provides an interactive Shiny-based graphical user interface for
exploring data stored in SummarizedExperiment objects, including row- and column-level meta-
data. Particular attention is given to single-cell data in a SingleCellExperiment object with vi-
sualization of dimensionality reduction results, e.g., from principal components analysis (PCA) or
t-distributed stochastic neighbour embedding (t-SNE)
Author(s)

Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>
Charlotte Soneson <charlottesoneson@gmail.com>
Federico Marini <marinif@uni-mainz.de>

Kevin Rue-Albrecht <kevinrue67@gmail.com>

iSEEOptions 63

iSEEOptions Global iSEE options

Description

Get or set global values that are used by relevant panels during construction and application initial-
ization. This has been deprecated in favor of panelDefaults (for options that apply during Panel
construction) and registerAppOptions (for options that apply during application runtime).

Usage
iSEEOptions

Format

An object of class 1ist of length 4.

Commands

str(iSEEOptions$get()) will show the default values for all options.
iSEEOptions$set(name=value) will set the named option to value.

iSEEOptions$restore() will reset the global options to the package default values.

Available options

point.color Default color of data points in DotPlot panels (character).
point.size Default size of data points in DotPlot panels (numeric).

point.alpha Default alpha level controlling transparency of data points in DotPlot panels (nu-
meric).

downsample Enable visual downsampling in DotPlot panels (logical).
downsample.resolution Resolution of the visual downsampling, if active (numeric).
selected.color Color of selected data points in DotPlot panels (character).

selected.alpha Alpha level controlling transparency of data points not selected in DotPlot pan-
els (numeric).

selection.dynamic.single Toggle dynamic single selections for all panels (logical).
selection.dynamic.multiple Toggle dynamic multiple selections for all panels (logical).
contour.color Color of the 2d density estimation contour in DotPlot panels (character).

font.size Global multiplier controlling the magnification of plot title and text elements in DotPlot
panels (numeric).

legend.position Position of the legend in DotPlot and ComplexHeatmapPlot panels (one of
"Bottom”, "Right").

legend.direction Position of the legend in DotPlot and ComplexHeatmapPlot panels (one of
"Horizontal”, "Vertical”).

64 JjitterSquarePoints

panel.width Default panel grid width (must be between 1 and 12).
panel.height Default panel height (in pixels).

panel.color Named character vector of colors. The names of the vector should be set to the name
of class to be overridden; if a class is not named here, its default color is used. It is highly
recommended to define colors as hex color codes (e.g., "#1e90ff"), for full compatibility
with both HTML elements and R plots.

color.maxlevels Maximum number of levels for a categorical variable used for coloring. Vari-
ables with more levels are coerced to numeric to avoid problems with an overly-large legend.
Defaults to 24.

factor.maxlevels Maximum number of levels for a categorical variable to be used anywhere in
the app. Variables with more levels are coerced to numeric to avoid rendering delays. Defaults
to 100.

assay Character vector of assay names to use if available, in order of preference.

RowTable.select.details A function that takes a string containing the name of a feature (i.e.,
the current selection in the RowTable) and returns a HTML element with more details.

ColumnTable.select.details A function that takes a string containing the name of a sample
(i.e., the current selection in the ColumnTable) and returns a HTML element with more details.

Author(s)

Kevin Rue-Albrecht

Examples

iSEEOptions$get('downsample'); iSEEOptions$get('selected.color')

jitterSquarePoints Jitter points for categorical variables

Description

Add quasi-random jitter on the x-axis for violin plots when the x-axis variable is categorical. Add
random jitter within a rectangular area for square plots when both x- and y-axis variables are cate-
gorical.

Usage

jitterSquarePoints(X, Y, grouping = NULL)

jitterViolinPoints(X, Y, grouping = NULL, ...)

JjitterSquarePoints 65

Arguments
X A factor corresponding to a categorical variable.
Y A numeric vector of the same length as X for jitterViolinPoints, or a factor
of the same length as X for jitterSquarePoints.
grouping A named list of factors of the same length as X, specifying how elements should
be grouped.
Further arguments to be passed to of fsetX.
Details

The jitterViolinPoints function calls of fsetX to obtain quasi-random jittered x-axis values.
This reflects the area occupied by a violin plot, though some tuning of arguments in ... may be
required to get an exact match.

The jitterSquarePoints function will uniformly jitter points on both the x- and y-axes. The jitter
area is a square with area proportional to the frequency of the paired levels in X and Y. If either
factor only has one level, the jitter area becomes a rectangle that can be interpreted as a bar plot.

If grouping is specified, the values corresponding to each point defines a single combination of
levels. Both functions will then perform jittering separately within each unique combination of
levels. This is useful for obtaining appropriate jittering when points are split by group, e.g., during
faceting.

If grouping!=NULL for jitterSquarePoints the statistics in the returned summary data.frame will
be stratified by unique combinations of levels. To avoid clashes with existing fields, the names in
grouping should not be "X", "Y", "Freq"”, "XWidth" or "YWidth".

Value
For jitterViolinPoints, a numeric vector is returned containing the jittered x-axis coordinates
for all points.

For jitterSquarePoints, a list is returned with numeric vectors X and Y, containing jittered coor-
dinates on the x- and y-axes respectively for all points; and summary, a data.frame of frequencies
and side lengths for each unique pairing of X/Y levels.

Author(s)

Aaron Lun

Examples

X <- factor(sample(LETTERS[1:4], 100, replace=TRUE))
Y <= rnorm(100)
(out1 <- jitterViolinPoints(X=X, Y=Y))

Y2 <- factor(sample(letters[1:3], 100, replace=TRUE))
(out2 <- jitterSquarePoints(X=X, Y=Y2))

grouped <- sample(5, 100, replace=TRUE)
(out3 <- jitterViolinPoints(X=X, Y=Y, grouping=list(FacetRow=grouped)))
(out4 <- jitterSquarePoints(X=X, Y=Y2, grouping=list(FacetRow=grouped)))

66 lassoPoints

lassoPoints Find rows of data within a closed lasso

Description

Identify the rows of a data.frame lying within a closed lasso polygon, analogous to brushedPoints.

Usage

lassoPoints(df, lasso)

Arguments
df A data.frame from which to select rows.
lasso A list containing data from a lasso.
Details

This function uses in.out from the mgev package to identify points within a polygon. This involves
a boundary crossing algorithm that may not be robust in the presence of complex polygons with
intersecting edges.

Value

A subset of rows from df with coordinates lying within lasso.

Author(s)

Aaron Lun

See Also

brushedPoints

Examples

lasso <- list(coord=rbind(c(@, @), c(0.5, @), c(9, 0.5), c(0, @)),
closed=TRUE, mapping=list(x="X", y="Y"))

values <- data.frame(X=runif(100), Y=runif(100),
row.names=sprintf("VALUE_%i", seq_len(100)))

lassoPoints(values, lasso)

With faceting information:

lasso <- list(coord=rbind(c(@, @), c(0.5, @), c(@, 0.5), c(0, @)),
panelvar1="A", panelvar2="B", closed=TRUE,
mapping=list(x="X", y="Y",
panelvari1="FacetRow", panelvar2="FacetColumn"))

values <- data.frame(X=runif(100), Y=runif(100),
FacetRow=sample(LETTERS[1:2], 100, replace=TRUE),

manage_commands 67

FacetColumn=sample(LETTERS[1:4], 100, replace=TRUE),
row.names=sprintf ("VALUE_%i", seq_len(100)))
lassoPoints(values, lasso)

manage_commands Manage commands to be evaluated

Description

Functions to manage commands to be evaluated.

Usage

.textEval(cmd, envir)

Arguments
cmd A character vector containing commands to be executed.
envir An environment in which to execute the commands.
Value

. textEval returns the output of eval (parse(text=cmd), envir), unless cmd is empty in which
case it returns NULL.

Author(s)

Aaron Lun, Kevin Rue-Albrecht

Examples

myenv <- new.env()
myenv$x <- "Hello world!”
.textEval("print(x)", myenv)

68 multi-select-generics

metadata-plot-generics
Generics for row/column metadata plots

Description

These generics allow subclasses to refine the choices of allowable variables on the x- and y-axes of
a ColumnDataPlot or RowDataPlot. This is most useful for restricting the visualization to a subset
of variables, e.g., only taking log-fold changes in a y-axis of a MA plot.

Allowable y-axis choices

.allowableYAxisChoices(x, se) takes x, a Panel instance; and se, the SummarizedExperiment
object. It is expected to return a character vector containing the names of acceptable variables to
show on the y-axis. For ColumnDataPlots, these should be a subset of the variables in colData(se),
while for RowDataPlots, these should be a subset of the variables in rowData(se).

Given a constant se, the output of this function should be constant for all instances of the same panel
class. As such, it is a good idea to make use of information precomputed by .cacheCommonInfo.
For example, .cacheCommonInfo,ColumnDotPlot-method will add vectors specifying whether a
variable in the colData is valid and discrete or continuous, which can be intersected with any
additional requirements in a subclass’s method for this generic.

This generic is called by .defineDataInterface for ColumnDataPlots and RowDataPlots. Thus,
developers wanting to restrict those choices for subclasses can simply specialize . allowableYAxisChoices
rather than reimplementing .defineDatalnterface.

Allowable x-axis choices

.allowableXAxisChoices(x, se) is the same as above but controls the variables that can be
shown on the x-axis. This need not return the same subset of variables as .allowableYAxisChoices.
However, again, the output of this function should be constant for all instances of the same class
and a constant se.

Author(s)

Aaron Lun

multi-select-generics Generics for controlling multiple selections

Description

A panel can create a multiple selection on either the rows or columns and transmit this selection to
another panel to affect its set of displayed points. For example, users can brush on a DotPlots to
select a set of points, and then the panel can transmit the identities of those points to another panel
for highlighting.

This suite of generics controls the behavior of these multiple selections. In all of the code chunks
shown below, x is assumed to be an instance of the Panel class.

multi-select-generics 69

Specifying the dimension

.multiSelectionDimension(x) should return a string specifying whether the selection contains
rows ("row"), columns ("column”) or if the Panel in x does not perform multiple selections at all
("none"). The output should be constant for all instances of x and is used to govern the interface
choices for the selection parameters.

Specifying the active selection

.multiSelectionActive(x) should return some structure containing all parameters required to
identify all points in the active multiple selection of x. For example, the DotPlot method for this
generic would return the contents of the BrushData slot, usually a list containing a Shiny brush or
lasso waypoints for DotPlot classes. If .multiSelectionActive(x) returns NULL, x is assumed to
have no active multiple selection.

The active selection is considered to be the one that can be directly changed by the user, as compared
to saved selections that are not modifiable (other than being deleted on a first-in-last-out basis). This
generic is primarily used to bundle up selection parameters to be stored in the SelectionHistory
slot when the user saves the current active selection.

Evaluating the selection

.multiSelectionCommands(x, index) is expected to return a character vector of commands to

generate a character vector of row or column names in the desired multiple selection of x. If

index=NA, the desired selection is the currently active one; developers can assume that .multiSelectionActive(x)
returns a non-NULL value in this case. Otherwise, for an integer index, it refers to the corresponding

saved selection in the SelectionHistory.

The commands will be evaluated in an environment containing:

* select, a variable of the same type as returned by .multiSelectionActive(x). This will
contain the active selection if index=NA and one of the saved selections otherwise. For exam-
ple, for DotPlots, select will be either a Shiny brush or a lasso structure.

* contents, some arbitrary content saved by the rendering expression in .renderOutput(x).
This is most often a data.frame but can be anything as long as .multiSelectionCommands
knows how to process it. For example, a data.frame of coordinates is stored by DotPlots to
identify the points selected by a brush/lasso.

* se, the SummarizedExperiment object containing the current dataset.

The output commands are expected to produce a character vector named selected in the evaluation
environment. All other variables generated by the commands should be prefixed with . to avoid
name clashes.

Determining the available points for selection

.multiSelectionAvailable(x, contents) is expected to return an integer scalar specifying the
number of points available for selection in the the current instance of the panel x. The contents
field in the output of . generateOutput is passed to the contents argument of this generic.

The default method for this generic returns nrow(contents) for all Panel subclasses, assuming
that contents is a data.frame where each row represents a point. If not, this method needs to
be specialized in order to return an accurate total of available points, which is ultimately used to
compute the percentage selected in the multiple selection information panels.

70 multiSelectionToFactor

Destroying selections

.multiSelectionClear(x) should return x after removing the active selection, i.e., so that noth-
ing is selected. This is used internally to remove multiple selections that do not make sense after
protected parameters have changed. For example, a brush or lasso made on a PCA plot in Reduced-
DimensionPlots would not make sense after switching to t-SNE coordinates, so the application will
automatically erase those selections to avoid misleading conclusions.

Responding to selections

These generics control how x responds to a transmitted multiple selection, not how x itself transmits
selections.

.multiSelectionRestricted(x) should return a logical scalar indicating whether x’s displayed
contents will be restricted to the selection transmitted from another panel. This is used to deter-
mine whether child panels of x need to be re-rendered when x’s transmitter changes its multiple
selection. For example, the method for RowDotPlots and ColumnDotPlots would return TRUE if
RowSelectionRestrict=TRUE or ColumnSelectionRestrict=TRUE, respectively. Otherwise, it
would be FALSE as the transmitted selection is only used for aesthetics, not for changing the iden-
tity of the displayed points.

.multiSelectionInvalidated(x) should return alogical scalar indicating whether a transmission
of a multiple selection to x invalidates x’s own existing selections. This should only be TRUE in
special circumstances, e.g., if receipt of a new multiple selection causes recalculation of coordinates
in a DotPlot.

Author(s)

Aaron Lun

multiSelectionToFactor
Convert multiple selections into a factor

Description

Convert multiple selection information into a factor, typically for use as a covariate or for coloring.

Usage

multiSelectionToFactor(selected, all.names)

Arguments

selected A named list of character vectors, containing the names of selected observations
for different selections. Vectors for different selections may overlap.

all.names Character vector of all observations.

observer-generics 71

Value

A factor containing the set(s) to which each observation is assigned. Multiple sets are encoded as
comma-separated strings. Unselected observations are listed as "unselected”.

Author(s)

Aaron Lun

Examples

multiSelectionToFactor(list(active=c("A", "B"),

saved-lzc(llBH, "CI,), SaVed2=C("D", IIEVI, IIFII)),
all.names=LETTERS[1:10])

observer-generics Generic for the panel observers

Description

The workhorse generic for defining the Shiny observers for a given panel, along with recommenda-
tions on its implementation.

Creating parameter observers

In .createObservers(x, se, input, session, pObjects, rObjects), the required arguments

are:

X, an instance of a Panel class.

se, a SummarizedExperiment object containing the current dataset. This can be assumed to
have been produced by running .refineParameters(x, se).

input, the Shiny input object from the server function.
session, the Shiny session object from the server function.
pObjects, an environment containing global parameters generated in the iSEE app.

robjects, a reactive list of values generated in the iSEE app.

Methods for this generic are expected to set up all observers required to respond to changes in the
interface elements set up by .defineInterface. Recall that each interface element has an ID of
the form of PANEL_SLOT, where PANEL is the panel name (from .getEncodedName) and SLOT is
the name of the slot modified by the interface element. Thus, observers should respond to changes
in those elements in input. The return value of this generic is not used; only the side-effect of
observer set-up is relevant.

It is the developer’s responsibility to call callNextMethod to set up the observers required by the
parent class. This is best done by calling callNextMethod at the top of the method before defining
up additional observers. Each parent class should implement observers for its slots, so it is usually
only necessary to implement observers for any newly added slots in a particular class.

72 output-generics

Modifying the memory

Consider an observer for an interface element that modifies a slot of x. The code within this observer
is expected to modify the “memory” of the app state in pObjects, via:

new_value <- input[[paste@(PANEL, "_", SLOT)]]
pObjects$memory[[PANEL]I[[SLOT]] <- new_value

This enables iSEE to keep a record of the current state of the application. In fact, any changes must
go through pObjects$memory before they change the output in . renderOutput; there is no direct
interaction between input and output in this framework.

We suggest using . createProtectedParameterObservers and . createUnprotectedParameterObservers,
which create simple observers that update the memory in response to changes in the UI elements.
For handling selectize elements filled with server-side row/column names, we can use . createCustomDimnamesModalObser

Developers should not attempt to modify x in any observer expression. This value does not have
pass-by-reference semantics and any changes will not propagate to other parts of the application.
Rather, modifications should occur to the version of x in pObjects$memory, as described in the
code chunk above.

Triggering re-rendering

To trigger re-rendering of an output, observers should call .requestUpdate(PANEL, rObjects)
where PANEL is the name of the current panel This will request a re-rendering of the output with no
additional side effects and is most useful for responding to aesthetic parameters.

In some cases, changes to some parameters may invalidate existing multiple selections, e.g., brushes
and lassos are no longer valid if the variable on the axes are altered. Observers responding to
such changes should instead call .requestCleanUpdate (PANEL, pObjects, rObjects), which
will destroy all existing selections in order to avoid misleading conclusions.

Author(s)

Aaron Lun

output-generics Generics for Panel outputs

Description

An overview of the generics for defining the panel outputs, along with recommendations on their
implementation.

output-generics 73

Defining the output element

.defineOutput(x) defines the output element of the panel (e.g., a plot or table widget), given an
instance of a Panel subclass in x.

Methods for this generic are expected to return a HTML element containing the visual output of the
panel, such as the return value of plotOutput or dataTableOutput. This element will be shown
in the iSEE interface above the parameter boxes for x. Multiple elements can be returned via a
taglist.

The IDs of the output elements are expected to be prefixed with the panel name from . getEncodedName (x)
and an underscore, e.g., "ReducedDimensionPlot1_someOutput”. One of the output elements

may simply have the ID set to PANEL alone; this is usually the case for simple panels with one
primary output like a DotPlot.

Defining the rendered output

.renderOutput(x, se, ..., output, pObjects, rObjects) will create an expression to render
the panel’s output. The following arguments are required:

¢ X, an instance of a Panel class.

* se, a SummarizedExperiment object containing the current dataset.

..., further arguments that may be used by specific methods.

* output, the Shiny output object from the server function.

* pObjects, an environment containing global parameters generated in the iSEE app.

* rObjects, a reactive list of values generated in the iSEE app.
It is expected to attach one or more reactive expressions to output to render the output element(s)
defined by . defineOutput. This is typically done by calling shiny rendering functions like renderPlot

or the most appropriate equivalent for the panel’s output. The return value of this generic is not used;
only the side-effect of the reactive output set-up is relevant.

The rendering expression inside the chosen rendering function is expected to:

1. Call force(rObjects[[PANEL]]), where PANEL is the output of . getEncodedName (x). This
ensures that the output is rerendered upon requesting changes in . requestUpdate.

2. Call .generateOutput to generate the output content to be rendered.

3. Fill pObjects$contents[[PANEL]] with some content related to the displayed output that al-
lows cross-referencing with single/multiple selection structures. This will be used in other
generics like .multiSelectionCommands and .singleSelectionValue to determine the
identity of the selected point(s). As a result, it is only strictly necessary if the panel is a
potential transmitter, as determined by the return value of .multiSelectionDimension.

4. Fill pObjects$commands[[PANEL]] with a character vector of commands required to pro-
duce the displayed output. This should minimally include the commands required to generate
pObjects$contents[[PANEL]]; for plotting panels, the vector should also include code to
create the plot.

5. Fill pObjects$varname[[PANEL]] with a string containing the R expression in pObjects$commands[[PANEL]]
that holds the contents stored in pObjects$contents[[PANEL]]. This is used for code report-
ing, and again, is only strictly necessary if the panel is a potential transmitter.

74

output-generics

We strongly recommend calling .retrieveOutput within the rendering expression, which will
automatically perform all of the tasks above, rather than calling .generateOutput manually. By
doing so, the only extra work required of the rendering expression is to actually render the output
(e.g., by printing a ggplot object). Of course, the rendering expression must itself be encapsulated
by an appropriate rendering function assigned to output.

Developers should not attempt to modify x in any rendering expression. This does not have pass-by-
reference semantics and any changes will not propagate to other parts of the application. Similarly,
the rendering expression should treat pObjects$memory as read-only. Any adjustment of parame-
ters should be handled elsewhere, e.g., by the observer expressions in .createObservers.

Generating content

.generateOutput(x, se, all_memory, all_contents) actually generates the panel’s output to
be used in the rendering expression. The following arguments are required:

e X, an instance of a Panel class.
* se, a SummarizedExperiment object containing the current dataset.
* all_memory, a named list containing Panel objects parameterizing the current state of the app.

e all_contents, a named list containing the contents of each panel.
Methods for this generic should return a list containing:

* contents, some arbitrary content for the panel (usually a data.frame). The values therein are
used by .multiSelectionCommands to determine the multiple row/column selection in x to
be transmitted to other (child) panels. The app will ensure that the pObjects$contents of
each panel is populated before attempting to render their children. contents may be set to
NULL if x does not transmit, i.e., .multiSelectionDimension returns "none”.

* commands, a list of character vectors of R commands that, when executed, produces the con-
tents of the panel and any displayed output (e.g., a ggplot object). Developers should write
these commands as if the evaluation environment only contains the SummarizedExperiment
se and ExperimentColorMap colormap. It may also contain col_selected, if a multiple
column selection is being transmitted to x; and possibly row_selected, if a multiple row
selection is being transmitted to x.

* varname, a string specifying the name of the variable in commands used to generate contents.
This is used to fulfill code tracking obligations. If the current panel is not a transmitter, this
may be set to NULL instead.

The output list may contain any number of other fields that can be used by .renderOutput but are
otherwise ignored.

We suggest implementing this method using eval (parse(text=...)) calls, which enables easy
construction and evaluation of the commands and contents at the same time. A convenient wrapper
for this call is provided by the . textEval utility.

The all_memory and all_contents arguments are provided for the sole purpose of determin-
ing what multiple selections are being received by x. We strongly recommend passing them onto
.processMultiSelections to do the heavy lifting. It would be unusual and inadvisable to use
these arguments for any other information sharing across panels.

Panel-class 75

Exporting content

.exportOutput(x, se, all_memory, all_contents) converts the panel output into a download-
able form. The following arguments are required:

¢ X, an instance of a Panel class.

* se, a SummarizedExperiment object containing the current dataset.

* all_memory, a named list containing Panel objects parameterizing the current state of the app.

* all_contents, a named list containing the contents of each panel.
Methods for this generic should generate appropriate files containing the content of x. (For example,
plots may create PDFs while tables may create CSV files.) All files should be created in the working
directory at the time of the function call, possibly in further subdirectories. Each file name should be

prefixed with the . getEncodedName. The method itself should return a character vector containing
relative paths to all newly created files.

To implement this method, we suggest simply passing all arguments onto .generateOutput and
then converting the output into an appropriate file.

Author(s)

Aaron Lun

Panel-class The Panel virtual class

Description

The Panel is a virtual base class for all iSEE panels. It provides slots and methods to control the
height and width of each panel, as well as functionality to control the choice of “transmitting”
panels from which to receive a multiple row/column selection.

Slot overview
The following slots are relevant to panel organization:
* Panelld, an integer scalar specifying the identifier for the panel. This should be unique across
panels of the same concrete class.

* PanelWidth, an integer scalar specifying the width of the panel. Bootstrap coordinates are
used so this value should lie between 2 and 12; defaults to 4 in getPanelDefault.

* PanelHeight, an integer scalar specifying the height of the panel in pixels. This is expected
to lie between 400 and 1000; defaults to 500 in getPanelDefault.

The following slots are relevant to receiving a multiple selection on the rows:

* RowSelectionSource, a string specifying the name of the transmitting panel from which to

n

receive a multiple row selection (e.g., "RowDataPlot1"). Defaults to "---".

* RowSelectionDynamicSource, alogical scalar indicating whether x should dynamically change
its selection source for multiple row selections. Defaults to FALSE in getPanelDefault.

76 Panel-class

* RowSelectionRestrict, a logical scalar indicating whether the display of x should be re-
stricted to the rows in the multiple selection received from a transmitting panel. Defaults to
FALSE.

The following slots are relevant to receiving a multiple selection on the columns:

* ColumnSelectionSource, a string specifying the name of the transmitting panel from which

to receive a multiple column selection (e.g., "ColumnDataPlot1"). Defaults to "---".

* ColumnSelectionDynamicSource, a logical scalar indicating whether x should dynamically
change its selection source for multiple column selections. Defaults to FALSE in getPanelDefault.

* ColumnSelectionRestrict, a logical scalar indicating whether the display of x should be
restricted to the columns in the multiple selection received from a transmitting panel. Defaults
to FALSE.

There are also the following miscellaneous slots:
* SelectionBoxOpen, a logical scalar indicating whether the selection parameter box should be

open at initialization. Defaults to FALSE.

* SelectionHistory, a list of arbitrary elements that contain parameters for saved multiple
selections. Each element of this list corresponds to one saved selection in the current panel.
Defaults to an empty list.

* VersionInfo, a named list of package_version objects specifying the versions of packages
used to create a given Panel instance. This information is used to inform updateObject of any
updates that need to be applied. By default, it is filled with a single "iSEE" entry containing
the current version of iSEE.

Getting and setting slots

In all of the following code chunks, x is an instance of a Panel, and i is a string containing the slot
name:

e x[[i]] returns the value of a slot named i.

e x[[i]1] <- value modifies x so that the value in slot i is replaced with value.

* show(x) will print a summary of all (non-hidden) slots and their values.

Supported methods

In the following code snippets, x is an instance of a ColumnDotPlot class. Refer to the documenta-
tion for each method for more details on the remaining arguments.

For setting up data values:

e .refineParameters(x, se) calls updateObject(x). If x is up to date, this operation is a
no-op and returns x without modification.

* .cacheCommonInfo(x, se) is a no-op, returning se without modification.
For defining the interface:

e .definelnterface(x, se, select_info) will return a list of collapsible boxes for changing
data and selection parameters. The data parameter box will be populated based on . defineDatalnterface.

Panel-class 77

e .defineDatalnterface(x, se, select_info) will return an empty list.

e .hidelInterface(x, field) will always return FALSE.
For monitoring reactive expressions:

e .createObservers(x, se, input, session, pObjects, rObjects) will add observers to
respond to changes in multiple selection options. It will also call . singleSelectionSlots(x)
to set up observers for responding to transmitted single selections.

e .renderOutput(x, se, output, pObjects, rObjects) will add elements to output for ren-
dering the information textboxes at the bottom of each panel. Each panel should specialize
this method to add rendering expressions for the actual output (e.g., plots, tables), followed by
a callNextMethod to create the textboxes.

For generating output:

e .exportOutput(x, se, all_memory, all_contents) is a no-op, i.e., it will return an empty
character vector and create no files.

For documentation:
e .definePanelTour (x) returns a data.frame containing the selection-related steps of the tour.
For controlling selections:

e .multiSelectionRestricted(x) will always return TRUE.

e .multiSelectionDimension(x) will always return "none"”.

e .multiSelectionActive(x) will always return NULL.

e .multiSelectionClear(x) will always return x.

e .multiSelectionInvalidated(x) will always return FALSE.

e .multiSelectionAvailable(x, contents) will return nrow(contents).
e .singleSelectionDimension(x) will always return "none".

e .singleSelectionValue(x) will always return NULL.

* .singleSelectionSlots(x) will always return an empty list.

Subclass expectations

Subclasses are required to implement methods for:

e .defineOutput
e .generateQutput
e .renderQutput
e .fullName

e .panelColor

Subclasses that transmit selections should also implement specialized methods for selection-related
parameters listed above.

78 panelDefaults

Author(s)

Aaron Lun

See Also

DotPlot and Table, for examples of direct subclasses.

panelDefaults Panel defaults

Description

Get or set default parameters that are used by certain Panel during their construction. This allows
users to easily change the defaults for multiple panels simultaneously without having to manually
specify them in the constructor.

Usage

panelDefaults(...)

getPanelDefault(name, error = TRUE)

Arguments
Named options to set. Alternatively a single named list containing the options
to set.
name String containing the name of the option to retrieve. Alternatively NULL, in
which case the current values of all options are returned as a named list.
error Logical scalar indicating whether an error should be raised if name cannot be
found.
Details

All options set by panelDefaults will only affect Panel construction and have no effect on the
behavior of Panels that are already constructed. Most options are named after the affected slot in
the relevant Panel subclass.

For general Panels:

e PanelWidth, defaults to 4.
¢ PanelHeight, defaults to 500.

For DotPlots:

e ColorByDefaultColor, defaults to "black”.
e PointSize, defaults to 1.

e PointAlpha, defaults to 1.

panelDefaults 79

e Downsample, defaults to FALSE.

e DownsampleResolution, defaults to 200.
e SelectionAlpha, defaults to 0.1.

e ContourColor, defaults to "blue”.

e FontSize, defaults to 1.

e LegendPointSize, defaults to 1.
For ComplexHeatmapPlots:
e LegendDirection, defaults to "Horizontal”.
A few options affect multiple subclasses that independently define the same slot:

* LegendPosition, defaults to "Bottom”. Affects DotPlots and ComplexHeatmapPlots.

* Assay, defaults to "logcounts”. Affects FeatureAssayPlots, SampleAssayPlots and Com-
plexHeatmapPlots.

A few options are not named after any particular slot as they affect different slots in different sub-
classes:

e ColorByNameColor, defaults to "red"”. This affects ColorByFeatureNameColor in RowDot-
Plots and ColorBySampleNameColor in ColumnDotPlots.

¢ ColorByNameAssay, defaults to "logcounts”. This affects ColorByFeatureNameAssay in
RowDotPlots and ColorBySampleNameAssay in ColumnDotPlots.

e SingleSelectionDynamicSource, defaults to FALSE. This affects ColorByFeatureDynamicSource,
ColorBySampleDynamicSource, XAxisFeatureDynamicSource, YAxisFeatureDynamicSource,
XAxisSampleDynamicSource and YAxisSampleDynamicSource in the relevant panels.

e MultipleSelectionDynamicSource, defaults to FALSE. This affects RowSelectionDynamicSource
and ColumnSelectionDynamicSource.

Value

panelDefaults will return a named list of the values of all options. If . . . is non-empty, panelDefaults
will modify the global options that are used during the constructors for the relevant Panel classes.
(Note that the return value still contains the values before the modification is applied.)

getPanelDefault will return the current value of the requested option. If error=TRUE and name is
not present, an error is raised; otherwise NULL is returned.

For developers

Developers of Panel subclasses may add more options to this list, typically by calling panelDefaults
in the .onLoad expressions of the package containing the subclass. We recommend prefixing any
options with the name of the package in the form of <PACKAGE>_<OPTION>, so as to avoid conflicts
with other options (in the base classes, or in other downstream packages) that have the same name.
Any options added in this manner should correspond to parameters that are already present as slots
in the panel class. If this is not the case, consider using registerAppOptions instead.

80

plot-generics

Author(s)

Kevin Rue-Albrecht

Examples

old <- panelDefaults(Assay="WHEE")
getPanelDefault("Assay")

old <- panelDefaults(Assay="F00", PointSize=5)
getPanelDefault("Assay")
getPanelDefault("PointSize")

We can also list out all options:
panelDefaults()

Restoring the previous defaults.
panelDefaults(old)
getPanelDefault("Assay")
getPanelDefault("PointSize")

plot-generics Generics for DotPlot plotting

Description

A series of generics for controlling how plotting is performed in DotPlot panels. DotPlot subclasses
can specialize one or more of them to modify the behavior of . generateOutput.

Generating plotting data

.generateDotPlotData(x, envir) sets up the data to use in the DotPlot plot. The following
arguments are required:

¢ x, an instance of a DotPlot subclass.

e envir, the evaluation environment in which the data.frame is to be constructed. This can
be assumed to have se, the SummarizedExperiment object containing the current dataset;
possibly col_selected, if a multiple column selection is being transmitted to x; and possibly
row_selected, if a multiple row selection is being transmitted to x.

A method for this generic should add a plot.data variable in envir containing a data.frame with
columns named "X" and "Y", denoting the variables to show on the x- and y-axes respectively. It
should return a list with commands, a character vector of commands that produces plot.data when
evaluated in envir; and labels, a list of strings containing labels for the x-axis (named "X"), y-axis
("Y") and plot ("title").

Each row of the plot.data data.frame should correspond to one row or column in the Summa-
rizedExperiment envir$se for RowDotPlots and ColumnDotPlots respectively. Note that, even if
only a subset of rows/columns in the SummarizedExperiment are to be shown, there must always

plot-generics 81

be one row in the data.frame per row/column of the SummarizedExperiment, and in the same order.
All other rows of the data.frame should be filled in with NAs rather than omitted entirely. This is
necessary for correct interactions with later methods that add other variables to plot.data.

Any internal variables that are generated by the commands in commands should be prefixed with .
to avoid potential clashes with reserved variable names in the rest of the application.

This generic is called by . generateDotPlot (see below), which is in turn called by . generateOutput.
The idea is that developers can specialize . generateDotPlotData to change the data source for a
DotPlot subclass without needing to reimplement the entirety of . generateDotPlot.

Generating the ggplot object

.generateDotPlot(x, labels, envir) creates the plot to be shown in the interface. The follow-
ing arguments are required:

X, an instance of a DotPlot subclass.

labels, a list of labels corresponding to the columns of plot.data. This is typically used to
define axis or legend labels in the plot.

envir, the evaluation environment in which the ggplot object is to be constructed. This can
be assumed to have plot.data, a data.frame of plotting data.

Note that se, row_selected and col_selected will still be present in envir, but it is sim-
plest to only use information that has already been incorporated into plot.data where pos-
sible. This is because the order and number of rows in plot.data may have changed since
.generateDotPlotData.

Methods for this generic should return a list with plot, a ggplot object; and commands, a character
vector of commands to produce that object when evaluated inside envir. This plot will subse-
quently be the rendered output in .renderOutput. Note that envir should contain a copy of the
plot object in a variable named dot.plot - see below for details.

Methods are expected to respond to the presence of various fields in the plot.data. The data.frame
will contain, at the very least, the fields "X" and "Y" from . generateDotPlotData. Depending on
the parameters of x, it may also have the following columns:

"ColorBy", the values of the covariate to ue to color each point.

"ShapeBy", the values of the covariate to use for shaping each point. This is guaranteed to be
categorical.

"SizeBy", the values of the covariate to use for sizing each point. This is guaranteed to be
continuous.

"FacetRow", the values of the covariate to use to create row facets. This is guaranteed to be
categorical.

"FacetColumn”, the values of the covariate to use to create column facets. This is guaranteed
to be categorical.

"SelectBy", a logical field indicating whether the point was included in a multiple selection

(i.e., transmitted from another plot with x as the receiver). Note that if RowSelectionRestrict=TRUE
or ColumnSelectionRestrict=TRUE (for RowDotPlots and ColumnDotPlots, respectively),
plot.data will already have been subsetted to only retain TRUE values of this field.

envir may also contain the following variables:

82 plot-generics

* plot.data.all, present when a multiple selection is transmitted to x and RowSelectionRestrict=TRUE
or ColumnSelectionRestrict=TRUE (for RowDotPlots and ColumnDotPlots, respectively).
This is a data.frame that contains all points prior to subsetting and is useful for defining the
boundaries of the plot such that they do not change when the transmitted multiple selection
changes.

* plot.data.pre, present when downsampling is turned on. This is a data.frame that contains
all points prior to downsampling (but after subsetting, if that was performed) and is again
mainly used to fix the boundaries of the plot.

Developers may wish to use the .addMultiSelectionPlotCommands utility to draw brushes and
lassos of x. Note that this refers to the brushes and lassos made on x itself, not those transmitted
from another panel to x.

It would be very unwise for methods to alter the x-axis, y-axis or faceting values in plot.data. This
will lead to uninuitive discrepancies between apparent visual selections for a brush/lasso and the ac-
tual multiple selection that is evaluated by downstream functions like . processMultiSelections.

In certain situations, a DotPlot subclass may be able to build off a ggplot generated by its parent
class. This is easily done by exploiting the fact that methods for this generic are expected to store
a copy of their plot ggplot object as a dot.plot variable in envir. A specialized method for
the subclass can callNextMethod() to populate envir with the initial dot.plot, and then just
construct and execute commands to add more ggplot2 layers as desired.

This generic is called by . generateOutput for DotPlot subclasses. Again, the idea here is that de-
velopers can specialize . generateDotPlot to change the plot aesthetics without needing to reim-
plement the entirety of . generateOutput.

Prioritizing points

.prioritizeDotPlotData(x, envir) specifies the “priority” of points to be plotted, where high-
priority points are plotted last so that they will not be masked by other points. The following
arguments are required:

¢ X, an instance of a DotPlot subclass.

* envir, the evaluation environment in which the ggplot object is to be constructed. This can
be assumed to have plot.data, a data.frame of plotting data.

Again, note that se, row_selected and col_selected will still be present in envir, but it
is simplest to only use information that has already been incorporated into plot.data where
possible. This is because the order and number of rows in plot.data may have changed since
.generateDotPlotData.

Methods for this generic are expected to generate a . priority variable in envir, an ordered factor
of length equal to nrow(plot.data) indicating the priority of each point. They may also gener-
ate a .rescaled variable, a named numeric vector containing the scaling factor to apply to the
downsampling resolution for each level of .priority.

The method itself should return a list containing commands, a character vector of R commands
required to generate these variables; and rescaled, a logical scalar indicating whether a . rescaled
variable was produced.

Points assigned the highest level in .priority are regarded as having the highest visual impor-
tance. Such points will be shown on top of other points if there are overlaps on the plot, allowing

plot-utils 83

developers to specify that, e.g., DE genes should be shown on top of non-DE genes. Scaling of the
resolution enables developers to peform more aggressive downsampling for unimportant points.

Methods for this generic may also return NULL, in which case no special action is taken.

This generic is called by .generateDotPlot, which is in turn called by . generateOutput. Thus,
developers of DotPlot subclasses can specialize this generic to change the point priority without
needing to reimplement the entirety of . generateDotPlot.

Controlling the “None” color scale

In some cases, it is desirable to insert a default scale when ColorBy="None". This is useful for
highlighting points in a manner that is integral to the nature of the plot, e.g., up- or down-regulated
genes in a MA plot. We provide a few generics to help control which points are highlighted and
how they are colored.

.colorByNoneDotPlotField(x) expects X, an instance of a DotPlot subclass, and returns a string
containing a name of a column in plot.data to use for coloring in the ggplot mapping. This
assumes that the relevant field was added to plot.data by a method for . generateDotPlotData.

.colorByNoneDotPlotScale(x) expects X, an instance of a DotPlot subclass, and returns a string
containing a ggplot2 scale_color_x call, e.g., scale_color_manual. This string should end with
a "+" operator as additional ggplot2 layers will be added by iSEE.

This generic is called by . generateDotPlot, which is in turn called by . generateOutput. Thus,
developers of DotPlot subclasses can specialize this generic to change the default color scheme
without needing to reimplement the entirety of . generateDotPlot.

Author(s)
Kevin “K-pop” Rue-Albrecht, Aaron “A-bomb” Lun

plot-utils Process faceting choices

Description

Generate ggplot instructions to facet a plot by row and/or column

Usage

.addFacets(x)

Arguments

X A single-row DataFrame that contains all the input settings for the current panel.

Value

A string containing a command to define the row and column faceting covariates.

84 ReducedDimensionPlot-class

Author(s)
Kevin Rue-Albrecht.

Examples

x <- ReducedDimensionPlot(
FacetRowBy = "Column data", FacetRowByColData="Covariate_1",
FacetColumnBy = "Column data”, FacetColumnByColData="Covariate_2")
.addFacets(x)

ReducedDimensionPlot-class
The ReducedDimensionPlot panel

Description

The ReducedDimensionPlot is a panel class for creating a ColumnDotPlot where the coordinates
of each column/sample are taken from the reducedDims of a SingleCellExperiment object. It pro-
vides slots and methods to specify which dimensionality reduction result to use and to create the
data.frame with the coordinates of the specified results for plotting.

ReducedDimensionPlot slot overview

The following slots control the dimensionality reduction result that is used:

* Type, a string specifying the name of the dimensionality reduction result. If NA, defaults to the
first entry of reducedDims.
* XAxis, integer scalar specifying the dimension to plot on the x-axis. Defaults to 1.

* YAxis, integer scalar specifying the dimension to plot on the y-axis. Defaults to 2.

In addition, this class inherits all slots from its parent ColumnDotPlot, DotPlot and Panel classes.

Constructor

ReducedDimensionPlot(...) creates an instance of a ReducedDimensionPlot class, where any
slot and its value can be passed to . .. as a named argument.

Supported methods

In the following code snippets, x is an instance of a ReducedDimensionPlot class. Refer to the
documentation for each method for more details on the remaining arguments.

For setting up data values:
* .cacheCommonInfo(x) adds a "ReducedDimensionPlot"” entry containing valid.reducedDim. names,

a character vector of names of valid dimensionality reduction results (i.e., at least one dimen-
sion). This will also call the equivalent ColumnDotPlot method.

ReducedDimensionPlot-class 85

* .refineParameters(x, se) replaces NA values in RedDimType with the first valid dimension-
ality reduction result name in se. This will also call the equivalent ColumnDotPlot method for
further refinements to x. If no dimensionality reduction results are available, NULL is returned
instead.

For defining the interface:

e .defineDatalnterface(x, se, select_info) returns a list of interface elements for ma-
nipulating all slots described above.

* .panelColor(x) will return the specified default color for this panel class.
For monitoring reactive expressions:

e .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots described above and in the parent classes. This will also call the equivalent Column-
DotPlot method.

For defining the panel name:
e . fullName(x) will return "Reduced dimension plot”.
For creating the plot:

e .generateDotPlotData(x, envir) will create a data.frame of reduced dimension coordi-
nates in envir. It will return the commands required to do so as well as a list of labels.

For documentation:
e .definePanelTour(x) returns an data.frame containing a panel-specific tour.

Subclasses do not have to provide any methods, as this is a concrete class.

Author(s)

Aaron Lun

See Also

ColumnDotPlot, for the immediate parent class.

Examples

W
For end-users
S

x <- ReducedDimensionPlot()
x[["Type”1]
X[["Type"]] <- ”TSNE"

HHHHHHEEEE
For developers
HHHHHHAEEE

86 registerAppOptions
library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)
Spits out a NULL and a warning if no reducedDims are available.
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce®)
Replaces the default with something sensible.
sce <- runPCA(sce)
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce®)
registerAppOptions Set and get app-level options
Description
Set and get global options for the 1SEE application. These are options that do not correspond to any
Panel slot and cannot be changed by the user after initialization.
Usage
registerAppOptions(se, ...)
getAppOption(name, se, default = NULL)
getAllAppOptions(se)
Arguments
se The SummarizedExperiment object to be supplied to iSEE.
Named options to register. Alternatively a single named list containing the op-
tions to register.
name String containing the name of the option to retrieve.
default Value to return if name is not present in the available options.
Details

registerAppOptions provides an alternative mechanism for setting global options, separate from
panelDefaults. The primary difference is that registerAppOptions allows tuning of options that
do not have a corresponding slot in any Panel subclass. This makes it useful for parameters that the
user should not or cannot change within the application, as well as for fine-tuning parameters that
are too rarely used to have their own interface elements.

Known options include:

registerAppOptions 87

¢ panel.colorNamed character vector of colors. The names of the vector should be set to the
name of class to be overridden; if a class is not named here, its default color is used. It is highly
recommended to define colors as hex color codes (e.g., "#1e90ff"), for full compatibility with
both HTML elements and R plots.

* color.maxlevelsMaximum number of levels for a categorical variable used for coloring.
Variables with more levels are coerced to numeric to avoid problems with an overly-large
legend. Defaults to 24.

» factor.maxlevelsMaximum number of levels for a categorical variable to be used anywhere
in the app. Variables with more levels are coerced to numeric to avoid rendering delays.
Defaults to 100.

* RowTable.select.detailsA function that takes a string containing the name of a feature
(i.e., the current selection in the RowTable) and returns a HTML element with more details.

e ColumnTable.select.detailsA function that takes a string containing the name of a sample
(i.e., the current selection in the ColumnTable) and returns a HTML element with more details.

The registered options are stored in the SummarizedExperiment to ensure that we can recover the
application state with the combination of the SummarizedExperiment and list of Panel settings. By
comparison, if we had used a global cache as in panelDefaults, we would need to save them
separately to ensure that we can recover a particular application state.

By default, registerAppOptions will add or replace individual arguments specified by This
means that users can call the function multiple times to accumulate registered options in se. The
exception is if ... contains a single list, in which case the entire set of options is directly replaced
by that list. For example, one could supply a single empty list to clear se of all existing options.

Value

registerAppOptions will return se, modified with the application-level options.

getAppOption will return the value of the specified option, or default if that option is not avail-
able.

getAllAppOptions will return a named list of all registered options.

For developers

Developers of Panel subclasses can add arbitary options to . . . to help control the behavior of their
Panel instances. We recommend prefixing any options with the name of the package in the form of
<PACKAGE>_<OPTION>, so as to avoid conflicts with other options (in the base classes, or in other
downstream packages) that have the same name.

For calls to getAppOption that occur after the iSEE app has started, it is not actually necessary to
supply se. The options in se are transferred to a global option store when the app starts, allowing
us to call getAppOption without se in various Panel methods. This is useful for some generics
where se is not part of the function signature. Developers can mimic this state (e.g., for unit
testing) by calling .activateAppOptionRegistry on the SummarizedExperiment produced by
registerAppOptions. Conversely, calling .deactivateAppOptionRegistry will reset the global
option store.

Author(s)

Aaron Lun

88

Examples

se <- SummarizedExperiment()
se <- registerAppOptions(se, factor.maxlevels=10, color.maxlevels=10)

getAppOption(”factor.maxlevels”, se)
getAppOption(”color.maxlevels”, se)
getAppOption(”random.other.thing”, se, default=10)

getAllAppOptions(se)

For developers: you don't actually need to pass 'se' to the getters
if they are being called inside Panel methods.
.activateAppOptionRegistry(se)

getAppOption(”factor.maxlevels")

getAppOption(”color.maxlevels”)

.deactivateAppOptionRegistry()

Wiping out all options.
se <- registerAppOptions(se, list())
getAllAppOptions(se)

RowDataPlot-class

RowDataPlot-class The RowDataPlot panel

Description

The RowDataPlot is a panel class for creating a RowDotPlot where the y-axis represents a variable
from the rowData of a SummarizedExperiment object. It provides slots and methods for specifying
which variable to use on the y-axis (and, optionally, also the x-axis), as well as a method to create

the data.frame in preparation for plotting.

Slot overview

The following slots control the variables to be shown:

* YAXxis, a string specifying the row of the rowData to show on the y-axis. If NA, defaults to the

first valid field (see ?".refineParameters,RowDotPlot-method").

* XAxis, string specifying what should be plotting on the x-axis. This can be any one of "None",

"Row data” and "Row selection”. Defaults to "None".

* XAxisRowData, string specifying the row of the rowData to show on the x-axis. If NA, defaults

to the first valid field.

In addition, this class inherits all slots from its parent RowDotPlot, DotPlot and Panel classes.

Constructor

RowDataPlot(...) creates an instance of a RowDataPlot class, where any slot and its value can be

passed to . .. as a named argument.

RowDataPlot-class 89

Supported methods

In the following code snippets, x is an instance of a RowDataPlot class. Refer to the documentation
for each method for more details on the remaining arguments.

For setting up data values:
* .refineParameters(x, se) returns x after replacing any NA value in YAxis or XAxisRowData
with the name of the first valid rowData variable. This will also call the equivalent RowDot-

Plot method for further refinements to x. If no valid row metadata variables are available, NULL
is returned instead.

For defining the interface:

e .defineDatalnterface(x, se, select_info) returns a list of interface elements for ma-
nipulating all slots described above.

* .panelColor(x) will return the specified default color for this panel class.

» .allowableXAxisChoices(x, se) returns a character vector specifying the acceptable vari-
ables in rowData(se) that can be used as choices for the x-axis. This consists of all variables
with atomic values.

* .allowableYAxisChoices(x, se) returns a character vector specifying the acceptable vari-
ables in rowData(se) that can be used as choices for the y-axis. This consists of all variables
with atomic values.

For monitoring reactive expressions:

* .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots described above and in the parent classes. This will also call the equivalent RowDot-
Plot method.

For controlling selections:

e .multiSelectionInvalidated(x) returns TRUE if the x-axis uses multiple row selections,
such that the point coordinates may change upon updates to upstream selections in transmitting
panels. Otherwise, it dispatches to the RowDotPlot method.

For defining the panel name:
e .fullName(x) will return "Row data plot”.
For creating the plot:

e .generateDotPlotData(x, envir) will create a data.frame of row metadata variables in
envir. It will return the commands required to do so as well as a list of labels.

For documentation:

» .definePanelTour(x) returns an data.frame containing a panel-specific tour.

Subclass expectations

Subclasses do not have to provide any methods, as this is a concrete class.

90 RowDataTable-class

Author(s)

Aaron Lun

See Also

RowDotPlot, for the immediate parent class.

Examples

W
For end-users
HHHHHHHEHEEEH

x <- RowDataPlot()
x[["XAxis"1]
x[["XAxis"]] <- "Row data”

HHHHHHEHEE
For developers
S

library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)

Spits out a NULL and a warning if is nothing to plot.
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce@)

Replaces the default with something sensible.
rowData(sce)$Stuff <- runif(nrow(sce))

sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce®)

RowDataTable-class The RowDataTable panel

Description

The RowDataTable is a panel class for creating a ColumnTable where the value of the table is
defined as the rowData of the SummarizedExperiment. It provides functionality to extract the
rowData to coerce it into an appropriate data.frame in preparation for rendering.

Slot overview

This class inherits all slots from its parent ColumnTable and Table classes.

RowDataTable-class 91

Constructor

RowDataTable(...) creates an instance of a RowDataTable class, where any slot and its value can
be passed to . .. as a named argument.

Note that ColSearch should be a character vector of length equal to the total number of columns in
the rowData, though only the entries for the atomic fields will actually be used.

Supported methods

In the following code snippets, x is an instance of a RowDataTable class. Refer to the documentation
for each method for more details on the remaining arguments.

For setting up data values:

» .cacheCommonInfo(x) adds a "RowDataTable” entry containing valid.rowData.names, a
character vector of names of atomic columns of the rowData. This will also call the equivalent
ColumnTable method.

* .refineParameters(x, se) adjusts ColSearch to a character vector of length equal to the
number of atomic fields in the rowData. This will also call the equivalent ColumnTable
method for further refinements to x.

For defining the interface:

e . fullName(x) will return "Row data table”.

* .panelColor(x) will return the specified default color for this panel class.
For creating the output:

* .generateTable(x, envir) will modify envir to contain the relevant data.frame for display,
while returning a character vector of commands required to produce that data.frame. Each row
of the data.frame should correspond to a row of the SummarizedExperiment.

For documentation:
» .definePanelTour(x) returns an data.frame containing the steps of a panel-specific tour.

Unless explicitly specialized above, all methods from the parent class Panel are also available.

Author(s)

Aaron Lun

Examples

S
For end-users
S

X <- RowDataTable()
x[["Selected”]]
x[["Selected”]] <- "SOME_ROW_NAME"

AR

92 RowDotPlot-class

For developers
HHHHHHAEEE

library(scater)
sce <- mockSCE()

Sets the search columns appropriately.
sce <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce)

RowDotPlot-class The RowDotPlot virtual class

Description

The RowDotPlot is a virtual class where each row in the SummarizedExperiment is represented by
no more than one point (i.e., a “dot”) in a brushable ggplot plot. It provides slots and methods to
extract rowData fields to control the per-point aesthetics on the plot. This panel will transmit row
identities in both its single and multiple selections, and it can receive multiple row selections but
not multiple column selections.

Slot overview

The following slots control coloring of the points:

* ColorByRowData, a string specifying the rowData field for controlling point color, if ColorBy="Row
data” (see the Panel class). Defaults to the first valid field (see . cacheCommonInfo below).

* ColorBySampleNameAssay, a string specifying the assay of the SummarizedExperiment ob-
ject containing values to use for coloring, if ColorBy="Sample name". Defaults to "logcounts”
in getPanelDefault, falling back to the name of the first valid assay (see ?" . cacheCommonInfo,DotPlot-method”
for the definition of validity).

* ColorByFeatureNameColor, a string specifying the color to use for coloring an individual
sample on the plot, if ColorBy="Feature name”. Defaults to "red” in getPanelDefault.

The following slots control other metadata-related aesthetic aspects of the points:

* ShapeByRowData, a string specifying the rowData field for controlling point shape, if ShapeBy="Row
data” (see the Panel class). The specified field should contain categorical values; defaults to
the first such field.

* SizeByRowData, a string specifying the rowData field for controlling point size, if SizeBy="Row
data” (see the Panel class). The specified field should contain continuous values; defaults to
the first such field.

In addition, this class inherits all slots from its parent DotPlot and Panel classes.

RowDotPlot-class 93

Supported methods

In the following code snippets, x is an instance of a RowDotPlot class. Refer to the documentation
for each method for more details on the remaining arguments.

For setting up data values:

e .cacheCommonInfo(x) adds a "RowDotPlot"” entry containing valid.rowData.names, a
character vector of valid column data names (i.e., containing atomic values); discrete.rowData.names,
a character vector of names for discrete columns; and continuous.rowData.names, a charac-
ter vector of names of continuous columns. This will also call the equivalent DotPlot method.

e .refineParameters(x, se) replaces NA values in ColorByFeatAssay with the first valid
assay name in se. This will also call the equivalent DotPlot method.

For defining the interface:

e .hideInterface(x, field) returns a logical scalar indicating whether the interface element
corresponding to field should be hidden. This returns TRUE for row selection parame-
ters ("RowSelectionSource” and "RowSelectionRestrict"), otherwise it dispatches to the
Panel method.

For monitoring reactive expressions:

e .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots in the RowDotPlot. This will also call the equivalent DotPlot method.

For controlling selections:
e .multiSelectionRestricted(x) returns a logical scalar indicating whether x is restricting

the plotted points to those that were selected in a transmitting panel.

e .multiSelectionDimension(x) returns "row” to indicate that a multiple row selection is
being transmitted.

e .multiSelectionInvalidated(x) returns TRUE if the faceting options usethe multiple row
selections, such that the point coordinates/domain may change upon updates to upstream se-
lections in transmitting panels.

e .singleSelectionDimension(x) returns "feature” to indicate that a feature identity is be-
ing transmitted.

For documentation:

e .definePanelTour(x) returns an data.frame containing the steps of a tour relevant to sub-
classes, mostly tuning the more generic descriptions from the same method of the parent
DotPlot.

o .getDotPlotColorHelp(x, color_choices) returns a data.frame containing the documen-
tation for the "ColorBy" Ul element, specialized for row-based dot plots.

Unless explicitly specialized above, all methods from the parent classes DotPlot and Panel are also
available.

94 RowTable-class

Subclass expectations
Subclasses are expected to implement methods for, at least:

e .generateDotPlotData
e . fullName

e .panelColor

The method for .generateDotPlotData should create a plot.data data.frame with one row per
row in the SummarizedExperiment object.

Author(s)

Aaron Lun

See Also

DotPlot, for the immediate parent class that contains the actual slot definitions.

RowTable-class The RowTable class

Description

The RowTable is a virtual class where each row in the SummarizedExperiment is represented by no
more than one row in a datatable widget. In panels of this class, single and multiple selections
can only be transmitted on the features.

Slot overview

No new slots are added. All slots provided in the Table parent class are available.

Supported methods

In the following code snippets, x is an instance of a RowTable class. Refer to the documentation for
each method for more details on the remaining arguments.

For setting up data values:

* .refineParameters(x, se) replaces NA values in Selected with the first row name of se.
This will also call the equivalent Table method.

For defining the interface:

* .hideInterface(x, field) returns a logical scalar indicating whether the interface element
corresponding to field should be hidden. This returns TRUE for column selection parameters
("ColumnSelectionSource” and "ColumnSelectionRestrict”), otherwise it dispatches to
the Panel method.

For monitoring reactive expressions:

RowTable-class 95

e .createObservers(x, se, input, session, pObjects, rObjects) sets up observers to prop-
agate changes in the Selected to linked plots. This will also call the equivalent Table method.

For controlling selections:

e .multiSelectionDimension(x) returns "row"” to indicate that a row selection is being trans-
mitted.

e .singleSelectionDimension(x) returns "feature" to indicate that a feature identity is be-
ing transmitted.

For rendering output:

e .showSelectionDetails(x) returns a HTML element containing details about the selected
row. This requires a function to be registered by registerAppOptions under the option name
"RowTable.select.details”. The function should take a string containing the name of
a feature (i.e., the current selection in the RowTable) and returns a HTML element. If no
function is registered, NULL is returned.

Unless explicitly specialized above, all methods from the parent classes DotPlot and Panel are also
available.

Subclass expectations

Subclasses are expected to implement methods for:

e .generateTable
e .fullName

e .panelColor

The method for .generateTable should create a tab data.frame where each row corresponds to a
row in the SummarizedExperiment object.

Author(s)

Aaron Lun

See Also

Table, for the immediate parent class that contains the actual slot definitions.

96 SampleAssayPlot-class

SampleAssayPlot-class The SampleAssayPlot panel

Description

The SampleAssayPlot is a panel class for creating a RowDotPlot where the y-axis represents the ex-
pression of a sample of interest, using the assay values of the SummarizedExperiment. It provides
slots and methods for specifying the sample and what to plot on the x-axis, as well as a method to
actually create a data.frame containing those pieces of data in preparation for plotting.

Slot overview
The following slots control the values on the y-axis:
* YAxisSampleName, a string specifying the name of the sample to plot on the y-axis. If NA,
defaults to the first column name of the SummarizedExperiment object.

* Assay, string specifying the name of the assay to use for obtaining expression values. Defaults
to "logcounts” in getPanelDefault, falling back to the name of the first valid assay (see
?".cacheCommonInfo,DotPlot-method” for the definition of validity).

* YAxisSampleSource, string specifying the encoded name of the transmitting panel to obtain
a single selection that replaces YAxisSampleName. Defaults to "---", i.e., no transmission is
performed.

* YAxisSampleDynamicSource, alogical scalar indicating whether x should dynamically change
its selection source for the y-axis. Defaults to FALSE in getPanelDefault.
The following slots control the values on the x-axis:
* XAxis, string specifying what should be plotted on the x-axis. This can be any one of "None”,
"Sample name"”, "Row data” or "Row selection”. Defaults to "None".

* XAxisColumnData, string specifying which column of the colData should be shown on the x-
axis, if XAxis="Column data". Defaults to the first valid colData field (see ?" .refineParameters, ColumnDotPlot-n
for details).

* XAaxisSampleName, string specifying the name of the sample to plot on the x-axis, if XAxis="Sample
name”. Defaults to the first column name.

* XAxisSampleSource, string specifying the encoded name of the transmitting panel to obtain
a single selection that replaces XAxisSampleName. Defaults to "---", i.e., no transmission is
performed.

* XAxisSampleDynamicSource, alogical scalar indicating whether x should dynamically change
its selection source for the x-axis. Defaults to FALSE in getPanelDefault.

In addition, this class inherits all slots from its parent ColumnDotPlot, DotPlot and Panel classes.

Constructor

SampleAssayPlot(...) creates an instance of a SampleAssayPlot class, where any slot and its
value can be passed to ... as a named argument.

SampleAssayPlot-class 97

Supported methods

In the following code snippets, x is an instance of a SampleAssayPlot class. Refer to the documen-
tation for each method for more details on the remaining arguments.

For setting up data values:

* .refineParameters(x, se) replaces any NA values in XAxisSampleName and YAxisSampleName
with the first column name; any NA value in Assay with the first valid assay name; and any NA
value in XAxisColumnData with the first valid column metadata field. This will also call the
equivalent ColumnDotPlot method for further refinements to x. If no columns or assays are
present, NULL is returned instead.

For defining the interface:

e .defineDatalnterface(x, se, select_info) returns a list of interface elements for ma-
nipulating all slots described above.

* .panelColor(x) will return the specified default color for this panel class.
For monitoring reactive expressions:

* .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all slots described above and in the parent classes. This will also call the equivalent Column-
DotPlot method.

For defining the panel name:
e . fullName(x) will return "Sample assay plot”.
For creating the plot:

* .generateDotPlotData(x, envir) will create a data.frame of sample assay values in envir.
It will return the commands required to do so as well as a list of labels.

For managing selections:

e .singleSelectionSlots(x) will return a list specifying the slots that can be updated by
single selections in transmitter panels, mostly related to the choice of sample on the x- and
y-axes. This includes the output of the method for the parent RowDotPlot class.

e .multiSelectionInvalidated(x) returns TRUE if the x-axis uses multiple row selections,
such that the point coordinates may change upon updates to upstream selections in transmitting
panels. Otherwise, it dispatches to the RowDotPlot method.

For documentation:

* .definePanelTour (x) returns an data.frame containing a panel-specific tour.

Author(s)

Aaron Lun

See Also

ColumnDotPlot, for the immediate parent class.

98 setup-generics

Examples

W
For end-users
HHHHHHHEHEE

x <- SampleAssayPlot()
x[["XAxis"]]

x[["Assay"]1] <- "logcounts”
x[["XAxisRowData"]] <- "stuff"

HHHEHHEEEE
For developers
HHHHHHEHEE

library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)

old_assay_names <- assayNames(sce)
assayNames(sce) <- character(length(old_assay_names))

Spits out a NULL and a warning if no assays are named.
sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce0)

Replaces the default with something sensible.
assayNames(sce) <- old_assay_names

sce@ <- .cacheCommonInfo(x, sce)
.refineParameters(x, sce@)

setup-generics Generics for setting up parameters

Description

These generics are related to the initial setup of the iSEE application.

Caching common information

.cacheCommonInfo(x, se) computes common values that can be re-used for all panels with the
same class as x. The following arguments are required:

e x, an instance of a Panel class.

* se, the SummarizedExperiment object containing the current dataset.
It is expected to return se with (optionally) extra fields added to int_metadata(se)$iSEE. Each

field should be named according to the class name and contain some common information that is
constant for all instances of the class of x - see . setCachedCommonInfo for an appropriate setter

single-select-generics 99

utility. The goal is to avoid repeated recomputation of required values when creating user interface
elements or observers that respond to those elements.

Methods for this generic should start by checking whether the metadata already contains the class
name, and returning se without modification if this is the case. Otherwise, it should callNextMethod
to fill in the cache values from the parent classes, before adding cached values under the class name
for x. This means that any modification to se will only be performed once per class, so any cached
values should be constant for all instances of the same class.

Values from the cache can also be deparsed and used to assemble rendering commands in . generateOutput.
However, those same commands should not make any use of the cache itself, i.e., they should not

call .getCachedCommonInfo. This is because the code tracker does not capture the code used to
construct the cache, so the commands that are shown to the user will make use of a cache that is not

present in the original se object.

Refining parameters

.refineParameters(x, se) enforces appropriate settings for each parameter in x. The following
arguments are required:

¢ X, an instance of a Panel class.

* se, the SummarizedExperiment object containing the current dataset.

Methods for this generic should return a copy of x where slots with invalid values are replaced
with appropriate entries from se. This is necessary because the constructor and validity methods
for x do not know about se; thus, certain slots (e.g., for the row/column names) cannot be set to
a reasonable default or checked by the validity method. By comparison, .refineParameters can
catch and correct invalid values as it has access to se.

We recommend specializing initialize to fill any yet-to-be-determined slots with NA defaults.
.refineParameters can then be used to sweep across these slots and replace them with appropri-
ate entries, typically by using .getCachedCommonInfo to extract the cached set of potential valid
values. Of course, any slots that are not se-dependent should just be set at construction and checked
by the validity method.

It is also possible for this generic to return NULL, which is used as an indicator that se does not
contain information to meaningfully show any instance of the class of x in the iSEE app. For ex-
ample, the method for ReducedDimensionPlot will return NULL if se is not a SingleCellExperiment
containing some dimensionality reduction results.

Author(s)

Aaron Lun

single-select-generics
Generics for controlling single selections

100 single-select-generics

Description

A panel can create a single selection on either the rows or columns and transmit this selection to
another panel for use as an aesthetic parameter. For example, users can click on a RowTable to
select a gene of interest, and then the panel can transmit the identities of that row to another panel
for coloring by that selected gene’s expression. This suite of generics controls the behavior of these
single selections.

Specifying the nature of the selection

Given an instance of the Panel class x, .singleSelectionDimension(x) should return a string
specifying whether the panel’s single selection would contain a "feature”, "sample”, or if the
Panel in x does not perform single selections at all ("none"). The output should be constant for all
instances of x.

Obtaining the selected element

.singleSelectionValue(x, contents) should return a string specifying the selected row or col-
umn in x that is to be transmitted to other panels. If no row or column is selected, it should return
NULL.

contents is any arbitrary structure returned by .generateOutput for x in the field of the same
name. This should contain all of the information necessary to determine the name of the selected
row/column. For example, a data.frame of coordinates is stored by DotPlots to identify the point
selected by a brush/lasso.

Indicating the receiving slots

.singleSelectionSlots(x) controls how x should respond to a single selection. It should return
a list of lists, where each internal list describes a set of slots in x that might respond to a single se-
lection from a transmitting panel. This internal list should contain at least entries with the following
names:

* param, the name of the slot of x that can potentially respond to a single selection in a trans-
mitting panel, e.g., ColorByFeatureName in DotPlots.

* source, the name of the slot of x that indicates which transmitting panel to respond to, e.g.,
ColorByFeatureSource in DotPlots.

For each set of responsive slots, the expected paradigm is that the user interface will contain two
selectInput elements, one for each of the param and source slots. Users are free to manually
alter the choice of feature/sample in the param’s selectInput. Users are also allowed to change the
identity of the transmitting panel via the source’s selectInput, which will automatically update
the chosen entry in the param’s selectInput when the transmitter’s single selection changes.

Developers are strongly recommended to follow the above paradigm. In fact, the observers to per-
form these updates are automatically set up by .createObservers,Panel-method if the internal
list also contains the following named entries:

* dimension, a string set to either "feature” or "sample”. This specifies whether the slot
specified by param contains the identity of a single feature or a single sample. If this is not
present, no observers will be set up.

specific-tours 101

dynamic, the name of the slot indicating whether the choice of transmitting panel should
change dynamically. One example would be "ColorByFeatureDynamicSource” for Dot-
Plots. If supplied, a checkboxInput should also be present in the UI to turn on/off dynamic
choices for this parameter. This field can be missing if the current panel does not support
dynamic selection sources.

use_mode, the name of the slot of x containing the current usage mode. This is used in cases
where there are multiple choices of which only one involves using information held in source.
An example would be ColorBy in DotPlots where coloring by feature name is only one of
many options, such that the panel should only respond to transmitted single selections when
the user intends to color by feature name. If the value of this field is NA, the usage mode for x
is assumed to be such that the panel should always respond to transmitted single selections.

use_value, a string containing the relevant value of the slot specified by use_mode in order
for the panel to respond to transmitted single selections. An example would be "Feature
name” in DotPlots. This field can be missing if use_mode is NA.

protected, a logical scalar indicating whether the slot specified by param is “protected”,
i.e., changing this value will cause all existing selections to be invalidated and will trigger
re-rendering of the children receiving multiple selections. This is FALSE for purely aesthetic
parameters (e.g., coloring) and TRUE for data-related parameters (e.g., XAxisFeatureName in
FeatureAssayPlot).

Author(s)

Aaron Lun

specific-tours Ul-specific tour management utilities

Description

Utilities to manage the tours specific to individual UI elements for each Panel. This is done via a
global tour cache that is updated by each Panel’s interface-generating methods, so that developers
can easily put the UI documentation next to the element definition.

Usage

.addSpecificTour(cls, field, fun, force = FALSE)

.getSpecificTours(cls)

.clearSpecificTours()

Arguments

cls

String containing the name of the Panel class containing the relevant Ul element.

field String containing the slot of the cls class that is controlled by the UI element.

102 subsetPointsByGrid

fun Function that accepts a string containing the encoded Panel name, and returns a
data.frame compatible with rintrojs, i.e., with a element and intro column.

force Logical scalar indicating whether fun should forcibly overwrite an existing func-
tion in the tour cache for cls and field.
Details

By default, . addSpecificTour will have no effect if a function is already registered for a particular
combination of cls and field. However, users can force a replacement with force=TRUE.

.clearSpecificTours is intended for use by the iSEE app itself and should not be used by Panel
methods.
Value

.addSpecificTour registers the provided function in the tour cache for the provided cls and
field. A NULL is invisibly returned.

.getSpecificTours returns a list of registered tour-generating functions for the specified cls.

.clearSpecificTours removes all functions in the tour cache.

Author(s)
Aaron LUn

See Also

.selectInput.iSEE and friends, which provide modified UI elements that can be clicked to launch
a helpful tour.

subsetPointsByGrid Subset points for faster plotting

Description

Subset points using a grid-based system, to avoid unnecessary rendering when plotting.

Usage
subsetPointsByGrid(X, Y, resolution = 200, grouping = NULL)

Arguments
X A numeric vector of x-coordinates for all points.
Y A numeric vector of y-coordinates for all points, of the same length as X.
resolution A positive integer specifying the number of bins on each axis of the grid.
Alternatively, if grouping is specified, this may be a named integer vector con-
taining the number of bins to be used for each level.
grouping A character vector of length equal to X specifying the group to which each point

is assigned. By default, all points belong to the same group.

synchronizeAssays 103

Details

This function will define a grid of the specified resolution across the plot. Each point is allocated
to a grid location (i.e., pair of bins on the x- and y-axes). If multiple points are allocated to a given
location, only the last/right-most point is retained. This mimics the fact that plotting will overwrite
earlier points with later points. In this manner, we can avoid unnecessary rendering of earlier points
that would not show up anyway.

If grouping is specified, redundant points are only identified within each unique level. The resolu-
tion of downsampling within each level can be varied by passing an integer vector to resolution.
This can be useful for tuning the downsampling when points differ in importance, e.g., in a MA
plot, points corresponding to non-DE genes can be aggressively downsampled while points corre-
sponding to DE genes should generally be retained.

For plots where X and Y are originally categorical, use the jittered versions as input to this function.

Value

A logical vector indicating which points should be retained.

Author(s)

Aaron Lun

Examples

X <= rnorm(100000)
Y <= X + rnorm(100000)

summary (subsetPointsByGrid(X, Y, resolution=100))
summary (subsetPointsByGrid(X, Y, resolution=200))

summary (subsetPointsByGrid(X, Y, resolution=1000))

synchronizeAssays Synchronize assay colormaps to match those in a SummarizedExperi-
ment

Description

This function returns an updated ExperimentColorMap in which colormaps in the assays slot are
ordered to match the position of their corresponding assay in the SingleCellExperiment object. As-
says in the SingleCellExperiment that do not have a match in the ExperimentColorMap are assigned
the appropriate default colormap.

Usage

synchronizeAssays(ecm, se)

104 synchronizeAssays
Arguments

ecm An ExperimentColorMap.

se A SingleCellExperiment.
Details

It is highly recommended to name all assays in both ExperimentColorMap and SummarizedEx-
periment prior to calling this function, as this will facilitate the identification of matching assays
between the two objects. In most cases, unnamed colormaps will be dropped from the new Experi-
mentColorMap object.

The function supports three main situations:

* If all assays in the SingleCellExperiment are named, this function will populate the assays

Value

slot of the new ExperimentColorMap with the name-matched colormap from the input Exper-
imentColorMap, if available. Assays in the SingleCellExperiment that do not have a colormap
defined in the ExperimentColorMap are assigned the appropriate default colormap.

If all assays in the SingleCellExperiment are unnamed, this function requires that the Experi-
mentColorMap supplies a number of assay colormaps identical to the number of assays in the
SingleCellExperiment object. In that case, the ExperimentColorMap object will be returned
as is.

If only a subset of assays in the SingleCellExperiment are named, this function will ignore
unnamed colormaps in the ExperimentColorMap; It will populate the assays slot of the new
ExperimentColorMap with the name-matched colormap from the input ExperimentColorMap,
if available. Assays in the SingleCellExperiment that are unnamed, or that do not have a
colormap defined in the ExperimentColorMap are assigned the appropriate default colormap.

An ExperimentColorMap with colormaps in the assay slot synchronized to match the position of
the corresponding assay in the SingleCellExperiment.

Author(s)

Kevin Rue-Albrecht

Examples

Example ExperimentColorMap ----

count_colors <- function(n){
c("black”,"brown”,"red"”, "orange”, "yellow")

}

non

fpkm_colors <- viridis::inferno

ecm

<- ExperimentColorMap(

assays = list(
counts = count_colors,
tophat_counts = count_colors,
cufflinks_fpkm = fpkm_colors,

Table-class 105

rsem_counts = count_colors,
orphan = count_colors,
orphan2 = count_colors,
count_colors,

fpkm_colors

)

Example SingleCellExperiment ----

library(scRNAseq)

sce <- ReprocessedAllenData(assays="tophat_counts”)
library(scater)

sce <- logNormCounts(sce, exprs_values="tophat_counts")
sce <- runPCA(sce)

sce <- runTSNE(sce)

Example ----

ecm_sync <- synchronizeAssays(ecm, sce)

Table-class The Table class

Description

The Table is a virtual class for all panels containing a datatable widget from the DT package,
where each row usually corresponds to a row or column of the SummarizedExperiment object. It
provides observers for rendering the table widget, monitoring single selections, and applying global
and column-specific searches (which serve as multiple selections).

Slot overview

The following slots control aspects of the DT: : datatable selection:

* Selected, a string containing the name of the currently selected row of the data.frame. De-
faults to NA, in which case the value should be chosen by the subclass’ .refineParameters
method.

* Search, a string containing the regular expression for the global search. Defaults to "", i.e.,
no search.

* SearchColumns, a unnamed character vector of length equal to the number of columns of
the data.frame, where each entry contains the search string for its corresponding column.
Alternatively, a character vector of variable length, containing search strings for one or more
columns. Defaults to an character vector of length zero, which is internally expanded to an
vector of zero-length strings, i.e., no search.

The following slots control the appearance of the table:

106 Table-class

* HiddenColumns, a character vector containing names of columns to hide. Defaults to an empty
vector.

In addition, this class inherits all slots from its parent Panel class.

Supported methods

In the following code snippets, x is an instance of a Table class. Refer to the documentation for
each method for more details on the remaining arguments.

For defining the interface:

» .defineQutput(x) returns a Ul element for a dataTableOutput widget.

* .defineDatalnterface(x) will create interface elements for modifying the table, namely to
choose which columns to hide. Note that this is populated by .generateOutput upon table
rendering, as we do not know the available columns before that point.

For defining reactive expressions:

e .createObservers(x, se, input, session, pObjects, rObjects) sets up observers for
all of the slots. This will also call the equivalent Panel method.

e .renderOutput(x, se, output, pObjects, rObjects) will add a rendered datatable ob-
ject to output. This will also call the equivalent Panel method to render the panel information
text boxes.

* .generateOutput(x, se, all_memory, all_contents) returns a list containing contents,
a data.frame with one row per point currently present in the table; commands, a list of character
vector containing the R commands required to generate contents and plot; and varname, a
string specifying the name of the variable in commands used to generate contents.

e .exportOutput(x, se, all_memory, all_contents) will create a CSV file containing the
current table, and return a string containing the path to that file. This assumes that the
contents field returned by . generateOutput is a data.frame or can be coerced into one.

For controlling selections:
e .multiSelectionRestricted(x) returns TRUE. Transmission of a selection to a Table will

manifest as a subsetting of the rows.

e .multiSelectionActive(x) returns a list containing the contents of x[["Search”]] and
x[["ColumnSearch”1]. If both contain only empty strings, a NULL is returned instead.

e .multiSelectionCommands(x, index) returns a character vector of R expressions that -
when evaluated - return a character vector of the row names of the table after applying all
search filters. The value of index is ignored.

¢ .singleSelectionValue(x, contents) returns the name of the row that was last selected
in the datatable widget.

For documentation:

e .definePanelTour(x) returns an data.frame containing the steps of a tour relevant to sub-
classes, mostly describing the effect of selection from other panels and the use of row filters
to transmit selections.

Unless explicitly specialized above, all methods from the parent class Panel are also available.

table-generics 107

Subclass expectations

The Table is a rather vaguely defined class for which the only purpose is to avoid duplicating code
for ColumnDotPlots and RowDotPlots. We recommend extending those subclasses instead.

Author(s)

Aaron Lun

See Also

Panel, for the immediate parent class.

table-generics Generics for table construction

Description

Generic to control the creation of a data.frame to show in the datatable widget of a Table panel.
Table subclasses can specialize methods to modify the behavior of . generateOutput.

Constructing the table

.generateTable(x, envir) generates the data.frame to use in the datatable widget. The follow-
ing arguments are required:

¢ x, an instance of a Table subclass.

* envir, the evaluation environment in which the data.frame is to be constructed. This can
be assumed to have se, the SummarizedExperiment object containing the current dataset;
possibly col_selected, if a multiple column selection is being transmitted to x; and possibly
row_selected, if a multiple row selection is being transmitted to x.

In return, the method should add a tab variable in envir containing the relevant data.frame. This
will automatically be passed to the datatable widget as well as being stored in pObjects$contents.
The return value should be a character vector of commands that produces tab when evaluated in
envir.

Each row of the tab data.frame should correspond to one row or column in the SummarizedExper-
iment envir$se for RowTables and ColumnTables respectively. Unlike .generateDotPlotData,
it is not necessary for all rows or columns to be represented in this data.frame.

Ideally, the number and names of the columns of the data.frame should be fixed for all calls to
.generateTable. Violating this principle may result in unpredictable interactions with existing
values in the SearchColumns slot. Nonetheless, the app will be robust to mismatches, see filterDT
for more details.

Any internal variables that are generated by the commands should be prefixed with . to avoid
potential clashes with reserved variable names in the rest of the application.

This generic is called by .generateOQutput for Table subclasses. Thus, developers of such sub-
classes only need to specialize .generateTable to change the table contents, without needing to
reimplement the entirety of . generateOutput.

108 track-utils

Adding details on the selection

.showSelectionDetails(x) should return a HTML element containing details on the currently
selected row, given an instance of a Table subclass x. The identity of the selected row should be
extracted from x[["Selected”]]. The element will only be rerendered upon a single selection in
the Table. Alternatively, it may return NULL in which case no selection details are shown in the
interface.

Author(s)

Aaron Lun

track-utils Track internal events

Description

Utility functions to track internal events for a panel by monitoring the status of reactive variables in
robjects.

Usage

.trackUpdate(panel_name, rObjects)
.trackSingleSelection(panel_name, rObjects)
.trackMultiSelection(panel_name, rObjects)

.trackRelinkedSelection(panel_name, rObjects)

Arguments

panel_name String containing the panel name.

rObjects A reactive list of values generated in the iSEE app.
Details

. trackUpdate will track whether an update has been requested to the current panel via . requestUpdate.

.trackSingleSelection will track whether the single selection in the current panel has changed.
Note that this will not cause a reaction if the change involves cancelling a single selection.

.trackMultiSelection will track whether the multiple selections in the current panel have changed.
This will respond for both active and saved selections.

.trackRelinkedSelection will track whether the single or multiple selection sources have changed.

These functions should be called within observer or rendering expressions to trigger their evaluation
upon panel updates. It is only safe to call these functions within expressions for the same panel,
e.g., to synchronize multiple output elements. Calling them with another panel_name would be
unusual, not least because communication between panels is managed by the iSEE framework and
is outside of the scope of the per-panel observers.

validate-utils

Value

109

All functions will cause the current reactive context to respond to the designated event. NULL is

returned invisibly.

Author(s)

Aaron Lun

validate-utils

Validation error utilites

Description

Helper functions to implement setValidity methods for Panel subclasses.

Usage

.singleStringError(msg, x, fields)

.validlLogicalError(msg, x, fields)

.validStringError(msg, x, fields)

.allowableChoiceError(msg, x, field, allowable)

.multipleChoiceError(msg, x, field, allowable)

.validNumberError(msg, x, field, lower, upper)

Arguments
msg
X
fields
field
allowable
lower

upper

Character vector containing the current error messages.

An instance of a Panel subclass.

Character vector containing the names of the relevant slots.

String containing the name of the relevant slot under investigation.
Character vector of allowable choices for a multiple-choice selection.
Numeric scalar specifying the lower bound of possible values.

Numeric scalar specifying the upper bound of possible values.

110 visual-parameters-generics

Details
.singleStringError adds an error message if any of the slots named in fields does not contain
a single string.

.validStringError adds an error message if any of the slots named in fields does not contain a
single non-NA string.

.validLogicalError adds an error message if any of the slots named in fields does not contain
a non-NA logical scalar.

.allowableChoiceError adds an error message if the slot named field does not have a value in
allowable, assuming it contains a single string.

.multipleChoiceError adds an error message if the slot named field does not have all of its
values in allowable, assuming it contains a character vector of any length.

.validNumberError adds an error message if the slot named field is not a non-NA number within
[lower, upper].
Value

All functions return a character vector containing msg, possibly appended with additional error
messages.

Author(s)

Aaron Lun

visual-parameters-generics
Generics for visual DotPlot parameters

Description

These generics allow subclasses to override the user interface elements controlling visual parame-
ters of DotPlot panels.

Interface definition
In all of the code snippets below, x is a Panel instance and se is the SummarizedExperiment object.

e .defineVisualColorInterface(x, se, select_info) should return a HTML tag defini-
tion that contains Ul input elements controlling the color aesthetic of ggplot objects. Here,
select_info is a list of two character vectors named row and column, which specifies the
names of panels available for transmitting single selections on the rows/columns respectively.
A common use case would involve adding elements to change the default color of the points
or to color by a chosen metadata field/assay values.

e .defineVisualShapelInterface(x, se) should return a HTML tag definition that contains
UI input elements controlling the shape aesthetic of ggplot objects. A common use case
would involve adding elements to change the shape of each point according to a chosen meta-
data field.

visual-parameters-generics 111

e .defineVisualSizeInterface(x, se) should return a HTML tag definition that contains Ul
input elements controlling the size aesthetic of ggplot objects. A common use case would
involve adding elements to change the size of each point according to a chosen metadata field
or assay values.

e .defineVisualPointInterface(x, se) should return a HTML tag definition that contains
Ul input elements controlling other aesthetics of ggplot objects. This might include control-
ling the transparency or downsampling.

e .defineVisualFacetInterface(x, se) should return a HTML tag definition that contains
UI input elements controlling the facet_grid applied to ggplot objects. This typically in-
volves providing Ul elements to choose the metadata variables to use for faceting.

e .defineVisualTextInterface(x, se) should return a HTML tag definition that contains
UI input elements controlling the appearance of non-data text elements of ggplot objects.
This typically involves matters such as the font size and legend position.

e .defineVisualOtherInterface(x) should a HTML tag definition that contains UI inputs
elements to display in the "Other” section of the visual parameters. This is a grab-bag of
other parameters that don’t fit into the more defined categories above.

A method for any of these generics may also return NULL, in which case the corresponding section
of the visual parameter box is completely hidden.

All of these generics are called by .defineInterface for DotPlot subclasses. Developers of sub-
classes can simply specialize these generics to change the Ul instead of reimplementing . defineInterface
itself.

When implementing methods for these generics, it is a good idea to make use of information pre-
computed by . cacheCommonInfo. For example, .cacheCommonInfo,ColumnDotPlot-method will
add vectors specifying whether a variable in the colData is valid and discrete or continuous.

Controlling ColorBy*Data choices

.allowableColorByDataChoices(x, se) should return a character vector of the allowable row/column
data variables to use when ColorBy is set to "Row data” or "Column data” for RowDotPlots and
ColumnDotPlots, respectively. The default method will use all available (atomic) variables, but
subclasses can specialize this to only allow, e.g., continuous or discrete variables.

Author(s)
Kevin Rue-Albrecht

Index

+ datasets
iSEEOptions, 63
.activateAppOptionRegistry, 87
.activateAppOptionRegistry
(registerAppOptions), 86
.addCustomLabelsCommands, 3
.addFacets (plot-utils), 83
.addLabelCentersCommands, 4
.addMultiSelectionPlotCommands, 5, 82
.addSpecificTour, 44
.addSpecificTour (specific-tours), 101
.addTourStep, 6
.allowableChoiceError (validate-utils),
109
.allowableColorByDataChoices, 48
.allowableColorByDataChoices
(visual-parameters-generics),
110
.allowableColorByDataChoices,DotPlot-method
(DotPlot-class), 45
.allowableXAxisChoices, 26, 89
.allowableXAxisChoices
(metadata-plot-generics), 68
.allowableXAxisChoices,ColumnDataPlot-method
(ColumnDataPlot-class), 26
.allowableXAxisChoices,RowDataPlot-method
(RowDataPlot-class), 88
.allowableYAxisChoices, 27, 89
.allowableYAxisChoices
(metadata-plot-generics), 68
.allowableYAxisChoices,ColumnDataPlot-method
(ColumnDataPlot-class), 26
.allowableYAxisChoices,RowDataPlot-method
(RowDataPlot-class), 88
.buildAes (aes-utils), 19
.buildLabs, 6
.cacheCommonInfo, 9, 18, 20, 28, 30, 36, 47,
68,76,84,91,93, 111
.cacheCommonInfo (setup-generics), 98

112

.cacheCommonInfo,ColumnDataTable-method

(ColumnDataTable-class), 28

.cacheCommonInfo,ColumnDotPlot-method

(ColumnDotPlot-class), 30

.cacheCommonInfo,ComplexHeatmapPlot-method

(ComplexHeatmapPlot-class), 34

.cacheCommonInfo,DotPlot-method

(DotPlot-class), 45

.cacheCommonInfo,Panel-method

(Panel-class), 75

.cacheCommonInfo,ReducedDimensionPlot-method

(ReducedDimensionPlot-class),
84

.cacheCommonInfo,RowDataTable-method

(RowDataTable-class), 90

.cacheCommonInfo,RowDotPlot-method

(RowDotPlot-class), 92

.checkboxGroupInput.iSEE

(interface-wrappers), 58

.checkboxInput.iSEE

(interface-wrappers), 58

.clearSpecificTours (specific-tours),

101

.colorByNoneDotPlotField, 48
.colorByNoneDotPlotField

(plot-generics), 80

.colorByNoneDotPlotField,DotPlot-method

(DotPlot-class), 45

.colorByNoneDotPlotScale, 48
.colorByNoneDotPlotScale

(plot-generics), 80

.colorByNoneDotPlotScale,DotPlot-method

(DotPlot-class), 45

.conditionalOnCheckGroup

(.conditionalOnRadio), 8

.conditionalOnCheckSolo

(.conditionalOnRadio), 8

.conditionalOnRadio, 8
.createCustomDimnamesModalObservers, 9,

INDEX 113

11,12,72 .defineDatalnterface,ComplexHeatmapPlot-method
.createObservers, 9, 16, 27, 31, 33, 37, 44, (ComplexHeatmapPlot-class), 34

48, 54,57,74,77, 85,89, 93, 95, 97, .defineDatalnterface,FeatureAssayPlot-method

106 (FeatureAssayPlot-class), 52
.createObservers (observer-generics), 71 .defineDatalnterface,Panel-method
.createObservers,ColumnDataPlot-method (Panel-class), 75

(ColumnDataPlot-class), 26 .defineDatalnterface,ReducedDimensionPlot-method
.createObservers,ColumnDotPlot-method (ReducedDimensionPlot-class),

(ColumnDotPlot-class), 30 84
.createObservers,ColumnTable-method .defineDatalnterface,RowDataPlot-method

(ColumnTable-class), 33 (RowDataPlot-class), 88
.createObservers,ComplexHeatmapPlot-method .defineDatalnterface,SampleAssayPlot-method

(ComplexHeatmapPlot-class), 34 (SampleAssayPlot-class), 96
.createObservers,DotPlot-method .defineDatalnterface, Table-method

(DotPlot-class), 45 (Table-class), 105
.createObservers,FeatureAssayPlot-method .definelnterface, I8, 20, 25, 37,44,47,71,

(FeatureAssayPlot-class), 52 76,111
.createObservers,Panel-method .defineInterface (interface-generics),

(Panel-class), 75 57
.createObservers,ReducedDimensionPlot-method .definelnterface,ColumnDotPlot-method

(ReducedDimensionPlot-class), (ColumnDotPlot-class), 30

84 .defineInterface,ColumnTable-method
.createObservers,RowDataPlot-method (ColumnTable-class), 33

(RowDataPlot-class), 88 .defineInterface,ComplexHeatmapPlot-method
.createObservers,RowDotPlot-method (ComplexHeatmapPlot-class), 34

(RowDotPlot-class), 92 .defineInterface,DotPlot-method
.createObservers,RowTable-method (DotPlot-class), 45

(RowTable-class), 94 .definelnterface,Panel-method
.createObservers, SampleAssayPlot-method (Panel-class), 75

(SampleAssayPlot-class), 96 .defineInterface,RowDotPlot-method
.createObservers,Table-method (RowDotPlot-class), 92

(Table-class), 105 .defineInterface,RowTable-method
.createProtectedParameterObservers, 17, (RowTable-class), 94

72 .defineOQutput, 37,48, 77, 106
.createProtectedParameterObservers .defineOutput (output-generics), 72

(.createUnprotectedParameterObservers),defineQutput,ComplexHeatmapPlot-method

10 (ComplexHeatmapPlot-class), 34
.createUnprotectedParameterObservers, .defineOutput,DotPlot-method

10, 72 (DotPlot-class), 45
.deactivateAppOptionRegistry, 87 .defineOQutput,Table-method
.deactivateAppOptionRegistry (Table-class), 105

(registerAppOptions), 86 .definePanelTour, 27, 29, 31, 37,49, 54, 77,
.defineDatalnterface, 26, 37, 47, 54, 68, 85,89, 91, 93,97, 106

76, 77,85, 89, 97, 106 .definePanelTour
.defineDatalnterface (documentation-generics), 44

(interface-generics), 57 .definePanelTour,ColumnDataPlot-method
.defineDatalnterface,ColumnDataPlot-method (ColumnDataPlot-class), 26

(ColumnDataPlot-class), 26 .definePanelTour,ColumnDataTable-method

114

(ColumnDataTable-class), 28
.definePanelTour,ColumnDotPlot-method
(ColumnDotPlot-class), 30
.definePanelTour,ComplexHeatmapPlot-method
(ComplexHeatmapPlot-class), 34
.definePanelTour,DotPlot-method
(DotPlot-class), 45
.definePanelTour,FeatureAssayPlot-method
(FeatureAssayPlot-class), 52
.definePanelTour,Panel-method
(Panel-class), 75

.definePanelTour,ReducedDimensionPlot-method

(ReducedDimensionPlot-class),

84
.definePanelTour,RowDataPlot-method

(RowDataPlot-class), 88
.definePanelTour,RowDataTable-method

(RowDataTable-class), 90
.definePanelTour,RowDotPlot-method

(RowDotPlot-class), 92
.definePanelTour,SampleAssayPlot-method

(SampleAssayPlot-class), 96
.definePanelTour,Table-method

(Table-class), 105
.defineVisualColorInterface, 47
.defineVisualColorInterface

(visual-parameters-generics),

110
.defineVisualColorInterface,DotPlot-method

(DotPlot-class), 45
.defineVisualFacetInterface, 48
.defineVisualFacetInterface

(visual-parameters-generics),

110
.defineVisualFacetInterface,DotPlot-method

(DotPlot-class), 45
.defineVisualOtherInterface, 48
.defineVisualOtherInterface

(visual-parameters-generics),

110
.defineVisualOtherInterface,DotPlot-method

(DotPlot-class), 45
.defineVisualPointInterface, 48
.defineVisualPointInterface

(visual-parameters-generics),

110
.defineVisualPointInterface,DotPlot-method

(DotPlot-class), 45

INDEX

.defineVisualShapelnterface, 47
.defineVisualShapelnterface

(visual-parameters-generics),
110

.defineVisualShapeInterface,DotPlot-method

(DotPlot-class), 45

.defineVisualSizeInterface, 47
.defineVisualSizeInterface

(visual-parameters-generics),
110

.defineVisualSizelInterface,DotPlot-method

(DotPlot-class), 45

.defineVisualTextInterface, 48
.defineVisualTextInterface

(visual-parameters-generics),
110

.defineVisualTextInterface,DotPlot-method

(DotPlot-class), 45

.emptyDefault (class-utils), 22
.exportOutput, 37,48, 77, 106
.exportOutput (output-generics), 72
.exportOutput,ComplexHeatmapPlot-method

(ComplexHeatmapPlot-class), 34

.exportOutput,DotPlot-method

(DotPlot-class), 45

.exportOutput,Panel-method

(Panel-class), 75

.exportOutput, Table-method

(Table-class), 105

.extractAssaySubmatrix, 11
.findAtomicFields (cache-utils), 20
.fullName, 12, 27, 29, 31, 34, 37, 54, 77, 85,

89,91, 94, 95,97

.fullName, ColumnDataPlot-method

(ColumnDataPlot-class), 26

.fullName,ColumnDataTable-method

(ColumnDataTable-class), 28

.fullName, ComplexHeatmapPlot-method

(ComplexHeatmapPlot-class), 34

.fullName, FeatureAssayPlot-method

(FeatureAssayPlot-class), 52

.fullName,ReducedDimensionPlot-method

(ReducedDimensionPlot-class),
84

.fullName,RowDataPlot-method

(RowDataPlot-class), 88

.fullName,RowDataTable-method

(RowDataTable-class), 90

INDEX

.fullName, SampleAssayPlot-method
(SampleAssayPlot-class), 96
.generateDotPlot, 3-5, 48
.generateDotPlot (plot-generics), 80
.generateDotPlot,DotPlot-method
(DotPlot-class), 45
.generateDotPlotData, 27, 31, 54, 81-83,
85,89, 94, 97, 107
.generateDotPlotData (plot-generics), 80
.generateDotPlotData,ColumnDataPlot-method
(ColumnDataPlot-class), 26

115

.getPanelColor (.panelColor), 13
.getSpecificTours (specific-tours), 101
.hidelnterface, 6, 31, 33, 37,57, 58, 77, 93,
94
.hidelInterface (interface-generics), 57
.hideInterface,ColumnDotPlot-method
(ColumnDotPlot-class), 30
.hideInterface,ColumnTable-method
(ColumnTable-class), 33
.hideInterface,ComplexHeatmapPlot-method
(ComplexHeatmapPlot-class), 34

.generateDotPlotData,FeatureAssayPlot-method .hideInterface,DotPlot-method

(FeatureAssayPlot-class), 52

(DotPlot-class), 45

.generateDotPlotData,ReducedDimensionPlot-methbildeInterface,Panel-method

(ReducedDimensionPlot-class),

84
.generateDotPlotData,RowDataPlot-method

(RowDataPlot-class), 88

.generateDotPlotData, SampleAssayPlot-method

(SampleAssayPlot-class), 96
.generateQutput, 15, 17, 18, 37,48, 69, 74,
75,77, 80, 81,83, 99, 100, 106, 107
.generateQutput (output-generics), 72
.generateOutput,ComplexHeatmapPlot-method
(ComplexHeatmapPlot-class), 34
.generateQutput,DotPlot-method
(DotPlot-class), 45
.generateQutput,Table-method
(Table-class), 105
.generateTable, 29, 34, 91, 95
.generateTable (table-generics), 107
.generateTable,ColumnDataTable-method
(ColumnDataTable-class), 28
.generateTable,RowDataTable-method
(RowDataTable-class), 90
.getCachedCommonInfo, 99
.getCachedCommonInfo
(.setCachedCommonInfo), 18
.getDotPlotColorHelp, 31, 93
.getDotPlotColorHelp
(documentation-generics), 44
.getDotPlotColorHelp,ColumnDotPlot-method
(ColumnDotPlot-class), 30
.getDotPlotColorHelp,RowDotPlot-method
(RowDotPlot-class), 92
.getEncodedName, 57, 59, 71, 73,75
.getEncodedName (.fullName), 12
.getFullName (.fullName), 12

(Panel-class), 75
.hideInterface,RowDotPlot-method
(RowDotPlot-class), 92
.hideInterface,RowTable-method
(RowTable-class), 94
.hideInterface,Table-method
(Table-class), 105
.isAssayNumeric (cache-utils), 20
.multiSelectionActive, 48, 69, 77, 106
.multiSelectionActive
(multi-select-generics), 68
.multiSelectionActive,DotPlot-method
(DotPlot-class), 45
.multiSelectionActive,Panel-method
(Panel-class), 75
.multiSelectionActive,Table-method
(Table-class), 105
.multiSelectionAvailable, 77
.multiSelectionAvailable
(multi-select-generics), 68
.multiSelectionAvailable,Panel-method
(Panel-class), 75
.multiSelectionClear, 49, 77
.multiSelectionClear
(multi-select-generics), 68
.multiSelectionClear,DotPlot-method
(DotPlot-class), 45
.multiSelectionClear,Panel-method
(Panel-class), 75
.multiSelectionCommands, 48, 73, 74, 106
.multiSelectionCommands
(multi-select-generics), 68
.multiSelectionCommands,DotPlot-method
(DotPlot-class), 45

116 INDEX

.multiSelectionCommands, Table-method .multipleChoiceError (validate-utils),
(Table-class), 105 109
.multiSelectionDimension, 3/, 33,57, 73, .numericInput.iSEE
74, 77,93, 95 (interface-wrappers), 58
.multiSelectionDimension .panelColor, 13, 26, 29, 31, 34, 37, 54, 77,
(multi-select-generics), 68 85, 89, 91, 94, 95, 97
.multiSelectionDimension,ColumnDotPlot-method.panelColor,ColumnDataPlot-method
(ColumnDotPlot-class), 30 (ColumnDataPlot-class), 26
.multiSelectionDimension,ColumnTable-method .panelColor,ColumnDataTable-method
(ColumnTable-class), 33 (ColumnDataTable-class), 28
.multiSelectionDimension,DotPlot-method .panelColor,ComplexHeatmapPlot-method
(DotPlot-class), 45 (ComplexHeatmapPlot-class), 34
.multiSelectionDimension,Panel-method .panelColor,FeatureAssayPlot-method
(Panel-class), 75 (FeatureAssayPlot-class), 52
.multiSelectionDimension,RowDotPlot-method .panelColor,ReducedDimensionPlot-method
(RowDotPlot-class), 92 (ReducedDimensionPlot-class),
.multiSelectionDimension,RowTable-method 84
(RowTable-class), 94 .panelColor,RowDataPlot-method
.multiSelectionInvalidated, 27, 31, 54, (RowDataPlot-class), 88
77,89, 93, 97 .panelColor,RowDataTable-method
.multiSelectionInvalidated (RowDataTable-class), 90
(multi-select-generics), 68 .panelColor, SampleAssayPlot-method
.multiSelectionInvalidated,ColumnDataPlot-method (SampleAssayPlot-class), 96
(ColumnDataPlot-class), 26 .prioritizeDotPlotData, 48
.multiSelectionInvalidated,ColumnDotPlot-methoprioritizeDotPlotData (plot-generics),

(ColumnDotPlot-class), 30

80

.multiSelectionInvalidated, FeatureAssayPlot-methbdritizeDotPlotData,DotPlot-method

(FeatureAssayPlot-class), 52
.multiSelectionInvalidated,Panel-method
(Panel-class), 75

.multiSelectionInvalidated,RowDataPlot-method

(RowDataPlot-class), 88

.multiSelectionInvalidated,RowDotPlot-method

(RowDotPlot-class), 92

(DotPlot-class), 45

.processMultiSelections, 12, 14, 74, 82
.radioButtons.iSEE

(interface-wrappers), 58

.refineParameters, 15, 26, 29, 31, 33, 37,

47,54,57,71,76, 85, 89, 91, 93, 94,
97,99, 105

.multiSelectionInvalidated, SampleAssayPlot-metheflineParameters (setup-generics), 98
(SampleAssayPlot-class), 96 .refineParameters,ColumnDataPlot-method
.multiSelectionRestricted, 31,77, 93, (ColumnDataPlot-class), 26
106 .refineParameters,ColumnDataTable-method
.multiSelectionRestricted (ColumnDataTable-class), 28
(multi-select-generics), 68 .refineParameters,ColumnDotPlot-method
.multiSelectionRestricted,ColumnDotPlot-method (ColumnDotPlot-class), 30
(ColumnDotPlot-class), 30 .refineParameters,ColumnTable-method
.multiSelectionRestricted,Panel-method (ColumnTable-class), 33
(Panel-class), 75 .refineParameters,ComplexHeatmapPlot-method
.multiSelectionRestricted,RowDotPlot-method (ComplexHeatmapPlot-class), 34
(RowDotPlot-class), 92 .refineParameters,DotPlot-method
.multiSelectionRestricted, Table-method (DotPlot-class), 45
(Table-class), 105 .refineParameters,FeatureAssayPlot-method

INDEX 117

(FeatureAssayPlot-class), 52 (RowTable-class), 94
.refineParameters,Panel-method .singleSelectionDimension, 31, 33, 57,77,

(Panel-class), 75 93, 95
.refineParameters,ReducedDimensionPlot-method.singleSelectionDimension

(ReducedDimensionPlot-class), (single-select-generics), 99

84 .singleSelectionDimension,ColumnDotPlot-method
.refineParameters,RowDataPlot-method (ColumnDotPlot-class), 30

(RowDataPlot-class), 88 .singleSelectionDimension,ColumnTable-method
.refineParameters,RowDataTable-method (ColumnTable-class), 33

(RowDataTable-class), 90 .singleSelectionDimension,Panel-method
.refineParameters,RowDotPlot-method (Panel-class), 75

(RowDotPlot-class), 92 .singleSelectionDimension,RowDotPlot-method
.refineParameters,RowTable-method (RowDotPlot-class), 92

(RowTable-class), 94 .singleSelectionDimension,RowTable-method
.refineParameters, SampleAssayPlot-method (RowTable-class), 94

(SampleAssayPlot-class), 96 .singleSelectionSlots, 49, 54, 77, 97
.refineParameters, Table-method .singleSelectionSlots

(Table-class), 105 (single-select-generics), 99
.renderQutput, 15, 17, 18, 37,48, 69, 72, 74, .singleSelectionSlots,DotPlot-method

77,81, 106 (DotPlot-class), 45
.renderOutput (output-generics), 72 .singleSelectionSlots,FeatureAssayPlot-method
.renderOutput,ComplexHeatmapPlot-method (FeatureAssayPlot-class), 52

(ComplexHeatmapPlot-class), 34 .singleSelectionSlots,Panel-method
.renderQutput,DotPlot-method (Panel-class), 75

(DotPlot-class), 45 .singleSelectionSlots, SampleAssayPlot-method
.renderQutput,Panel-method (SampleAssayPlot-class), 96

(Panel-class), 75 .singleSelectionValue, 49, 73, 77, 106
.renderQutput, Table-method .singleSelectionValue

(Table-class), 105 (single-select-generics), 99
.replaceMissingWithFirst, 15 .singleSelectionValue,DotPlot-method
.requestActiveSelectionUpdate (DotPlot-class), 45

(.requestUpdate), 16 .singleSelectionValue,Panel-method
.requestCleanUpdate, 11, 72 (Panel-class), 75
.requestCleanUpdate (.requestUpdate), 16 .singleSelectionValue, Table-method
.requestUpdate, 11,16, 17,72, 73, 108 (Table-class), 105
.retrieveQutput, 17, 74 .singleStringError (validate-utils), 109
.selectInput.iSEE, 44, 102 .sliderInput.iSEE (interface-wrappers),
.selectInput.iSEE (interface-wrappers), 58

58 .textEval, 74
.selectizelnput.iSEE .textEval (manage_commands), 67

(interface-wrappers), 58 .trackMultiSelection (track-utils), 108
.setCachedCommonInfo, 18, 98 .trackRelinkedSelection (track-utils),
.showSelectionDetails, 34, 95 108
.showSelectionDetails (table-generics), .trackSingleSelection (track-utils), 108

107 .trackUpdate (track-utils), 108
.showSelectionDetails,ColumnTable-method .validlLogicalError (validate-utils), 109

(ColumnTable-class), 33 .validNumberError (validate-utils), 109

.showSelectionDetails,RowTable-method .validStringError (validate-utils), 109

118

.whichGroupable (cache-utils), 20
.whichNumeric (cache-utils), 20
[[,ColumnDotPlot,ANY,ANY-method
(ColumnDotPlot-class), 30
[[,ColumnDotPlot-method
(ColumnDotPlot-class), 30
[[,ComplexHeatmapPlot,ANY,ANY-method
(ComplexHeatmapPlot-class), 34
[[,ComplexHeatmapPlot-method
(ComplexHeatmapPlot-class), 34
[[,DotPlot,ANY,ANY-method
(DotPlot-class), 45
[[,DotPlot-method (DotPlot-class), 45
[[,Panel,ANY,ANY-method (Panel-class),
75
[[,Panel-method (Panel-class), 75
[[,RowDotPlot,ANY,ANY-method
(RowDotPlot-class), 92
[[,RowDotPlot-method
(RowDotPlot-class), 92
[[<-,ColumnDotPlot,ANY, ANY-method
(ColumnDotPlot-class), 30
[[<-,ColumnDotPlot-method
(ColumnDotPlot-class), 30

[[<-,ComplexHeatmapPlot, ANY,ANY-method

(ComplexHeatmapPlot-class), 34
[[<-,ComplexHeatmapPlot-method
(ComplexHeatmapPlot-class), 34
[[<-,DotPlot,ANY,ANY-method
(DotPlot-class), 45
[[<-,DotPlot-method (DotPlot-class), 45
[[<-,Panel,ANY,ANY-method
(Panel-class), 75
[[<-,Panel-method (Panel-class), 75
[[<-,RowDotPlot,ANY,ANY-method
(RowDotPlot-class), 92
[[<-,RowDotPlot-method
(RowDotPlot-class), 92

aes-utils, 19
assay, 24, 52, 96

assay,ExperimentColorMap,character-method

(ExperimentColorMap-class), 49

assay,ExperimentColorMap, numeric-method

(ExperimentColorMap-class), 49
assayColorMap
(ExperimentColorMap-class), 49

INDEX

assayColorMap,ExperimentColorMap,missing-method
(ExperimentColorMap-class), 49
assayColorMap,ExperimentColorMap, numeric-method
(ExperimentColorMap-class), 49
assayColorMap<-
(ExperimentColorMap-class), 49
assayColorMap<-,ExperimentColorMap, character-method
(ExperimentColorMap-class), 49
assayColorMap<-,ExperimentColorMap, numeric-method
(ExperimentColorMap-class), 49
assayNames,ExperimentColorMap-method
(ExperimentColorMap-class), 49
assayNames<-,ExperimentColorMap, ANY-method
(ExperimentColorMap-class), 49
assays,ExperimentColorMap-method
(ExperimentColorMap-class), 49
assays<-,ExperimentColorMap,list-method
(ExperimentColorMap-class), 49

brushedPoints, 46, 66

cache-utils, 20
callNextMethod, 44, 57, 58, 71, 82, 99
checkboxInput, 39, 101
checkColormapCompatibility, 21
class-utils, 22
class:ExperimentColorMap
(ExperimentColorMap-class), 49
cleanDataset, 23
cleanDataset,SingleCellExperiment-method
(cleanDataset), 23
cleanDataset, SummarizedExperiment-method
(cleanDataset), 23
colData, 20, 24, 2630, 35, 46, 53, 68, 96, 111
colData,ExperimentColorMap-method
(ExperimentColorMap-class), 49
colData<-,ExperimentColorMap, ANY-method
(ExperimentColorMap-class), 49
colDataColorMap, 32
colDataColorMap
(ExperimentColorMap-class), 49
colDataColorMap,ExperimentColorMap, character-method
(ExperimentColorMap-class), 49
colDataColorMap,ExperimentColorMap,missing-method
(ExperimentColorMap-class), 49
colDataColorMap<-
(ExperimentColorMap-class), 49

assayColorMap,ExperimentColorMap, character-metbbdataColorMap<-,ExperimentColorMap, character-method

(ExperimentColorMap-class), 49

(ExperimentColorMap-class), 49

INDEX

collapseBox, 24, 57

columnAnnotation, 35

ColumnDataPlot, 26, 68

ColumnDataPlot (ColumnDataPlot-class),
26

ColumnDataPlot-class, 26

ColumnDataTable, 28

ColumnDataTable
(ColumnDataTable-class), 28

ColumnDataTable-class, 28

ColumnDotPlot, 26, 27, 30, 45, 46, 49, 52-54,
70, 76, 79-82, 84, 85, 96, 97, 107,
111

ColumnDotPlot-class, 30

columnSelectionColorMap, 32

ColumnTable, 28, 29, 33, 34, 64, 87, 90, 91,
107

ColumnTable-class, 33

ComplexHeatmapPlot, /2, 36, 79

ComplexHeatmapPlot
(ComplexHeatmapPlot-class), 34

ComplexHeatmapPlot-class, 34

conditionalPanel, 8

createCustomPanels, 38

createCustomPlot (createCustomPanels),
38

createCustomTable (createCustomPanels),
38

createlandingPage, 41, 61

DataFrame, 20

datatable, 20, 33, 55, 56, 94, 105—-107

dataTableOutput, 73, 106

defaultTour, 42, 43, 61

deparse, 99

documentation-generics, 44

DotPlot, 3-5, 13, 16, 26, 30-32, 44, 47, 48,
53,68-70, 73, 78-84, 88, 92-96,
100, 101, 110

DotPlot-class, 45

eval, 74
ExperimentColorMap, 21, 32, 60, 61, 103, 104
ExperimentColorMap
(ExperimentColorMap-class), 49
ExperimentColorMap-class, 49

FeatureAssayPlot, 53, 79, 101

119

FeatureAssayPlot
(FeatureAssayPlot-class), 52

FeatureAssayPlot-class, 52

filterDT, 56, 107

filterDT (filterDTColumn), 55

filterDTColumn, 55

getAllAppOptions (registerAppOptions),
86

getAppOption, 87

getAppOption (registerAppOptions), 86

getPanelDefault, 30, 35, 36, 45,47, 53, 75,
76, 92, 96

getPanelDefault (panelDefaults), 78

ggplot, 3-5, 7, 20, 30, 39, 45, 48, 74, 81, 82,
92

Heatmap, 34, 37
hidden, 59

in.out, 66
initialize, 22, 99
initialize,ColumnDataPlot-method
(ColumnDataPlot-class), 26
initialize,ColumnDataTable-method
(ColumnDataTable-class), 28
initialize,ColumnDotPlot-method
(ColumnDotPlot-class), 30
initialize,ColumnTable-method
(ColumnTable-class), 33
initialize,ComplexHeatmapPlot-method
(ComplexHeatmapPlot-class), 34
initialize,DotPlot-method
(DotPlot-class), 45
initialize,FeatureAssayPlot-method
(FeatureAssayPlot-class), 52
initialize,Panel-method (Panel-class),
75
initialize,ReducedDimensionPlot-method
(ReducedDimensionPlot-class),
84
initialize,RowDataPlot-method
(RowDataPlot-class), 88
initialize,RowDataTable-method
(RowDataTable-class), 90
initialize,RowDotPlot-method
(RowDotPlot-class), 92
initialize,RowTable-method
(RowTable-class), 94

120

initialize,SampleAssayPlot-method
(SampleAssayPlot-class), 96

initialize,Table-method (Table-class),
105

int_metadata, I8, 98

interface-generics, 57

interface-wrappers, 58

iSEE, 9, 11, 14, 16, 17, 20, 41-44, 59, 60, 61
71,73,86, 87, 108

iSEE-pkg, 62

iSEEOptions, 63

jitterSquarePoints, 64
jitterViolinPoints
(jitterSquarePoints), 64

lassoPoints, 46, 66

make.unique, 24
manage_commands, 67
metadata-plot-generics, 68
multi-select-generics, 68
multiSelectionToFactor, 32,70

numericInput, 39

observeEvent, /1
observer-generics, 71
offsetX, 65
output-generics, 72

package_version, 76

Panel, 6, 12, 13, 15, 16, 24-26, 29-31, 33, 34,
36-42,44,47-49, 53, 57-61, 63, 68,
69,71,73-76,78, 79, 84, 86, 88,
91-96, 98-101, 106, 107, 109, 110

Panel-class, 75

panelDefaults, 63, 78, 86, 87

parse, 74

plot-generics, 80

plot-utils, 83

plotOutput, 73

readRDS, 4/
ReducedDimensionPlot, 60, 70, 84, 99
ReducedDimensionPlot
(ReducedDimensionPlot-class),
84
ReducedDimensionPlot-class, 84
reducedDims, 24, 84

INDEX

registerAppOptions, 34, 63, 79, 86, 87, 95

renderPlot, 73

renderUI, 42

rowAnnotation, 35

rowData, 20, 24, 35, 46, 68, 88-92

rowData,ExperimentColorMap-method
(ExperimentColorMap-class), 49

rowData<-,ExperimentColorMap, ANY-method
(ExperimentColorMap-class), 49

rowDataColorMap, 32

rowDataColorMap
(ExperimentColorMap-class), 49

rowDataColorMap,ExperimentColorMap, character-method
(ExperimentColorMap-class), 49

rowDataColorMap,ExperimentColorMap,missing-method
(ExperimentColorMap-class), 49

rowDataColorMap<-
(ExperimentColorMap-class), 49

rowDataColorMap<-,ExperimentColorMap,character-method
(ExperimentColorMap-class), 49

RowDataPlot, 68, 89

RowDataPlot (RowDataPlot-class), 88

RowDataPlot-class, 88

RowDataTable, 9/

RowDataTable (RowDataTable-class), 90

RowDataTable-class, 90

RowDotPlot, 45, 46, 49, 70, 79-82, 88-90, 93,
96, 97,107, 111

RowDotPlot-class, 92

rowSelectionColorMap
(columnSelectionColorMap), 32

RowTable, 64, 87, 94, 95, 100, 107

RowTable-class, 94

runApp, 60

SampleAssayPlot, 79, 97

SampleAssayPlot
(SampleAssayPlot-class), 96

SampleAssayPlot-class, 96

scale_color_manual, 83

selectInput, 24, 39, 59, 100

setup-generics, 98

setValidity, 109

shinyApp, 60

show, ExperimentColorMap-method
(ExperimentColorMap-class), 49

show, Panel-method (Panel-class), 75

single-select-generics, 99

INDEX

SingleCellExperiment, 21, 24, 84, 99, 103
104

specific-tours, 101

subsetPointsByGrid, 47, 102

SummarizedExperiment, 9, 12, 15, 17, 18, 20,
23,26, 28, 30, 31, 33-35, 39,41, 45,
52,57,59-61, 68, 69,71, 73-75, 80,
86, 88, 90, 92, 94-96, 98, 99, 105,
107,110

synchronizeAssays, 103

Table, 28, 33, 34, 78, 90, 94, 95, 106, 107
Table-class, 105

table-generics, 107

taglList, 73

textInput, 39

track-utils, 108

updateObject, 76
updateObject,ColumnDotPlot-method
(ColumnDotPlot-class), 30
updateObject,ComplexHeatmapPlot-method
(ComplexHeatmapPlot-class), 34
updateObject,DotPlot-method
(DotPlot-class), 45
updateObject,Panel-method
(Panel-class), 75
updateObject,RowDotPlot-method
(RowDotPlot-class), 92
updateObject,Table-method
(Table-class), 105

validate-utils, 109
visual-parameters-generics, 110

121

	.addCustomLabelsCommands
	.addLabelCentersCommands
	.addMultiSelectionPlotCommands
	.addTourStep
	.buildLabs
	.conditionalOnRadio
	.createCustomDimnamesModalObservers
	.createUnprotectedParameterObservers
	.extractAssaySubmatrix
	.fullName
	.panelColor
	.processMultiSelections
	.replaceMissingWithFirst
	.requestUpdate
	.retrieveOutput
	.setCachedCommonInfo
	aes-utils
	cache-utils
	checkColormapCompatibility
	class-utils
	cleanDataset
	collapseBox
	ColumnDataPlot-class
	ColumnDataTable-class
	ColumnDotPlot-class
	columnSelectionColorMap
	ColumnTable-class
	ComplexHeatmapPlot-class
	createCustomPanels
	createLandingPage
	defaultTour
	documentation-generics
	DotPlot-class
	ExperimentColorMap-class
	FeatureAssayPlot-class
	filterDTColumn
	interface-generics
	interface-wrappers
	iSEE
	iSEE-pkg
	iSEEOptions
	jitterSquarePoints
	lassoPoints
	manage_commands
	metadata-plot-generics
	multi-select-generics
	multiSelectionToFactor
	observer-generics
	output-generics
	Panel-class
	panelDefaults
	plot-generics
	plot-utils
	ReducedDimensionPlot-class
	registerAppOptions
	RowDataPlot-class
	RowDataTable-class
	RowDotPlot-class
	RowTable-class
	SampleAssayPlot-class
	setup-generics
	single-select-generics
	specific-tours
	subsetPointsByGrid
	synchronizeAssays
	Table-class
	table-generics
	track-utils
	validate-utils
	visual-parameters-generics
	Index

