Package ‘cytomapper’

October 18, 2022

Version 1.8.0
Title Visualization of highly multiplexed imaging data in R

Description Highly multiplexed imaging acquires the single-cell expression of
selected proteins in a spatially-resolved fashion. These measurements can be
visualised across multiple length-scales. First, pixel-level intensities
represent the spatial distributions of feature expression with highest
resolution. Second, after segmentation, expression values or cell-level
metadata (e.g. cell-type information) can be visualised on segmented cell
areas. This package contains functions for the visualisation of multiplexed
read-outs and cell-level information obtained by multiplexed imaging
technologies. The main functions of this package allow 1. the visualisation of
pixel-level information across multiple channels, 2. the display of
cell-level information (expression and/or metadata) on segmentation masks
and 3. gating and visualisation of single cells.

License GPL (>=2)
Depends R (>=4.0), EBImage, SingleCellExperiment, methods

Imports S4Vectors, BiocParallel, HDF5Array, DelayedArray,
RColorBrewer, viridis, utils, SummarizedExperiment, tools,
graphics, raster, grDevices, stats, ggplot2, ggbeeswarm,
svgPanZoom, svglite, shiny, shinydashboard, matrixStats, rthdf5,
nnls

Suggests BiocStyle, knitr, rmarkdown, markdown, cowplot, testthat,
shinytest

biocViews ImmunoOncology, Software, SingleCell, OneChannel,
TwoChannel, MultipleComparison, Normalization, Datalmport

VignetteBuilder knitr
URL https://github.com/BodenmillerGroup/cytomapper

BugReports https://github.com/BodenmillerGroup/cytomapper/issues
RoxygenNote 7.1.2

Encoding UTF-8

git_url https://git.bioconductor.org/packages/cytomapper

1

https://github.com/BodenmillerGroup/cytomapper
https://github.com/BodenmillerGroup/cytomapper/issues

2 complmage

git_branch RELEASE_3_15

git_last_commit d6546b7

git_last_commit_date 2022-04-26

Date/Publication 2022-10-18

Author Nils Eling [aut, cre] (<https://orcid.org/0000-0002-4711-1176>),

Nicolas Damond [aut] (<https://orcid.org/0000-0003-3027-8989>),
Tobias Hoch [ctb]

Maintainer Nils Eling <nils.eling@dgbm.uzh.ch>

R topics documented:
complmage e e e e e 2
CytolmageList-class e 4
CytolmageList-manipulation 6
CytolmageList-naming e 8
CytoImageList-subsetting e 9
cytomapperShiny L 11
loadlmages L e 14
measureObjects e e 16
pancreasImages L e 19
pancreasMasks L L e e e e e 20
pancreasSCE e e e 20
plotCells e 21
plotPixels e 24
plotting-param e 27

Index 32

compImage Performs channel compensation on multi-channel images
Description

Corrects the intensity spillover between neighbouring channels of multi-channel images using a
non-negative least squares approach.

Usage

compImage(object, sm, overwrite = FALSE, BPPARAM = SerialParam())

https://orcid.org/0000-0002-4711-1176
https://orcid.org/0000-0003-3027-8989

complmage 3

Arguments
object aCytoImagelist object containing pixel intensities for all channels. The channelNames
must be in the form of (mt) (mass)Di (e.g. Sm152Di for Samarium isotope with
the atomic mass 152) and match with the column names in sm.
sm numeric matrix containing the spillover estimated between channels. The col-
umn names must be of the form (mt) (mass)Di (e.g. Sm152Di for Samarium
isotope with the atomic mass 152) and match to the channelNames of object.
overwrite (for images stored on disk) should the original image array be overwritten by the
compensated image array? By default (overwrite = FALSE), a new entry called
"XYZ_comp" will be written to the .h5 file (see below).
BPPARAM parameters for parallelised processing.
Value

returns the compensated pixel intensities in form of a CytoImagelList object.

The input object

The channelNames of object need to match the column names of sm. To adapt the spillover matrix
accordingly, please use the adaptSpillmat function.

Images stored on disk

Image compensation also works for images stored on disk. By default, the compensated images
are stored as a second entry called "XYZ_comp" in the .h5 file. Here "XYZ" specifies the name
of the original entry. By storing the compensated next to the original images on disk, space usage
increases. To avoid storing duplicated data, one can specify overwrite = TRUE, therefore deleting
the original images and only storing the compensated images. However, the original images cannot
be accessed anymore after compensation.

Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)

References

Chevrier, S. et al., Compensation of Signal Spillover in Suspension and Imaging Mass Cytometry.,
Cell Systems 2018 6(5):612-620.e5
See Also

nnls, for the underlying algorithm

compCytof, for how to compensate single-cell data

https://www.sciencedirect.com/science/article/pii/S2405471217305434
https://www.sciencedirect.com/science/article/pii/S2405471217305434

4 CytolmageList-class

Examples

data("pancreasImages”)

Generate example spillover matrix
metals <- c("Dy161Di", "Dy162Di", "Dy163Di", "Dy164Di", "Ho165Di")
sm <- matrix(c(1, 0.033, 0.01, 0.007, 0,
0.016, 1, 0.051, 0.01, 0,
0.004, 0.013, 1, 0.023, @,
0.005, 0.008, 0.029, 1, 0.006,
0, 0, 0, 0.001, 1), byrow = TRUE,
ncol = 5, nrow = 5,
dimnames = list(metals, metals))

Rename channels - just used as example
channelNames(pancreasImages) <- metals

Perform channel spillover
comp_images <- compImage(pancreasImages, sm)

CytoImagelList-class S4 class for list of images

Description

This class facilitates the handling of multiple one- or multi-channel images. It inherits from SimplelList
setting elementType="Image". Therefore, each slot contains an either one- or multi-dimensional
array in form of an Image object.

Usage

CytoImagelList(
on_disk = FALSE,
h5FilesPath = NULL,
BPPARAM = SerialParam()

)
Arguments
A list of images (or coercible to a list) or individual images
on_disk Logical indicating if images in form of HDF5Array objects (as .h5 files) should

be stored on disk rather than in memory.

h5FilesPath path to where the .hS5 files for on disk representation are stored. This path needs
to be defined when on_disk = TRUE. When files should only temporarily be
stored on disk, please set h5SFilesPath = getHDF5DumpDir ()

BPPARAM parameters for parallelised processing. This is only recommended for very large

images. See MulticoreParam for information on how to use multiple cores for
parallelised processing.

CytolmageList-class 5

Details

Similar to the Image class, the first two dimensions of each entry indicate the spatial dimension
of the image. These can be different for each entry. The third dimension indicates the number of
channels per Image. Each entry in the CytolmageList class object must contain the same number of
channels. Here, each channel represents pixel values indicating measurement intensities or in case
of segmentation masks the cells’ ID. The CytolmageList class therefore only supports a Grayscale
colormode (see colormode) representation of each individual image.

The class further contains an elementMetadata slot that stores image-level meta information. This
slot should be accessed using the mcols accessor function.

Value

A CytolmageL.ist object

Restrictions on entry names

The CytolmageList class only supports unique entry names to avoid duplicated images. Names
of a CytoImageList object can be get and set via names(x), where x is a CytoImageList object.
Furthermore, only named or unnamed CytolmageList objects are allowed. Partially named objects
causing empty or NA names return an error.

Coercion
Coercion to and from list, SimpleList and List:

as.list(x), as(x, ''SimpleList'"), as(x, ''SimpleList''): Coercion from a CytoImageL.ist object x

as(x, ""CytoImageList''): Coercion from a list, SimpleList or List object x to anCytoIlmageList
object

Looping

While lapply and mapply return regular list objects, endoapply and mendoapply return CytoIm-
ageList objects.

On disk representation

When setting on_disk = TRUE and specifying the h5FilesPath, images are stored on disk. To
convert back to an in-memory CytoImagelList object, one can call CytoImagelList(on_disk_IL,
on_disk = FLASE).

Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)

6 CytolmageList-manipulation

See Also

Image, for further image analysis tools.

Simplelist, for basics functions to handle SimpleList objects

?loadImages, for reading images into a CytoImageList object
?"CytoImagelList-naming”, for setting and getting image and channel names

?"CytoImagelList-subsetting”, for subsetting and accessor functions

Examples

Creation of CytolImagelList
u <- matrix(rbinom(100, 10,
v <- matrix(rbinom(100, 10,
IL1 <- CytoImagelList(imagel

.5), ncol=10, nrow=10)
.5), ncol=10, nrow=10)
Image(u), image2 = Image(v))

I © ©

Coercion

as.list(IL1)

as(IL1, "SimplelList")

as(list(imagel = Image(u), image2 = Image(v)), "CytoImagelList")

On disk representation

ILT <- CytoImagelList(imagel = Image(u), image2 = Image(v),
on_disk = TRUE,
h5FilesPath = HDF5Array: :getHDF5DumpDir())

CytoImagelList-manipulation
Manipulating CytolmageList objects

Description
Methods to change pixel values in CytoImageList objects. In the following sections, object is a
CytoImageList object containing one or multiple channels.

Value

A CytolmageL.ist object containing the manipulated Images.

Image scaling

In some cases, images need to be scaled by a constant (e.g. 2*16-1 = 65535) value to revert them
back to the original pixel values after reading them in.

scaleImages(object, value) Scales all images in the CytoIlmageList object by value. Here
value needs to be a single numeric or a numeric vector of the same length as object.

CytolmageList-manipulation 7

Image normalization

Linear scaling of the intensity values of each Image contained in a CytolmageList object to
a specific range. Images can either be scaled to the minimum/maximum value per channel or
across all channels (default separateChannels = TRUE). Also, images can be scaled to the mini-
mum/maximum value per image or across all images (default separateImages = FALSE). The latter
allows the visual comparison of intensity values across images.

To clip the images before normalization, the inputRange can be set. The inputRange either takes
NULL (default), a vector of length 2 specifying the clipping range for all channels or a list where
each named entry contains a channel-specific clipping range.

Image normalization also works for images stored on disk. By default, the normalized images are
stored as a second entry called "XYZ_norm" in the .h5 file. Here "XYZ" specifies the name of the
original entry. By storing the normalized next to the original images on disk, space usage increases.
To avoid storing duplicated data, one can specify overwrite = TRUE, therefore deleting the original
images and only storing the normalized images. However, the original images cannot be accessed
anymore after normalisation.

normalize(object, separateChannels = TRUE, separatelImages = FALSE,ft =c(@, 1), inputRange
=NULL, overwrite = FALSE):

object: A CytolmageList object

separateChannels: Logical if pixel values should be normalized per channel (default) or across
all channels.

separateImages: Logical if pixel values should be normalized per image or across all images
(default).

ft: Numeric vector of 2 values, target minimum and maximum intensity values after normalization
(see normalize).

inputRange: Numeric vector of 2 values, sets the absolute clipping range of the input intensity
values (see normalize). Alternatively a names list where each entry corresponds to a channel-
specific clipping range.

overwrite: Only relevant when images are kept on disk. By specifying overwrite = TRUE, the
normalized images will overwrite the original images in the .h5 file, therefore reducing space
on disk. However, the original images cannot be accessed anymore after normalization. If
overwrite = FALSE (default), the normalized images are added as a new entry called "XYZ_norm"
to the .h5 file.)
Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)

See Also

normalize for details on Image normalization

Examples

data(pancreasImages)

8 CytolmageList-naming

Scale images to create segmentation masks

cur_files <- list.files(system.file("extdata”, package = "cytomapper"),
pattern = "mask.tiff"”, full.names = TRUE)

x <- loadImages(cur_files)

Error when running plotCells(x)

Therefore scale to account for 16 bit encoding

x <- scaleImages(x, 2*16 - 1)

plotCells(x)

Default normalization
X <- normalize(pancreasImages)
plotPixels(x, colour_by = c("H3", "CD99"))

Setting the clipping range
X <- normalize(x, inputRange = c(@, 0.9))
plotPixels(x, colour_by = c("H3", "CD99"))

Setting the clipping range per channel
x <- normalize(pancreasImages,

inputRange = list(H3 = c(@, 70), CD99 = c(@, 100)))
plotPixels(x, colour_by = c("H3", "CD99"))

Normalizing per image
x <- normalize(pancreasImages, separatelmages = TRUE)
plotPixels(x, colour_by = c("H3", "CD99"))

CytoImageList-naming Getting and setting the channel and image names

Description

Methods to get and set the names of individual channels or the names of individual images.

Setting and getting the channel names

In the following code, x is a CytolmageList object containing one or multiple channels. The channel
names can be replaced by value, which contains a character vector of the same length as the number
of channels in the images.

channelNames(x) Returns the names of all channels stored in x

channelNames(x) <- value Replaces the channel names of x with values. For this, value needs
to have the same length as the number of channels in x

Setting and getting the image names

Here, x is a CytoImageList object. The element names can be replaced by value, which contains a
character vector of the same length as the number of images. In case of the CytoIlmageList object,
elements are always images.

CytolmageList-subsetting 9

names(x) Returns the names of all images stored in x
names(x) <- value Replaces the image names of x with value. For this, value needs to have the

same length as x
Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

Examples

data("pancreasImages”)

Get channel and image names
channelNames(pancreasImages)
names (pancreasImages)

Set channel and image names
channelNames(pancreasImages) <- paste@("marker”, 1:5)
names(pancreasImages) <- paste@("image”, 1:3)

CytoImagelList-subsetting
General subsetting methods for CytolmageList objects

Description

These getter and setter functions are used to extract, replace and merge entries in a CytoImagelList

object.
Arguments
X,y CytoImagelist objects
i integer, logical, character or vector of such indicating which element(s) to re-
place or extract
value a CytoImagelList or Image object
Value
A CytolmageList object

Setting and getting images

Functions to extract and replace elements (= images) of a CytoImageList object. In the following
code, x is a CytolmageList object. The parameter i indicates the element(s) of x that should be
returned or replaced. Replacement is done by value, which takes a CytoImageList or Image object.
If length(i) > @, value has to be a CytolmageList object of length(i), otherwise value allows
a CytoImageList object of length 1 or an Image object. If an Image object is provided, only the
image entry in the CytoIlmageList object is replaced, not the corresponding elementMetadata entry.

10 CytolmageList-subsetting

getImages(x, i) Returns image(s) indicated by i of the CytoImageList object x

setImages(x, i) <- value Replaces the image(s) indicated by i of the CytoImageList object x
with value. For this, value needs to have the same length as i

These setter and getter functions are the recommended way of extracting and replacing images in
a CytolmageList object. Alternatively, the standard operations via “[~, "[[~, “[<-~ and “[[<-"
can be performed (see ?List for S4Vectors subsetting functionality). However, these operations
do not change element names during replacment calls. The setImages() function makes sure that
element names are replaced if value is named or if i is a character or vector of characters.

Getting and setting channels

Functions to extract and replace channels of a CytoIlmageList object. Here, x is a CytoImageList ob-
ject. The parameter i indicates the channels of x that should be returned or replaced. Replacement
is done by value, which takes a CytolmageList object. The CytoImageList object value needs to
have the same length as x. Furthermore, the number of channels in value should be identical to
length(i).

getChannels(x, i) Returns channel(s) indicated by i of the CytoIlmageList object x

setChannels(x, i) <- value Replaces the channel(s) indicated by i of the CytoImageList object
x with value. For this, value needs to have the same length as i and the same number of
channels as length(i).

The setChannels() setter function does not allow adding new channels to the CytolmageList
object. For this operation, the mergeChannels function was implemented (see below).

Merging images

Merging images is possible by merging two or more CytoIlmageList objects via:

c(x, y) Returns an composite CytolmageList object with elements of both CytoImageList objects
x and y. More than two CytoImageList objects can be merged in that way.

Merging channels

Merging channels is possible via:

mergeChannels(x, y, h5FilesPath = NULL): Returns a CytolmageList in which the channels of
the CytoImageList object y have been appended to the channels of the CytoIlmageList object
x. Only channels of two CytoImageList objects can be merged in that way. The h5FilesPath
argument can be ignored unless images are stored on disk. To avoid overriding the .h5 files,
one needs to specify a new location where the merged images are stored on disk.

Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)

cytomapperShiny

Examples

data("pancreasImages”)

Get images

getImages(pancreasImages, 1)

getImages(pancreasImages, "E34_imc")

getImages(pancreasImages, 1:2)

getImages(pancreasImages, c("E34_imc"”, "GO@1_imc"))
getImages(pancreasImages, grepl(”E34_imc"”, names(pancreasImages)))

Set images

setImages(pancreasImages, 1) <- pancreasImages[1]
setImages(pancreasImages, "J02_imc") <- pancreasImages[1]
setImages(pancreasImages, "J02_imc") <- NULL

Get channels

getChannels(pancreasImages, 1)
getChannels(pancreasImages, "CD99")
getChannels(pancreasImages, c("CD99", "PIN"))

Set channels

channell <- getChannels(pancreasImages, 1)
setChannels(pancreasImages, 1) <- channell
channelPIN <- getChannels(pancreasImages, "PIN")
setChannels(pancreasImages, "CD8a") <- channelPIN
setChannels(pancreasImages, "CD8a") <- NULL

Merge images
data("pancreasImages”)
c(pancreasImages[c(1,3)], pancreasImages[2])

Merge channels

channel12 <- getChannels(pancreasImages, c(1,2))
channel34 <- getChannels(pancreasImages, c(3,4))
mergeChannels(channel12, channel34)

Merge channels on disk
cur_images <- CytoImagelList(pancreasImages,
on_disk = TRUE,
h5FilesPath = HDF5Array: : getHDF5DumpDir())
channel12 <- getChannels(cur_images, c(1,2))
channel34 <- getChannels(cur_images, c(3,4))

This will overwrite the initial .h5 files
mergeChannels(channel12, channel34,
h5FilesPath = HDF5Array: :getHDF5DumpDir())

cytomapperShiny Shiny application to visualise gated cells on images

12

Description

cytomapperShiny

This shiny application allows users to gate cells based on their raw or transformed expression values
and visualises gated cells on their corresponding images.

Usage
cytomapperShiny(
object,
mask = NULL,
image
cell_id = NULL,
img_id = NULL,
)
Arguments
object a SingleCellExperiment object.
mask (optional) a CytoImagelList containing single-channel Image objects.
image (optional) a CytoImagelList object containing single or multi-channel Image
objects.
cell_id character specifying the colData(object) entry, in which the integer cell IDs
are stored. These IDs should match the integer pixel values in the segmentation
mask object (mask).
img_id character specifying the colData(object) and mcols(mask) and/or mcols(image)
entry, in which the image IDs are stored.
parameters passed to the plotCells or plotPixels function.
Value

A Shiny app object for hierarchical gating of cells

User inputs

This function requires at least a SingleCellExperiment input object. Gating is performed on
cell-specific marker counts stored in the assay slots of the object. These can either be raw counts
(usually stored in the counts slot) or transformed/scaled counts stored in other assay slots. Gating
can only be performed sample-wise; therefore, even if mask or image are not specified, img_id
needs to point to the colData entry storing unique sample IDs. Furthermore, the cell_id entry is
required to identify cells during hierarchical gating.

If mask is specified, marker expression values and selected cells will be visualised by using the
plotCells function. To visualise pixel-level information with plotPixels, the user has to further
provide multi-channel images stored in a CytoImagelList.

cytomapperShiny 13

The user interface (UI)

The UI’s body is composed of two tabs (Scatter Plots and Images). The side bar contains the
General Control and Plots panels. Both panels can be collapsed; however only one can be expanded
again.. Using the control panel, the user can set the number of plots, which sample to display and
which assay slot to use for plotting expression. The Plots panel can be used to select up to two
markers per plot. A one-marker selection is displayed as violin and jittered points, two markers are
shown as scatter plot. To define a subset of cells, the user can draw gates on the plots. When using
multiple plots, the gate applied in a plot will define the subset of cells displayed in the next plot.
The number of plots, the marker selection and the applied gates will be transferred when switching
between samples. When switching markers or assay slots, the gates will be removed.

By switching to the Images tab, the user can inspect marker expression levels and the result of the
gating. This requires either an entry to mask and (optionally) image. Depending on the input, the left
image visualises the expression of the selected markers by using plotCells (if mask is supplied) or
plotPixels (if image is supplied). Displayed markers can be changed using the dropdown menu.
If images are provided, the user can change the contrast of the selected markers. The right image
colors (masks) or outlines (images) gated cells. Both the left and the right image come with a
zoom-in functionality.

The header section of the shiny allows to hide the side bar, to download selected cells (see below),
or to display the sessionInfo output and the Help section (see below).

Download of gated cells

The user can download the selected cells in form of a SingleCellExperiment object. The output
is a subset of the input SingleCellExperiment object. The downloaded object (in form of a .rds
file) contains a new colData entry containing the label of the subset defined by the user (using the
Cell label argument). The cell label is stored in colData(object)$cytomapper_CelllLabel

The metadata slot of the SingleCellExperiment object will be converted to a list. It contains the
original metadata (metadata(object)$metadata), gating parameters (e.g. metadata(object)$cytomapper_gate_1),
sessionInfo() output (metadata(object)$cytomapper_SessionInfo), and the date (metadata(object)$cytomapper_(

Passing further parameters

To customise the visual output of cytomapperShiny, refer to plotting-param. Further arguments
can be passed to the plotCells and plotPixels function. As an example: To avoid interpo-
lation of output images, set interpolate = FALSE. Passing the parameter interpolate = FALSE
will make images less blurry, which might be useful while using the zoom-in functionality of
cytomapperShiny .

Getting further help
Please refer to the Help section found when clicking the °?” button in the upper right corner. The
Help section contains a recommended workflow on how to use the app.

Author(s)

Nils Eling (<nils.eling@dgbm.uzh.ch>)
Tobias Hoch (<tobias.hoch@dgbm.uzh.ch>)

14 loadImages

See Also

plotCells and plotPixels for the main plotting functions

Examples

Only run this example in interactive R sessions
if (interactive()) {

Load example data sets

data("pancreasSCE")

data("pancreasImages”)

data("pancreasMasks")

Use shiny with SCE object, images and masks

cytomapperShiny(object = pancreasSCE, mask = pancreasMasks,
image = pancreasImages, cell_id = "CellNb",
img_id = "ImageNb")

Use shiny with SCE object and masks
cytomapperShiny(object = pancreasSCE, mask = pancreasMasks,
cell_id = "CellNb", img_id = "ImageNb")

Use shiny with SCE object only
cytomapperShiny(object = pancreasSCE,
cell_id = "CellNb"”, img_id = "ImageNb")

loadImages Read images into CytolmageList object

Description

Function to read in single- or multi-channel images from a specified path or file. The function
returns a CytolmageList object containing one image per slot. Supported file extensions are: ’.tiff’,

>tif”, ’.png’, .jpeg’, *.jpg’, "hS5".

Usage
loadImages(
X,
pattern = NULL,
on_disk = FALSE,
h5FilesPath = NULL,
name = NULL,

BPPARAM = SerialParam(),

loadImages 15

Arguments

X The function takes a variety of possible character inputs:
A single file Full path and file name of an individual image file.
A path A path to where image files are located.
A vector of files A character vector where each entry represents an individual
file.
pattern Character inputs of the following form:
A single character A pattern to search for in the specified path (regular expres-
sions are supported).
A character vector Unique entries are matched against file names in the spec-
ified path.
on_disk Logical indicating if images in form of HDF5Array objects (as .h5 files) should
be stored on disk rather than in memory.
h5FilesPath path to where the .hS5 files for on disk representation are stored. This path needs
to be defined when on_disk = TRUE. When files should only temporarily be
stored on disk, please set h5FilesPath = getHDF5DumpDir ()

name (if reading in .h5 files) a single character, a character vector of length equal to
the length of x or NULL. See details for how to set name.

BPPARAM parameters for parallelised reading in of images. This is only recommended for
very large images. See MulticoreParam for information on how to use multiple
cores for parallelised processing.

arguments passed to the readImage function.

Value

A CytolmageList object

Reading in 16-bit integer images

To correctly read in the original integer values of 16-bit, the as.is = TRUE parameter needs to be
added to the function call. This will prevent the readTIFF function to re-scale integer values.

Loading specific images

This function loads images via the readImage function and stores them in a CytolmageList object.
In the simplest case, x is an image file name. If x is a path, the pattern argument can be used
to select image names with certain patterns. For convenience, pattern also takes a vector of char-
acters (e.g. a colData entry in a SingleCellExperiment object) to select by unique image names.
Furthermore, a vector of image names can be provided to read in multiple images.

Reading in .hS5 files

When reading in .h5 files by default the loadImages function will try to read in the dataset with
the same name as the .h5 file from within the file. If datasets are stored with different names, the
name argument must be specified. This can either be a single character if datasets across all files
are named the same or a character vector of the same length as x indicating the dataset name within
each .h5 file. By default, the images/datasets are not read into memory when stored in .h5 files.

16

Author(s)

measureObjects

Nils Eling (<nils.eling@dgbm.uzh.ch>),

Nicolas Damond (<nicolas.damond@dgbm.uzh.ch>)

See Also

readImage, for reading in individual images.

Examples

Providing a single file
single.image <- system.file("extdata/E34_mask.tiff", package = "cytomapper")
single.image <- loadImages(single.image)

Providing a path and pattern
path.to.images <- system.file("extdata"”, package = "cytomapper")
image.list <- loadImages(path.to.images, pattern = "mask.tiff")

Providing multiple patterns

data(pancreasSCE)

path.to.images <- system.file("extdata"”, package = "cytomapper")
image.list <- loadImages(path.to.images, pattern = pancreasSCE$MaskName)

Providing multiple files
list.images <- list.files(system.file("extdata”, package = "cytomapper"),

pattern = "_mask.tiff"”, full.names = TRUE)

image.list <- loadImages(list.images)

On disk representation
path.to.images <- system.file("extdata"”, package = "cytomapper")
image.list <- loadImages(path.to.images, pattern = "mask.tiff",

Parallel processing

on_disk = TRUE,
h5FilesPath = HDF5Array: :getHDF5DumpDir())

path.to.images <- system.file("extdata"”, package = "cytomapper")
image.list <- loadImages(path.to.images, pattern = "mask.tiff",

BPPARAM = BiocParallel::MulticoreParam())

measureObjects

Compute morphological and intensity features from objects on images.

Description

For each object (e.g. cell) identified by segmentation, the measureObjects function computes
intensity features (also referred to as basic features; e.g. mean intensity), shape features (e.g. area),
moment features (e.g. position) and haralick features. These features are returned in form of a
SingleCellExperiment object.

measureObjects 17

Usage
measureObjects(
mask,
image,
img_id,
feature_types = c("basic”, "shape"”, "moment"),
basic_feature = "mean”,
basic_quantiles = NULL,
shape_feature = c("area”, "radius.mean"),
moment_feature = c("cx”, "cy", "majoraxis”, "eccentricity"”),
haralick_feature = NULL,
haralick_nbins = 32,
haralick_scales = c(1, 2),
BPPARAM = SerialParam()
)
Arguments
mask a CytoImagelist object containing single-channel Image or HDF5Array ob-
jects. Segmentation masks must contain integer pixel values where groups of
pixels correspond to objects.
image aCytoImagelist object containing single or multi-channel Image or HDF5Array
objects, where each channel indicates the measured pixel intensities.
img_id character specifying the mcols(image) and mcols(mask) entry, in which the

image IDs are stored.

feature_types character vector or string indicating which features to compute. Needs to contain

n on

"basic"”. Optionally, "shape”, "moment” and "haralick" are allowed. Default

n o n

"basic”, "shape"” and "moment”.

basic_feature string indicating which intensity measurement per object and channel should be
used to populate the counts(x) slot; where x is the returned SingleCellExperiment
object. Default "mean” but "sd"”, "mad” and "qgx" allowed. Here, * indicates
the computed quantile (see basic_quantiles).

basic_quantiles
numeric vector or single number indicating which quantiles to compute. Default
none.

shape_feature string or character vector specifying which shape features to compute. De-

n on

fault "area” and "radius.mean”. Allowed entries are: "area”, "perimeter”,

non non

"radius.mean”, "radius.sd"”, "radius.max"”, "radius.min".

moment_feature string or character vector indicating which moment features to compute. Default
"cx", "cy”, "majoraxis”, and "eccentricity”. Other allowed features are
"theta". Here moment features are only computed on the segmentation mask
without incorporating pixel intensities. Therefore, "cx" and "cy" are the x and
y coordinates of the cell centroids.

haralick_feature
string or character vector indicating which haralick features to compute. De-
fault none. Allowed are the 13 haralick features: "asm”, "con”, "cor”, "var”,

ns non

ldm”, nsav , SVa”, nsenn, “ent“, ”dVa”, “den“, nf‘-lzn’ n,f:-l3n

18 measureObjects

haralick_nbins an integer indicating the number of bins used to compute the haralick matrix.
Pixel intensities are binned in haralick_nbins discrete gray levels before com-
puting the haralick matrix.

haralick_scales

an integer vector indicating the number of scales (distance at which to consider
neighbouring pixels) to use to compute the haralick features.

BPPARAM parameters for parallelised processing of images. See MulticoreParam for in-
formation on how to use multiple cores for parallelised processing.

Value

A SingleCellExperiment object (see details)

The returned SingleCellExperiment objects

The returned SingleCellExperiment object sce contains a single assay. This assay contains individ-
ual objects in columns and channels in rows. Each entry summarises the intensities per object and
channel. This summary statistic is typically the mean intensity per object and channel. However,
other summary statistics can be computed. When the mean intensity per object and channel is com-
puted (default), the assay is accessible via counts(sce). Otherwise, the assay needs to be accessed
via assay(sce, "counts_*"), where * indicates the argument to basic_feature.

The colData(x) entry is populated by the computed shape, moment and haralick features per
object. The prefix of the feature names indicate whether these features correspond to shape (s.),
moment (m.) or haralick (h.) features. Default features are the following:

* s.areaobject size in pixels

* s.radius.meanmean object radius in pixels

* m.cxx centroid position of object

* m.cyy centroid position of object

* m.majoraxismajor axis length in pixels of elliptical fit

* m.eccentricityelliptical eccentricity. 1 meaning straight line and 0 meaning circle.

Computing quantiles

Sometimes it can be useful to describe the summarised pixel intensity per object and channel not in
terms of the mean but some quantile of the pixel distribution. For example, to compute the median
pixel intensity per object and channel, set basic_feature = "q@5" and basic_quantiles = 0.5.

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>),

See Also

computeFeatures, for detailed explanation for the computed features. https://earlglynn.github.
io/RNotes/package/EBImage/Haralick-Textural-Features.html for more discussion on the
haralick features

https://earlglynn.github.io/RNotes/package/EBImage/Haralick-Textural-Features.html
https://earlglynn.github.io/RNotes/package/EBImage/Haralick-Textural-Features.html

pancreasImages 19

Examples

Standard example
data(pancreasImages)
data(pancreasMasks)

sce <- measureObjects(pancreasMasks, pancreasImages, img_id = "ImageNb")
sce

Compute only intensity feature

sce <- measureObjects(pancreasMasks, pancreasImages, img_id = "ImageNb",
feature_types = "basic")

colData(sce)

Visualize on segmentation masks
plotCells(pancreasMasks, object = sce, img_id = "ImageNb",
cell_id = "object_id", colour_by = "PIN")

pancreasImages Example CytolmageList object of image files

Description

This CytoImageList object contains multi-channel stacks of three images acquired by imaging mass
cytometry. Each channel represents the pixel-intensities of each of the 5 measured proteins. The
data is part of a imaging mass cytometry study on the progression of Type 1 diabetes and contains
pancreas cells.

Usage

pancreasImages

Format
A CytolmageList object containing 3 Image objects with 5 channels each. Channel names can be
accessed via ?channelNames.

References

Damond, N. et al., A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry,
Cell Metabolism 29:3, 2019

https://www.sciencedirect.com/science/article/pii/S1550413118306910
https://www.sciencedirect.com/science/article/pii/S1550413118306910

20 pancreasSCE

pancreasMasks Example CytolmagelList object of segmentation masks

Description

This CytoImageList object contains single-channel images representing the segmentation masks
after preprocessing of imaging mass cytometry data. The data is part of a imaging mass cytometry
study on the progression of Type 1 diabetes and contains pancreas cells.

Usage

pancreasMasks

Format

A CytoImageList object containing 3 Image objects with 1 channel each. These images are the
result to segmentation and associated to the images stored in the pancreasImages object. Pixel
values indicate the numeric cell identifier while a value of 0 represents the image background.

References

Damond, N. et al., A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry,
Cell Metabolism 29:3, 2019

pancreasSCE Example SingleCellExperiment object

Description

This SingleCellExperiment object contains the expression values of 5 proteins (rows) from 362 cells
(columns) across 3 images. The data is part of a imaging mass cytometry study on the progression
of Type 1 diabetes and therefore contains pancreas cells.

Usage

pancreasSCE

Format

A SingleCellExperiment object containing the raw and arcsinh-transformed mean pixel counts per
cell as well as associated cell- and protein-specific metadata. Row names represent the names of
the target proteins and column names represent the image name and cell id of each cell.

colData Cell-specific metadata where rownames represent the image name and cell id. It containins
the

1. image number (ImageNb),

https://www.sciencedirect.com/science/article/pii/S1550413118306910
https://www.sciencedirect.com/science/article/pii/S1550413118306910

plotCells

AN

7.

21

cell number/identifier (CelIND),

spatial position on the image (Pos_X, Pos_Y),

the associated image name (ImageName, see ?"pancreasImages”),
the associated mask name (MaskName, see ?"pancreasMasks"”),

a arbitrary cell-type label (CellType)

a logical (Pattern) indicating exocrine cells

rowData Protein-specific metadata where rownames represent the names of the target proteins. It
contains the

1.
2.
3.
4.

channel number (frame),
metal tag of the antibody (MetalTag)
Target (the expanded name of the targeted protein)

clean_Target (the abbreviated name of the targeted protein)

assays List of protein expression counts containing:

1.
2.

References

the raw expression counts (counts): mean pixel value per cell and protein

arcsinh-transformed raw expression counts using a co-factor of 1 (exprs)

Damond, N. et al., A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry,
Cell Metabolism 29:3, 2019

plotCells

Function to visualize cell-level information on segmentation masks

Description

This function takes a SingleCellExperiment and CytoImagelList object containing segmentation
masks to colour cells by marker expression or metadata.

Usage

plotCells(

mask,

object = NULL,

cell_id = NULL,

img_id = NULL,

colour_by = NULL,
outline_by = NULL,
exprs_values = "counts”,

colour

= NULL,

https://www.sciencedirect.com/science/article/pii/S1550413118306910
https://www.sciencedirect.com/science/article/pii/S1550413118306910

22 plotCells

Arguments

mask a CytoImagelList containing single-channel Image objects (see section ’Seg-
mentation mask object’ below).

object a SingleCellExperiment object.

cell_id character specifying the colData(object) entry, in which the integer cell IDs
are stored. These IDs should match the integer pixel values in the segmentation
mask object.

img_id character specifying the colData(object) and mcols(mask) entry, in which
the image IDs are stored (see section 'Linking the SingleCellExperiment and
CytoImagelList object’ below)

colour_by character or character vector specifying the features (rownames(object)) or
metadata (colData(object) entry) used to colour individual cells. Cells can be
coloured by single colData(object) entries or by up to six features.

outline_by single character indicating the colData(object) entry by which to outline in-

dividual cells.

exprs_values single character indicating which assay(object) entry to use when visualizing
feature counts.

colour a list with names matching the entries to colour_by and/or outline_by. When
setting the colour for continous features, at least two colours need to be provided
indicating the colours for minimum and maximum values. When colouring dis-
crete vectors, a colour for each unique entry needs to be provided (see section
’Setting the colours’ and examples)

Further arguments passed to ?"plotting-param”

Value
a list if return_images and/or return_plot is TRUE (see ?"plotting-param").

* plot: a single plot object (display = "all") or a list of plot objects (display = "single")
* images: a SimplelList object containing three-colour Image objects.

Segmentation mask object

In the plotCells function, mask refers to a CytoImagelist object that contains a single or multiple
segmentation masks in form of individual Image objects. The function assumes that each object in
the segmentation mask is a cell. The key features of such masks include:

* each Image object contains only one channel
* pixel values are integers indicating the cells’ IDs or 0 (background)

Linking SingleCellExperiment and CytoImageList objects

To colour individual cells contained in the segmentation masks based on features and metadata

stored in the SingleCellExperiment object, an img_id and cell_id entry needs to be provided. Im-

age IDs are matched between the SingleCellExperiment and CytoImagelist object via entries to

the colData(object)[,img_id] and the mcols(mask)[,img_id] slots. Cell IDs are matched be-

tween the SingleCellExperiment and CytoImagelist object via entries to colData(object)[,cell_id]
and the integer values of the segmentation masks.

plotCells 23

Setting the colours

By default, features and metadata are coloured based on internally-set colours. To set new colours, a
list object must be provided. The names of the object must correspond to the entries to colour_by
and/or outline_by. When setting the colours for continous expression values or continous meta-
data entries, a vector of at least two colours need to be specified. These colours will be passed onto
colorRampPalette for interpolation. Discrete metadata entries can be coloured by specifying a
named vector in which each entry corresponds to a unique entry to the metadata vector.

Subsetting the CytoImagelList object
The CytoImagelList object can be subsetted before calling the plotCells function. In that case,
only the selected images are displayed.

Subsetting the SingleCellExperiment object
The SingleCellExperiment object can be subsetted before calling the plotCells function. In
that case, only cells contained in the SingleCellExperiment object are coloured/outlined.

Colour scaling

When colouring features using the plotCells function, colours are scaled between the minimum and
maximum per feature across the full assay contained in the SingleCellExperiment object. When
subsetting images, cell-level expression is not scaled across the subsetted images but the whole
SingleCellExperiment object. To avoid this, the SingleCellExperiment object can be subsetted to
only contain the cells that should be displayed before plotting.

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

Nicolas Damond (<nicolas.damond@dgbm.uzh.ch>)

See Also

For further plotting parameters see ?"plotting-param”

Examples

data(pancreasMasks)
data(pancreasSCE)

Visualize the masks
plotCells(pancreasMasks)

Colour the masks based on averaged expression
plotCells(pancreasMasks, object = pancreasSCE, img_id = "ImageNb",
cell_id = "CellNb", colour_by = c("CD99", "CDH"))

Colour the masks based on metadata
plotCells(pancreasMasks, object = pancreasSCE, img_id = "ImageNb",
cell_id = "CellNb"”, colour_by = "CellType")

24

Outline the masks based on metadata

plotCells(pancreasMasks, object = pancreasSCE, img_id = "ImageNb”,
cell_id = "CellNb", colour_by = "CD99",
outline_by = "CellType")

Colour the masks based on arcsinh-transformed expression
plotCells(pancreasMasks, object = pancreasSCE, img_id = "ImageNb",
cell_id = "CellNb"”, colour_by = "CD99",
exprs_values = "exprs")

Subset the images

cur_images <- getImages(pancreasMasks, 1:2)

plotCells(cur_images, object = pancreasSCE, img_id = "ImageNb”,
cell_id = "CellNb"”, colour_by = "CD99")

Set colour
plotCells(pancreasMasks, object = pancreasSCE, img_id = "ImageNb”,

cell_id = "CellNb", colour_by = "CD99", outline_by = "CellType",

colour = 1list(CD99 = c("black”, "red"),
CellType = c(celltype_A = "blue”,
celltype_B = "green”,
celltype_C = "red")))

plotPixels

plotPixels

Function to visualize pixel-level information of multi-channel images

Description

This function takes a CytoImagelList object to colour pixels by marker expression. Additionally, a
SingleCellExperiment object and CytoImagelList object containing segmentation masks can be

provided to outline cells based on metadata.

Usage
plotPixels(
image,
object = NULL,
mask = NULL,
cell_id = NULL,
img_id = NULL,

colour_by = NULL,
outline_by = NULL,
bcg = NULL,

colour = NULL,

plotPixels 25

Arguments

image a CytoImagelist object containing single or multi-channel Image objects (see
details below).

object an optional SingleCellExperiment object.

mask an optional CytoImagelList object containing segmentaion masks in form of
single-channel Image objects (see details below)

cell_id character specifying the colData(object) entry, in which the integer cell IDs
are stored. These IDs should match the integer pixel values in the segmentation
mask object.

img_id character specifying the colData(object), mcols(image) and mcols(mask)
entry, in which the image IDs are stored (see section ’Linking the SingleCellExperiment
and CytoImagelList objects’ below)

colour_by character or character vector specifying the features (contained in channelNames (image))
used to colour individual cells. Pixels can be coloured by up to six features.

outline_by single character indicating the colData(object) entry by which to outline in-
dividual cells

bcg a list with names matching the entries to colour_by. Each entry contains a

numeric vector of three entries:

1. brightness value added to the specified channel
2. contrast value multiplied with the specified channel
3. gamma value (channel is exponentiated by this value)

Default is ¢(0,1,1).

colour a list with names matching the entries to colour_by and/or outline_by. When
setting the colour for continous features, at least two colours need to be provided
indicating the colours for minimum and maximum values. When outlining by
discrete values, a colour for each unique entry needs to be provided (see section
’Setting the colours’ and examples)

Further arguments passed to ?"plotting-param”

Value
a list if return_images and/or return_plot is TRUE (see ?"plotting-param”).

* plot: a single plot object (display = "all") or a list of plot objects (display = "single")

* images: a SimplelList object containing three-colour Image objects.

Multi-channel image and segmentation mask objects

In the plotPixels function, image refers to a CytoImagelList object that contains a single or
multiple single- or multi-channel Image objects. Up to six channels can be overlayed to generate
a composite image. When outlining cells, a SingleCellExperiment object and CytoImagelList
object containing segmentation masks must be provided. The function assumes that each object in
the segmentation mask is a cell. The key features of such segmentation masks include:

* each Image object contains only one channel

* pixel values are integers indicating the cells’ IDs

26 plotPixels

Linking SingleCellExperiment and CytoImageList objects

To outline individual cells contained in the segmentation masks based on metadata stored in the
SingleCellExperiment object, an img_id and cell_id entry needs to be provided. Image IDs
are matched between the SingleCellExperiment and CytoImagelList objects via entries to the
colData(object)[,img_id], mcols(image)[,img_id] and the mcols(image)[, img_id] slots.
Cell IDs are matched between the SingleCellExperiment and CytoImagelist object via entries
to colData(object)[,cell_id] and the integer values of the segmentation masks.

Setting the colours

By default, features and metadata are coloured based on internally-set colours. To set new colours, a
list object must be provided. The names of the object must correspond to the entries to colour_by
and/or outline_by. When setting the colours for continous expression values or continous meta-
data entries, a vector of at least two colours need to be specified. These colours will be passed
onto colorRampPalette for interpolation. Cells can be outlined by discrete metadata entries when
specifying a named vector in which each entry corresponds to a unique entry to the metadata vector.

Subsetting the CytoImagelList objects
The CytoImagelList object(s) can be subsetted before calling the plotPixels function. In that
case, only the selected images are displayed.

Subsetting the SingleCellExperiment object
The SingleCellExperiment object can be subsetted before calling the plotPixels function. In
that case, only cells contained in the SingleCellExperiment object are outlined.

Colour scaling

When plotting pixel intensities, colours are scaled to the minimum and maximum per channel across
all images that are being displayed. Therefore, when subsetting images, displayed intensities might
change. However, the colour legend will display the correct numeric minimum and maximum pixel
intensity across all displayed images per channel.

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

Nicolas Damond (<nicolas.damond@dgbm.uzh.ch>)

See Also

For further plotting parameters see ?"plotting-param”. For instructions on how to normalize
images see normalize.

Examples

data(pancreasMasks)
data(pancreasImages)
data(pancreasSCE)

plotting-param 27

Visualize the images - by default the first channel
plotPixels(pancreasImages)

Colour the channels
plotPixels(pancreasImages, colour_by = c("CD99", "CDH"))

Outline the cells based on metadata

plotPixels(pancreasImages, object = pancreasSCE, mask = pancreasMasks,
img_id = "ImageNb"”, cell_id = "CellNb",
colour_by = c("CD99", "CDH"), outline_by = "CellType")

Enhance individual channels
plotPixels(pancreasImages, colour_by = c("CD99", "CDH"),
bcg = 1ist(CD99 = c(@, 2, 1)))

Subset the images
cur_images <- getlImages(pancreasImages, 1:2)
plotPixels(cur_images, colour_by = c("CD99", "CDH"))

Set colour
plotPixels(pancreasImages, colour_by = c("CD99"”, "CDH"),
colour = 1list(CD99 = c("black”, "green"),
CDH = c("black”, "blue")))

plotting-param Further plotting parameters for the cytomapper package

Description

The plotCells and plotPixels functions share a number of parameter that can be set to change
the visual representation of plotted images.

Arguments

missing_colour a single character specifying a valid colour. Cells that are not contained in the
SingleCellExperiment object will be coloured based on missing_colour. In
the plotPixels function, missing_colour defines the outline of the cells if
outline_by is not set.
background_colour
(only plotCells) a single character specifying a valid colour that is set as the
background of the image.
scale_bar a list specifying features of the scale bar. One or multiple of the following entries
are supported:
* length: numeric length in pixels (default 20% of the largest image width).
» label: single character specifying the scale bar label.
* cex: numeric value indicating the size of the scale bar label.

28

image_title

save_plot

return_plot

return_images

legend

plotting-param

lwidth: numeric value indicating the line width of the scale bar in pixels.
By default, the line width is adjusted relative to the maximum height of the
images.

colour: single character specifying the colour of scale bar and label (de-
fault "white").

position: position of scale bar. Supported values: "topleft", "topright",
"bottomleft", "bottomright" (default "bottomright").

margin: vector of two numeric entries specifying the x and y margin be-
tween image boundary and the scale bar (default c(10,10)).

frame: either "all" to display scale bar on all images or a single number
specifying the image for which the scale bar should be displayed (default
"all").

Plotting of the scale bar is suppressed if set to NULL.

a list specifying features of the image titles. One or multiple of the following
entries are supported:

text: character vector of image titles. Same length as the CytoImagelist
object.

position: single character specifying the position of the title. Supported
entries: "top", "bottom", "topleft", "bottomleft", "topright", "bottomright"
(default "top").

colour: single character specifying the colour of image title (default "white").
margin: vector of two numeric entries specifying the x and y margin be-
tween image boundary and the image title (default c(10,10)).

font: numeric entry specifying the font of the image title (default 1, see
par for details)

cex: numeric value indicating the size of the image title.

Plotting of the image title is suppressed if set to NULL.

a list specifying how to save the plot. One or multiple of the following entries
are supported:

filename: single character specifying a valid file name. The file extension
specifies the format in which the file is saved. Supported formats are: jpeg,
tiff and png. If display = "single"”, each image will be written in an
individual file. The file names obtain a "_x" ending where x indicates the
position of the image in the CytoImageList object or "legend".

scale: by default the height and width of the saved image is defined by the
maximum image size times the number of rows and number of columns.
This resolution is often not sufficient to clearly display the text. The scale
parameter can be set to increase the resolution of the image while keeping
the text size constant (default 1 but can be increased for optimal results).

logical indicating whether to return the plot (see recordPlot for more infos).

logical indicating whether to return the coloured images in form of a SimpleList
object. Each entry to this list is a three-colour Image object. However, the image
title and scale bar are not retained.

a list specifying features of the legend. One or multiple of the following entries
are supported:

plotting-param 29

* colour_by.title.font: numeric entry specifying the font of the legend
title for features specified by colour_by.

* colour_by.title.cex: numeric entry specifying the size of the legend
title for features specified by colour_by.

* colour_by.labels.cex: numeric entry specifying the size of the legend
labels for features specified by colour_by.

* colour_by.legend.cex: (only discrete features) numeric entry specifying
the size of the legend for features specified by colour_by.

* outline_by.title.font: numeric entry specifying the font of the legend
title for features specified by outline_by.

e outline_by.title.cex: numeric entry specifying the size of the legend
title for features specified by outline_by.

* outline_by.labels.cex: numeric entry specifying the size of the legend
labels for features specified by outline_by.

e outline_by.legend.cex: (only discrete features) numeric entry specify-
ing the size of the legend for features specified by outline_by.

* margin: numeric value indicating the margin (in pixels) between the leg-
ends and the outer boundary (default 2)

Plotting of the legend is suppressed if set to NULL.

margin numeric value indicating the gap (in pixels) between individual images (default
0).

thick logical indicating whether cell borders should be drawn as thick lines (default
FALSE).

display one of two possible values: "all" or "single". When set to "all", all images are

displayed at once in a grid-like fashion. When set to "single", individual images
are plotted in single graphics devices. The second option is useful when saving
individual images in pdf format or when displaying in Rmarkdown files.

scale logical indicating whether to scale each feature individually to its minimum/maximum
across the SingleCellExperiment object (see plotCells) or across all displayed
images (see plotCells). If set to FALSE each value is displayed relative to the
maximum of all selected features.

interpolate a logical indicating whether to apply linear interpolation to the image when
drawing (see rasterImage) (default TRUE).
Value
a list if return_images and/or return_plot is TRUE.

* plot: a single plot object (display = "all") or a list of plot objects (display = "single")

* images: a SimplelList object containing three-colour Image objects.

Author(s)
Nils Eling (<nils.eling@dgbm.uzh.ch>)

Nicolas Damond (<nicolas.damond@dgbm.uzh.ch>)

30

See Also

plotCells and plotPixels for the main plotting functions

Examples

data("pancreasImages”)
data("pancreasMasks")
data("pancreasSCE")

Setting missing colour
plotCells(pancreasMasks, missing_colour = "blue")

Setting background colour
plotCells(pancreasMasks, background_colour = "blue")

Setting the scale bar
plotCells(pancreasMasks, scale_bar = list(length = 10,

cex = 2,
lwidth = 109,
colour = "red”,

position = "bottomleft”,
margin = c(5,5),

frame = 3))
Setting the image title
plotCells(pancreasMasks,
image_title = list(text = c("imagel”, "image2", "image3"),

position = "topleft”,
colour = "blue”,
margin = c(0,5),
font = 2,
cex = 2))

Return plot
cur_out <- plotPixels(pancreasImages, return_plot = TRUE)
cur_out$plot

Return images
cur_out <- plotPixels(pancreasImages, return_images = TRUE)
cur_out$images

Setting the legend
plotCells(pancreasMasks, object = pancreasSCE,
img_id = "ImageNb", cell_id = "CellNb",
colour_by = c("CD99", "CDH"),
outline_by = "CellType"”,
legend = list(colour_by.title.font = 0.5,
colour_by.title.cex = 0.5,
colour_by.labels.cex = 0.5,
outline_by.legend.cex = 0.5,
margin = 0))

plotting-param

plotting-param

Setting the margin between images
plotPixels(pancreasImages, margin = 3)

Thick outlines

plotCells(pancreasMasks, object = pancreasSCE,
img_id = "ImageNb"”, cell_id = "CellNb",

colour_by = "CD99",
outline_by = "CellType",
thick = TRUE)

Displaying individual images

plotPixels(pancreasImages, display = "single")

Supress scaling
plotPixels(pancreasImages, colour_by =
scale = TRUE)
plotPixels(pancreasImages, colour_by =
scale = FALSE)

Suppress interpolation

plotPixels(pancreasImages, colour_by =
interpolate = TRUE)

plotPixels(pancreasImages, colour_by =
interpolate = FALSE)

c(”CD99”,

c("CD99”,

c(”CD99”,

c("CD99”,

"PIN"),

"PIN"Y,

"PIN"),

"PIN"Y,

31

Index

* datasets getChannels,CytoImagelist-method
pancreasImages, 19 (CytoImagelList-subsetting), 9
pancreasMasks, 20 getImages (CytoImagelList-subsetting), 9
pancreasSCE, 20 getImages,CytoImagelList-method

[<-,CytoImagelList,ANY,ANY,CytoImagelList-method (CytoImagelist-subsetting), 9

(CytoImagelList-subsetting), 9

[[<-,CytoImagelList,ANY,ANY-method HDF5Array, 4, 15, 17

(CytoImagelList-subsetting), 9
Image, 4-7,9, 12,17, 19, 20, 22, 25, 28, 29
adaptSpillmat, 3

lapply, 5
channelNames, /9 List, 5, 10
channelNames (CytoImageList-naming), 8 loadImages, 6, 14
channelNames, CytoImagelList-method
(CytoImagelList-naming), 8 mapply, 5
channelNames<- (CytoImagelList-naming), 8 mcols, 5
channelNames<-,CytoImagelList-method measureObjects, 16
(CytoImagelList-naming), 8 mendoapply, 5
coerce,ANY,CytoImagelList-method mergeChannels
(CytoImagelList-class), 4 (CytoImagelist-subsetting), 9
coerce,list,CytoImagelList-method MulticoreParam, 4, 15, I8
(CytoImagelList-class), 4
colormode, 5 names,CytoImagelList-method
colorRampPalette, 23, 26 (CytoImagelList-naming), 8
compCytof, 3 names<-,CytoImagelList-method
compImage, 2 (CytoImagelist-naming), 8
computeFeatures, I8 nnls, 3
CytoImagelist, 6-10, 12, 14, 15,17, 19-22, normalize, 7, 26
24, 25 normalize (CytoImagelList-manipulation),
CytoImagelist (CytoImagelList-class), 4 6
CytoImagelist-class, 4 normalize,CytoImagelList-method
CytoImagelList-manipulation, 6 (CytoImagelist-manipulation), 6
CytoImagelList-naming, 8
CytoImagelList-subsetting, 9 pancreasImages, 19, 20, 21
cytomapperShiny, 11 pancreasMasks, 20, 21
pancreasSCE, 20
endoapply, 5 par, 28
plotCells, 12-14,21, 27,29, 30
getChannels (CytoImagelList-subsetting), plotPixels, 12-14,24,27, 30
9 plotting-param, 27

32

INDEX

rasterImage, 29
readImage, 15, 16
readTIFF, 15
recordPlot, 28

scalelmages
(CytoImagelList-manipulation), 6
scalelImages,CytoImagelList-method
(CytoImagelList-manipulation), 6
setChannels<-
(CytoImagelList-subsetting), 9
setChannels<-,CytoImagelist-method
(CytoImagelList-subsetting), 9
setImages<- (CytoImagelList-subsetting),
9
setImages<-,CytoImagelList-method
(CytoImagelList-subsetting), 9
show, CytoImagelList-method
(CytoImagelList-class), 4
SimplelList, 4-6, 22, 25, 28, 29
SingleCellExperiment, 12, 13, 15, 16, 18,
20-22, 24, 25

33

	compImage
	CytoImageList-class
	CytoImageList-manipulation
	CytoImageList-naming
	CytoImageList-subsetting
	cytomapperShiny
	loadImages
	measureObjects
	pancreasImages
	pancreasMasks
	pancreasSCE
	plotCells
	plotPixels
	plotting-param
	Index

