Package 'EWCE' October 18, 2022 Type Package Title Expression Weighted Celltype Enrichment Version 1.4.0 **Description** Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses. URL https://github.com/NathanSkene/EWCE BugReports https://github.com/NathanSkene/EWCE/issues License GPL-3 **Depends** R (>= 4.1), RNOmni (>= 1.0) VignetteBuilder knitr Imports stats, utils, methods, ewceData, dplyr, ggplot2, reshape2, limma, stringr, HGNChelper, Matrix, parallel, SingleCellExperiment, SummarizedExperiment, DelayedArray, BiocParallel, orthogene (>= 0.99.8), data.table **Suggests** remotes, knitr, BiocStyle, rmarkdown, testthat (>= 3.0.0), readxl, memoise, markdown, sctransform, DESeq2, MAST, DelayedMatrixStats, cowplot, ggdendro, grDevices, grid, gridExtra, scales, magick, badger biocViews GeneExpression, Transcription, DifferentialExpression, GeneSetEnrichment, Genetics, Microarray, mRNAMicroarray, OneChannel, RNASeq, BiomedicalInformatics, Proteomics, Visualization, FunctionalGenomics, SingleCell **RoxygenNote** 7.1.2 **Encoding** UTF-8 Config/testthat/edition 3 git_url https://git.bioconductor.org/packages/EWCE git_branch RELEASE_3_15 # R topics documented: | EWCE-package | |--| | add_res_to_merging_list | | bin_columns_into_quantiles | | bin_specificity_into_quantiles | | bootstrap_enrichment_test | | check_ewce_genelist_inputs | | check_percent_hits | | controlled_geneset_enrichment | | ctd_to_sce | | drop_uninformative_genes | | ewce_expression_data | | ewce_plot | | example_bootstrap_results | | example_transcriptome_results | | filter_genes_without_1to1_homolog | | filter_nonorthologs | | fix_bad_hgnc_symbols | | fix_bad_mgi_symbols | | fix_celltype_names | | generate_bootstrap_plots | | generate_bootstrap_plots_for_transcriptome | | generate_celltype_data | | get_celltype_table | | is_delayed_array | | is_matrix | | is_sparse_matrix | | list_species | | load_rdata | | merged_ewce | | merge_ctd | | merge_sce | | merge_two_expfiles | | plot_ctd | | prep.dendro | | sct_normalize | | standardise_ctd | EWCE-package 3 Index 47 EWCE-package EWCE: Expression Weighted Celltype Enrichment #### **Description** Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses. #### **Details** EWCE: Expression Weighted Celltype Enrichment Used to determine which cell types are enriched within gene lists. The package provides tools for testing enrichments within simple gene lists (such as human disease associated genes) and those resulting from differential expression studies. The package does not depend upon any particular Single Cell Transcriptome dataset and user defined datasets can be loaded in and used in the analyses. #### Author(s) Maintainer: Alan Murphy <alanmurph94@hotmail.com> (ORCID) Authors: - Brian Schilder <bri> Schilder @alumni.brown.edu > (ORCID) - Nathan Skene <nathan.skene@gmail.com> (ORCID) #### See Also Useful links: - https://github.com/NathanSkene/EWCE - Report bugs at https://github.com/NathanSkene/EWCE/issues ``` add_res_to_merging_list ``` Add to results to merging list #### **Description** add_res_to_merging_list adds EWCE results to a list for merging analysis. #### Usage ``` add_res_to_merging_list(full_res, existing_results = NULL) ``` #### **Arguments** full_res Results list generated using bootstrap_enrichment_test or ewce_expression_data functions. Multiple results tables can be merged into one results table, as long as the 'list' column is set to distinguish them. existing_results Output of previous rounds from adding results to list. Leave empty if this is the first item in the list. #### Value Merged results list. #### **Examples** ``` # Load the single cell data ctd <- ewceData::ctd()</pre> # Load the data tt_alzh <- ewceData::tt_alzh() # tt_alzh_BA36 <- ewceData::tt_alzh_BA36()</pre> # Use 3 bootstrap lists for speed, for publishable analysis use >10000 reps <- 3 # Use 5 up/down regulated genes (thresh) for speed, default is 250 thresh <- 5 # Run EWCE analysis # tt_results <- ewce_expression_data(</pre> sct_data = ctd, tt = tt_alzh, annotLevel = 1, thresh = thresh, reps = reps, ttSpecies = "human", sctSpecies = "mouse" # #) # tt_results_36 <- ewce_expression_data(</pre> sct_data = ctd, tt = tt_alzh_BA36, annotLevel = 1, thresh = thresh, reps = reps, ttSpecies = "human", sctSpecies = "mouse" #) # Fill a list with the results results <- add_res_to_merging_list(tt_alzh)</pre> # results <- add_res_to_merging_list(tt_alzh_BA36, results)</pre> ``` #### **Description** bin_columns_into_quantiles is an internal function used to convert a matrix of specificity (with columns of cell types) intom a matrix of specificity quantiles #### Usage ``` bin_columns_into_quantiles(matrixIn, numberOfBins = 40, defaultBin = as.integer(numberOfBins/2)) ``` #### **Arguments** matrixIn The matrix of specificity values numberOfBins Number of quantile 'bins' to use (40 is recommended) defaultBin Which bin to assign when there's only one non-zero quantile. In situations where there's only one non-zero quantile, cut() throws an error. Avoid these situations by using a default quantile. #### Value A matrix with same shape as matrixIn but with columns storing quantiles instead of specificity #### **Examples** ``` ctd <- ewceData::ctd() ctd[[1]]$specificity_quantiles <- apply(ctd[[1]]$specificity, 2, FUN = bin_columns_into_quantiles, numberOfBins = 40)</pre> ``` ``` \verb|bin_specificity_into_quantiles|| ``` bin_specificity_into_quantiles #### **Description** bin_specificity_into_quantiles is an internal function used to convert add '\$specificity_quantiles' to a ctd #### Usage ``` bin_specificity_into_quantiles(ctdIN, numberOfBins, matrix_name = "specificity_quantiles", as_sparse = TRUE, verbose = TRUE) ``` ## Arguments ctdIN A single annotLevel of a ctd, i.e. ctd[[1]] (the function is intended to be used via apply). numberOfBins Number of quantile 'bins' to use (40 is recommended). matrix_name Name of the specificity matrix to create (default: "specificity_quantiles"). as_sparse Convert to sparseMatrix. verbose Print messages. #### Value A ctd with "specificity_quantiles" matrix in each level (or whatever matrix_name was set to.). #### **Examples** ``` ctd <- ewceData::ctd() ctd <- lapply(ctd, EWCE::bin_specificity_into_quantiles, numberOfBins = 40) print(ctd[[1]]$specificity_quantiles[1:3,])</pre> ``` bootstrap_enrichment_test Bootstrap cell type enrichment test #### Description bootstrap_enrichment_test takes a genelist and a single cell type transcriptome dataset and determines the probability of enrichment and fold changes for each cell type. ## Usage ``` bootstrap_enrichment_test(sct_data = NULL, hits = NULL, bg = NULL, genelistSpecies = NULL, sctSpecies = NULL, output_species = "human", ``` ``` method = "homologene", reps = 100, no_cores = 1, annotLevel = 1, geneSizeControl = FALSE, controlledCT = NULL, mtc_method = "BH", sort_results = TRUE, verbose = TRUE ``` #### **Arguments** sct_data List generated using generate_celltype_data. hits List of gene symbols containing the target gene list. Will automatically be con- verted to human gene symbols if geneSizeControl=TRUE. bg List of gene symbols containing the background gene list (including hit genes). If bg=NULL, an appropriate gene background will be created automatically. genelistSpecies Species that hits genes came from (no longer limited to just "mouse" and "hu- man"). See list_species for all available species. sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu- man"). See list_species for all available species. for all available species. method R package to to use for gene mapping: • "gprofiler": Slower but more species and genes. • "homologene": Faster but fewer species and genes. • "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). reps Number of random gene lists to generate (*Default: 100*, but should be >=10,000 for publication-quality results). annotLevel An integer indicating which level of sct_data to analyse (*Default: 1*). geneSizeControl Whether you want to control for GC content and transcript length. Recommended if the gene list originates from genetic studies (*Default: FALSE*). If set to TRUE, then hits must be from humans. controlledCT [Optional] If not NULL, and instead is the name of a cell type, then the boot- strapping controls for expression within that cell type. $\verb|mtc_method| Multiple-testing| correction| method| (passed to p.adjust).$ verbose Print messages. #### Value A list containing three data frames: - results: dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list - hit.cells: vector containing the summed proportion of expression in each cell type for the target list - bootstrap_data: matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists #### **Examples** ``` # Load the single cell data ctd <- ewceData::ctd() # Set the parameters for the analysis # Use 3 bootstrap lists for speed, for publishable analysis use >=10,000 reps <- 3 # Load gene list from Alzheimer's disease GWAS
example_genelist <- ewceData::example_genelist() # Bootstrap significance test, no control for transcript length or GC content full_results <- EWCE::bootstrap_enrichment_test(sct_data = ctd, hits = example_genelist, reps = reps, annotLevel = 1, sctSpecies = "mouse", genelistSpecies = "human")</pre> ``` ``` check_ewce_genelist_inputs \\ check_ewce_genelist_inputs ``` #### **Description** check_ewce_genelist_inputs Is used to check that hits and bg gene lists passed to EWCE are setup correctly. Checks they are the appropriate length. Checks all hits genes are in bg. Checks the species match and if not reduces to 1:1 orthologs. ## Usage ``` check_ewce_genelist_inputs(sct_data, hits, bg = NULL, genelistSpecies = NULL, ``` ``` sctSpecies = NULL, output_species = "human", method = "homologene", geneSizeControl = FALSE, standardise = FALSE, verbose = TRUE) ``` #### **Arguments** sct_data List generated using generate_celltype_data. hits List of gene symbols containing the target gene list. Will automatically be con- verted to human gene symbols if geneSizeControl=TRUE. bg List of gene symbols containing the background gene list (including hit genes). If bg=NULL, an appropriate gene background will be created automatically. genelistSpecies Species that hits genes came from (no longer limited to just "mouse" and "hu- man"). See list_species for all available species. sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu- man"). See list_species for all available species. output_species Species to convert sct_data and hits to (Default: "human"). See list_species for all available species. method R package to to use for gene mapping: • "gprofiler": Slower but more species and genes. • "homologene": Faster but fewer species and genes. • "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). geneSizeControl Whether you want to control for GC content and transcript length. Recommended if the gene list originates from genetic studies (*Default: FALSE*). If set to TRUE, then hits must be from humans. standardise If input_species==output_species, should the genes be standardised using map_genes? verbose Print messages. #### Value #### A list containing - hits: Array of MGI/HGNC gene symbols containing the target gene list. - bg: Array of MGI/HGNC gene symbols containing the background gene list. 10 check_percent_hits #### **Examples** ``` ctd <- ewceData::ctd() example_genelist <- ewceData::example_genelist() # Called from "bootstrap_enrichment_test()" and "generate_bootstrap_plots()" checkedLists <- EWCE::check_ewce_genelist_inputs(sct_data = ctd, hits = example_genelist, sctSpecies = "mouse", genelistSpecies = "human")</pre> ``` check_percent_hits Get percentage of target cell type hits #### **Description** After you run bootstrap_enrichment_test, check what percentage of significantly enriched cell types match an expected cell type. #### Usage ``` check_percent_hits(full_results, target_celltype, mtc_method = "bonferroni", q_threshold = 0.05, verbose = TRUE) ``` #### **Arguments** ``` full_results bootstrap_enrichment_test results. target_celltype Substring to search to matching cell types (case-insensitive). mtc_method Multiple-testing correction method. q_threshold Corrected significance threshold. ``` Print messages. #### Value Report list. verbose #### **Examples** ``` ## Bootstrap significance test, ## no control for transcript length or GC content ## Use pre-computed results to speed up example full_results <- EWCE::example_bootstrap_results() report <- EWCE::check_percent_hits(full_results = full_results, target_celltype = "microglia")</pre> ``` controlled_geneset_enrichment Celltype controlled geneset enrichment ## Description controlled_geneset_enrichment tests whether a functional gene set is still enriched in a disease gene set after controlling for the disease gene set's enrichment in a particular cell type (the 'controlledCT') #### Usage ``` controlled_geneset_enrichment(disease_genes, functional_genes, bg = NULL, sct_data, sctSpecies = NULL, output_species = "human", disease_genes_species = NULL, functional_genes_species = NULL, method = "homologene", annotLevel, reps = 100, controlledCT, use_intersect = FALSE, verbose = TRUE) ``` #### **Arguments** disease_genes Array of g Array of gene symbols containing the disease gene list. Does not have to be disease genes. Must be from same species as the single cell transcriptome dataset. functional_genes Array of gene symbols containing the functional gene list. The enrichment of this gene set within the disease_genes is tested. Must be from same species as the single cell transcriptome dataset. bg List of gene symbols containing the background gene list (including hit genes). If bg=NULL, an appropriate gene background will be created automatically. sct_data List generated using generate_celltype_data. sctSpecies Species that sct_data came from (no longer limited to just "mouse" and "hu- man"). See list_species for all available species. output_species Species to convert sct_data and hits to (Default: "human"). See list_species for all available species. disease_genes_species Species of the disease_genes gene set. functional_genes_species Species of the functional_genes gene set. method R package to to use for gene mapping: • "gprofiler": Slower but more species and genes. • "homologene": Faster but fewer species and genes. • "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). annotLevel An integer indicating which level of sct_data to analyse (*Default: 1*). reps Number of random gene lists to generate (*Default: 100*, but should be >=10,000 for publication-quality results). controlledCT [Optional] If not NULL, and instead is the name of a cell type, then the boot- strapping controls for expression within that cell type. use_intersect When species1 and species2 are both different from output_species, this argument will determine whether to use the intersect (TRUE) or union (FALSE) of all genes from species1 and species2. verbose Print messages. #### Value A list containing three data frames: - p_controlled The probability that functional_genes are enriched in disease_genes while controlling for the level of specificity in controlledCT - z_controlled The z-score that functional_genes are enriched in disease_genes while controlling for the level of specificity in controlledCT - p_uncontrolled The probability that functional_genes are enriched in disease_genes WITH-OUT controlling for the level of specificity in controlledCT - z_uncontrolled The z-score that functional_genes are enriched in disease_genes WITHOUT controlling for the level of specificity in controlledCT - reps=reps - controlledCT - actualOverlap=actual The number of genes that overlap between functional and disease gene sets ctd_to_sce #### **Examples** ``` # See the vignette for more detailed explanations # Gene set enrichment analysis controlling for cell type expression # set seed for bootstrap reproducibility set.seed(12345678) ## load merged dataset from vignette ctd <- ewceData::ctd()</pre> schiz_genes <- ewceData::schiz_genes()</pre> hpsd_genes <- ewceData::hpsd_genes()</pre> # Use 3 bootstrap lists for speed, for publishable analysis use >10000 res_hpsd_schiz <- EWCE::controlled_geneset_enrichment(</pre> disease_genes = schiz_genes, functional_genes = hpsd_genes, sct_data = ctd, annotLevel = 1, reps = reps, controlledCT = "pyramidal CA1") ``` ctd_to_sce CellTypeDataset to SingleCellExperiment #### Description Copied from scKirby, which is not yet on CRAN or Bioconductor. ## Usage ``` ctd_to_sce(object, as_sparse = TRUE, as_DelayedArray = FALSE, verbose = TRUE) ``` #### **Arguments** object CellTypeDataset object. as_sparse Store SingleCellExperiment matrices as sparse. as_DelayedArray Store SingleCellExperiment matrices as DelayedArray. verbose Print messages. ## Value SingleCellExperiment ## Examples ``` ctd <- ewceData::ctd() sce <- EWCE::ctd_to_sce(ctd)</pre> ``` drop_uninformative_genes Drop uninformative genes ## Description drop_uninformative_genes drops uninformative genes in order to reduce compute time and noise in subsequent steps. It achieves this through several steps, each of which are optional: - Drop non-1:1 orthologs: Removes genes that don't have 1:1 orthologs with the output_species ("human" by default). - Drop non-varying genes: Removes genes that don't vary across cells based on variance deciles. - Drop non-differentially expressed genes (DEGs): Removes genes that are not significantly differentially expressed across cell-types (multiple DEG methods available). ## Usage ``` drop_uninformative_genes(exp, level2annot, mtc_method = "BH", adj_pval_thresh = 1e-05, convert_orths = FALSE, input_species = NULL, output_species = "human", non121_strategy = "drop_both_species", method = "homologene", as_sparse = TRUE, as_DelayedArray = FALSE, return_sce = FALSE, no_cores = 1, verbose = TRUE,) ``` #### **Arguments** exp Expression matrix with gene names as rownames. level2annot Array of cell types, with each sequentially corresponding a column in the ex- pression matrix. mtc_method Multiple-testing correction method used by DGE step. See p.adjust for more details. adj_pval_thresh Minimum differential expression significance that a gene must demonstrate across level2annot (i.e. cell types). convert_orths If input_species!=output_species and convert_orths=TRUE, will drop genes without 1:1 output_species orthologs and then convert exp gene names to those of output_species. input_species Which species the gene names in exp come from. See list_species for all avail- able species. output_species Which species' genes names to convert exp to. See list_species for all available species. non121_strategy How to handle genes that don't
have 1:1 mappings between input_species:output_species. Options include: "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT). "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species. - "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species. - "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species. - "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs. - "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species. method R package to to use for gene mapping: - "gprofiler": Slower but more species and genes. - "homologene": Faster but fewer species and genes. - "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). as_sparse Convert exp to sparse matrix. as_DelayedArray Convert exp to DelayedArray for scalable processing. return_sce Whether to return the filtered results as an expression matrix or a **SingleCellEx-** periment. no_cores Number of cores to parallelise across. Set to NULL to automatically optimise. verbose Print messages. ... Additional arguments to be passed to the selected DGE method. 16 ewce_expression_data #### Value exp Expression matrix with gene names as row names. #### **Examples** ``` cortex_mrna <- ewceData::cortex_mrna() # Use only a subset of genes to keep the example quick cortex_mrna$exp <- cortex_mrna$exp[1:300,] ## Convert orthologs at the same time exp2_orth <- drop_uninformative_genes(exp = cortex_mrna$exp, level2annot = cortex_mrna$annot$level2class, input_species = "mouse")</pre> ``` ewce_expression_data Bootstrap cell type enrichment test for transcriptome data ## Description ewce_expression_data takes a differential gene expression (DGE) results table and determines the probability of cell type enrichment in the up- and down- regulated genes. #### Usage ``` ewce_expression_data(sct_data, annotLevel = 1, tt, sortBy = "t", thresh = 250, reps = 100, ttSpecies = NULL, sctSpecies = NULL, output_species = NULL, bg = NULL, method = "homologene", verbose = TRUE) ``` #### **Arguments** ``` sct_data List generated using generate_celltype_data. annotLevel An integer indicating which level of sct_data to analyse (Default: 1). ``` 17 ewce_expression_data | tt | Differential expression table. Can be output of topTable function. Minimum requirement is that one column stores a metric of increased/decreased expression (i.e. log fold change, t-statistic for differential expression etc) and another contains gene symbols. | |----------------|--| | sortBy | Column name of metric in tt which should be used to sort up- from down-regulated genes (Default: "t"). | | thresh | The number of up- and down- regulated genes to be included in each analysis (Default: 250). | | reps | Number of random gene lists to generate ($Default: 100$, but should be >=10,000 for publication-quality results). | | ttSpecies | The species the differential expression table was generated from. | | sctSpecies | Species that sct_data came from (no longer limited to just "mouse" and "human"). See list_species for all available species. | | output_species | Species to convert sct_data and hits to (Default: "human"). See list_species for all available species. | | bg | List of gene symbols containing the background gene list (including hit genes). If bg=NULL, an appropriate gene background will be created automatically. | | method | R package to to use for gene mapping: | | | • "gprofiler": Slower but more species and genes. | | | • "homologene": Faster but fewer species and genes. | | | • "babelgene": Faster but fewer species and genes. Also gives | | | (slower but more species and genes) or "homologene" (faster but fewer species and genes). | | verbose | Print messages. | ## Value A list containing five data frames: - results: dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list. An additional column *Direction* stores whether it the result is from the up or downregulated set. - hit.cells.up: vector containing the summed proportion of expression in each cell type for the target list. - hit.cells.down: vector containing the summed proportion of expression in each cell type for the target list. - bootstrap_data.up: matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists. - bootstrap_data.down: matrix in which each row represents the summed proportion of expression in each cell type for one of the random lists. 18 ewce_plot #### **Examples** ``` # Load the single cell data ctd <- ewceData::ctd()</pre> # Set the parameters for the analysis # Use 3 bootstrap lists for speed, for publishable analysis use >10000 # Use 5 up/down regulated genes (thresh) for speed, default is 250 thresh <- 5 annotLevel <- 1 # <- Use cell level annotations (i.e. Interneurons)</pre> # Load the top table tt_alzh <- ewceData::tt_alzh()</pre> tt_results <- EWCE::ewce_expression_data(sct_data = ctd, tt = tt_alzh, annotLevel = 1, thresh = thresh, reps = reps, ttSpecies = "human", sctSpecies = "mouse") ``` ewce_plot Plot EWCE results #### **Description** ewce_plot generates plots of EWCE enrichment results #### Usage ``` ewce_plot(total_res, mtc_method = "bonferroni", ctd = NULL, align = "v", rel_heights = c(0.3, 1), axis = "lr") ``` #### **Arguments** total_res Results data.frame generated using bootstrap_enrichment_test or ewce_expression_data functions. Multiple results tables can be merged into one results table, as long as the 'list' column is set to distinguish them. Multiple testing correction is then applied across all merged results. | mtc_method | Method to be used for multiple testing correction. Argument is passed to p.adjust (DEFAULT: "bonferroni). | |-------------|--| | ctd | CellTypeDataset object. Should be provided so that the dendrogram can be taken from it and added to plots | | align | (optional) Specifies whether graphs in the grid should be horizontally ("h") or vertically ("v") aligned. Options are "none" (default), "hv" (align in both directions), "h", and "v". | | rel_heights | (optional) Numerical vector of relative rows heights. Works just as rel_widths does, but for rows rather than columns. | | axis | (optional) Specifies whether graphs should be aligned by the left ("l"), right ("r"), top ("t"), or bottom ("b") margins. Options are "none" (default), or a string of any combination of l, r, t, and b in any order (e.g. "tblr" or "rlbt" for aligning all margins). Must be specified if any of the graphs are complex (e.g. faceted) and alignment is specified and desired. See align_plots() for details. | #### Value A ggplot containing the plot ## **Examples** ``` ## Bootstrap significance test, ## no control for transcript length or GC content ## Use pre-computed results to speed up example full_results <- EWCE::example_bootstrap_results() ## Generate the plot print(EWCE::ewce_plot(total_res = full_results$results, mtc_method = "BH"))</pre> ``` example_bootstrap_results Example bootstrap enrichment results #### **Description** Example cell type enrichment results produced by bootstrap_enrichment_test. #### Usage ``` example_bootstrap_results(verbose = TRUE) ``` ## Arguments verbose Print messages. #### Value List with 3 items. #### Source ``` # Load the single cell data ctd <- ewceData::ctd() # Set the parameters for the analysis # Use 3 bootstrap lists for speed, for publishable analysis use >=10,000 reps <- 3 # Load gene list from Alzheimer's disease GWAS example_genelist <- ewceData::example_genelist() # Bootstrap significance test, no control for transcript length or GC content full_results <- EWCE::bootstrap_enrichment_test(sct_data = ctd, hits = example_genelist, reps = reps, annotLevel = 1, sctSpecies = "mouse", genelistSpecies = "human") bootstrap_results <- full_results save(bootstrap_results,file = "inst/extdata/bootstrap_results.rda") ``` #### **Examples** ``` full_results <- EWCE::example_bootstrap_results()</pre> ``` ``` example_transcriptome_results ``` Example bootstrap celltype enrichment test for transcriptome data ## Description Example celltype enrichment results produced by ewce_expression_data. #### Usage ``` example_transcriptome_results(verbose = TRUE) ``` #### **Arguments** verbose Print messages. #### Value List with 5 items. #### **Source** ``` ## Load the single cell data ctd <- ewceData::ctd() ## Set the parameters for the analysis ## Use 3 bootstrap lists for speed, for publishable analysis use >10,000 reps <- 3 annotLevel <- 1 # <- Use cell level annotations (i.e. Interneurons) ## Use 5 up/down regulated genes (thresh) for speed, default is 250
thresh <- 5 ## Load the top table tt_alzh <- ewceData::tt_alzh() tt_results <- EWCE::ewce_expression_data(sct_data = ctd, tt = tt_alzh, annotLevel = 1, thresh = thresh, reps = reps, ttSpecies = "human", sctSpecies = "mouse") save(tt_results, file = "inst/extdata/tt_results.rda")</pre> ``` #### **Examples** ``` tt_results <- EWCE::example_transcriptome_results()</pre> ``` ## Description Deprecated function. Please use filter_nonorthologs instead. #### Usage ``` filter_genes_without_1to1_homolog(filenames, input_species = "mouse", convert_nonhuman_genes = TRUE, annot_levels = NULL, suffix = "_orthologs", verbose = TRUE) ``` 22 filter_nonorthologs ## **Arguments** ``` filenames List of file names for sct_data saved as .rda files. input_species Which species the gene names in exp come from. convert_nonhuman_genes Whether to convert the exp row names to human gene names. annot_levels [Optional] Names of each annotation level. suffix Suffix to add to the file name (right before .rda). verbose Print messages. ``` #### **Details** **Note:** This function replaces the original filter_genes_without_1to1_homolog function. filter_genes_without_1to1_is now a wrapper for filter_nonorthologs. #### Value List of the filtered CellTypeData file names. #### **Examples** ``` # Load the single cell data ctd <- ewceData::ctd() tmp <- tempfile() save(ctd, file = tmp) fNames_ALLCELLS_orths <- EWCE::filter_nonorthologs(filenames = tmp)</pre> ``` filter_nonorthologs Filter non-orthologs ## Description filter_nonorthologs Takes the filenames of CellTypeData files, loads them, drops any genes which don't have a 1:1 orthologs with humans, and then convert the gene to human orthologs. The new files are then saved to disk, appending '_orthologs' to the file name. #### Usage ``` filter_nonorthologs(filenames, input_species = NULL, convert_nonhuman_genes = TRUE, annot_levels = NULL, suffix = "_orthologs", method = "homologene", verbose = TRUE) ``` fix_bad_hgnc_symbols 23 ## **Arguments** filenames List of file names for sct_data saved as .rda files. input_species Which species the gene names in exp come from. convert_nonhuman_genes Whether to convert the exp row names to human gene names. annot_levels [Optional] Names of each annotation level. suffix Suffix to add to the file name (right before .rda). method R package to to use for gene mapping: "gprofiler": Slower but more species and genes. "homologene": Faster but fewer species and genes. • "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). verbose Print messages. #### **Details** **Note:** This function replaces the original filter_genes_without_1to1_homolog function. filter_genes_without_1to1_is now a wrapper for filter_nonorthologs. ## Value List of the filtered CellTypeData file names. #### **Examples** ``` # Load the single cell data ctd <- ewceData::ctd() tmp <- tempfile() save(ctd, file = tmp) fNames_ALLCELLS_orths <- EWCE::filter_nonorthologs(filenames = tmp)</pre> ``` ``` fix_bad_hgnc_symbols fix_bad_hgnc_symbols ``` ## Description Given an expression matrix, wherein the rows are supposed to be HGNC symbols, find those symbols which are not official HGNC symbols, then correct them if possible. Return the expression matrix with corrected symbols. #### Usage ``` fix_bad_hgnc_symbols(exp, dropNonHGNC = FALSE, as_sparse = TRUE, verbose = TRUE) ``` #### Arguments exp An expression matrix where the rows are HGNC symbols or a SingleCellExper- iment (SCE) or other Ranged Summarized Experiment (SE) type object. dropNonHGNC Boolean. Should symbols not recognised as HGNC symbols be dropped? as_sparse Convert exp to sparse matrix. verbose Print messages. #### Value Returns the expression matrix with the rownames corrected and rows representing the same gene merged. If a SingleCellExperiment (SCE) or other Ranged Summarized Experiment (SE) type object was inputted this will be returned with the corrected expression matrix under counts. #### **Examples** fix_bad_mgi_symbols fix_bad_mgi_symbols - Given an expression matrix, wherein the rows are supposed to be MGI symbols, find those symbols which are not official MGI symbols, then check in the MGI synonm database for whether they match to a proper MGI symbol. Where a symbol is found to be an aliases for a gene that is already in the dataset, the combined reads are summed together. #### **Description** Also checks whether any gene names contain "Sep", "Mar" or "Feb". These should be checked for any suggestion that excel has corrupted the gene names. fix_celltype_names 25 #### Usage ``` fix_bad_mgi_symbols(exp, mrk_file_path = NULL, printAllBadSymbols = FALSE, as_sparse = TRUE, verbose = TRUE) ``` #### **Arguments** exp An expression matrix where the rows are MGI symbols, or a SingleCellExperi- ment (SCE) or other Ranged Summarized Experiment (SE) type object. mrk_file_path Path to the MRK_List2 file which can be downloaded from www.informatics.jax.org/downloads/reports/irprintAllBadSymbols Output to console all the bad gene symbols as_sparse Convert exp to sparse matrix. verbose Print messages. #### Value Returns the expression matrix with the rownames corrected and rows representing the same gene merged. If no corrections are necessary, input expression matrix is returned. If a SingleCellExperiment (SCE) or other Ranged Summarized Experiment (SE) type object was inputted this will be returned with the corrected expression matrix under counts. #### **Examples** ``` # Load the single cell data cortex_mrna <- ewceData::cortex_mrna() # take a subset for speed cortex_mrna$exp <- cortex_mrna$exp[1:50, 1:5] cortex_mrna$exp <- fix_bad_mgi_symbols(cortex_mrna$exp)</pre> ``` fix_celltype_names Fix celltype names #### **Description** Make sure celltypes don't contain characters that could interfere with downstream analyses. For example, the R package MAGMA.Celltyping cannot have spaces in celltype names because spaces are used as a delimiter in later steps. #### Usage ``` fix_celltype_names(celltypes, replace_chars = "[-]|[.]|[]|[//]|[\\/]") ``` #### **Arguments** ``` celltypes Character vector of celltype names. replace_chars Regex string of characters to replace with "_" when renaming columns. ``` #### Value Fixed celltype names. #### **Examples** ``` ct <- c("microglia", "astryocytes", "Pyramidal SS") ct_fixed <- fix_celltype_names(celltypes = ct)</pre> ``` ``` generate_bootstrap_plots ``` Generate bootstrap plots ## Description generate_bootstrap_plots takes a gene list and a single cell type transcriptome dataset and generates plots which show how the expression of the genes in the list compares to those in randomly generated gene lists #### Usage ``` generate_bootstrap_plots(sct_data = NULL, hits = NULL, bg = NULL, genelistSpecies = NULL, sctSpecies = NULL, output_species = "human", method = "homologene", reps = 100, annotLevel = 1, full_results = NA, listFileName = "", savePath = tempdir(), verbose = TRUE) ``` #### Arguments sct_data List generated using generate_celltype_data. hits List of gene symbols containing the target gene list. Will automatically be converted to human gene symbols if geneSizeControl=TRUE. | bg | List of gene symbols containing the background gene list (including hit genes). If bg=NULL, an appropriate gene background will be created automatically. | |-----------------|---| | genelistSpecies | 8 | | | Species that hits genes came from (no longer limited to just "mouse" and "human"). See list_species for all available species. | | sctSpecies | Species that sct_data came from (no longer limited to just "mouse" and "human"). See list_species for all available species. | | output_species | Species to convert sct_data and hits to (Default: "human"). See list_species for all available species. | | method | R package to to use for gene mapping: | | | "gprofiler": Slower but more species and genes. | | | "homologene": Faster but fewer species and genes. | | | • "babelgene": Faster but fewer species and genes. Also gives | | | (slower but more species and genes) or "homologene" (faster but fewer species and genes). | | reps | Number of random gene lists to generate ($Default: 100$, but should be >=10,000 for publication-quality results). | | annotLevel | An integer indicating which level of sct_data to analyse (Default: 1). | | full_results | The full output of bootstrap_enrichment_test for the same gene list. | | listFileName | String used as the root for files saved using this function. | | savePath | Directory where the BootstrapPlots folder should be saved, default is a temp directory. | | verbose | Print messages. | #### Value Saves a set of pdf files containing graphs and returns the file where they are saved. These will be saved with the filename adjusted using the value of listFileName. The files are saved into the 'BootstrapPlot' folder. Files start with one of the following: - qqplot_noText: sorts the gene list according to how enriched it is in the relevant cell type. Plots the value in the target list against the mean value in the bootstrapped lists. - qqplot_wtGSym: as above but labels the gene symbols for the highest expressed genes. - bootDists: rather than just showing the mean of the bootstrapped lists, a boxplot shows the distribution of values - bootDists_LOG: shows the bootstrapped distributions with the y-axis shown on a log scale ## **Examples** ``` ## Load the single cell data ctd <- ewceData::ctd() ## Set the parameters for the analysis ## Use 5 bootstrap lists for speed, for publishable analysis use >10000 reps <- 5</pre> ``` ``` ## Load the gene list and get human orthologs hits <- ewceData::example_genelist()[1:100]</pre> ## Bootstrap significance test, ##
no control for transcript length or GC content ## Use pre-computed results to speed up example full_results <- EWCE::example_bootstrap_results()</pre> ### Skip this for example purposes # full_results <- EWCE::bootstrap_enrichment_test(</pre> sct_data = ctd, # hits = hits, reps = reps, annotLevel = 1, sctSpecies = "mouse", genelistSpecies = "human" #) plot_file_path <- EWCE::generate_bootstrap_plots(</pre> sct_data = ctd, hits = hits, reps = reps, full_results = full_results, listFileName = "Example", sctSpecies = "mouse", genelistSpecies = "human", annotLevel = 1, savePath = tempdir()) ``` ``` \label{lem:continuous} generate_bootstrap_plots_for_transcriptome \\ \textit{Generate bootstrap plots} ``` ## Description Takes a gene list and a single cell type transcriptome dataset and generates plots which show how the expression of the genes in the list compares to those in randomly generated gene lists. #### Usage ``` generate_bootstrap_plots_for_transcriptome(sct_data, tt, bg = NULL, thresh = 250, annotLevel = 1, reps = 100, ``` ``` full_results = NA, listFileName = "", showGNameThresh = 25, ttSpecies = NULL, sctSpecies = NULL, output_species = NULL, sortBy = "t", sig_only = TRUE, sig_col = "q", sig_thresh = 0.05, celltype_col = "CellType", plot_types = c("bootstrap", "bootstrap_distributions", "log_bootstrap_distributions"), savePath = tempdir(), method = "homologene", verbose = TRUE ``` #### Arguments | _ | | |----------------|--| | sct_data | List generated using generate_celltype_data. | | tt | Differential expression table. Can be output of topTable function. Minimum requirement is that one column stores a metric of increased/decreased expression (i.e. log fold change, t-statistic for differential expression etc) and another contains gene symbols. | | bg | List of gene symbols containing the background gene list (including hit genes). If bg=NULL, an appropriate gene background will be created automatically. | | thresh | The number of up- and down- regulated genes to be included in each analysis (Default: 250). | | annotLevel | An integer indicating which level of sct_data to analyse (Default: 1). | | reps | Number of random gene lists to generate (<i>Default: 100</i> , but should be >=10,000 for publication-quality results). | | full_results | The full output of ewce_expression_data for the same gene list. | | listFileName | String used as the root for files saved using this function. | | showGNameThres | h | | | Integer. If a gene has over X percent of it's expression proportion in a cell type, then list the gene name. | | ttSpecies | The species the differential expression table was generated from. | | sctSpecies | Species that sct_data came from (no longer limited to just "mouse" and "human"). See list_species for all available species. | | output_species | Species to convert sct_data and hits to (Default: "human"). See list_species for all available species. | | sortBy | Column name of metric in tt which should be used to sort up- from down-regulated genes (Default: "t"). | | sig_only | Should plots only be generated for cells which have significant changes? | | sig_col | Column name in tt that contains the significance values. | sig_thresh Threshold by which to filter tt by sig_col. celltype_col Column within tt that contains celltype names. plot_types Plot types to generate. savePath Directory where the BootstrapPlots folder should be saved, default is a temp directory. method R package to to use for gene mapping: "gprofiler": Slower but more species and genes. "homologene": Faster but fewer species and genes. • "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). verbose Print messages. #### Value Saves a set of PDF files containing graphs and returns the file where they are saved. These will be saved with the filename adjusted using the value of listFileName. The files are saved into the *BootstrapPlot* folder. Files start with one of the following: - qqplot_noText: sorts the gene list according to how enriched it is in the relevant cell type. Plots the value in the target list against the mean value in the bootstrapped lists. - qqplot_wtGSym: as above but labels the gene symbols for the highest expressed genes. - bootDists: rather than just showing the mean of the bootstrapped lists, a boxplot shows the distribution of values - bootDists_LOG: shows the bootstrapped distributions with the y-axis shown on a log scale #### **Examples** ``` ## Load the single cell data ctd <- ewceData::ctd() ## Set the parameters for the analysis ## Use 3 bootstrap lists for speed, for publishable analysis use >10,000 reps <- 3 annotLevel <- 1 # <- Use cell level annotations (i.e. Interneurons) ## Use 5 up/down regulated genes (thresh) for speed, default is 250 thresh <- 5 ## Load the top table tt_alzh <- ewceData::tt_alzh() ## See ?example_transcriptome_results for full code to produce tt_results tt_results <- EWCE::example_transcriptome_results() ## Bootstrap significance test, ## no control for transcript length or GC content savePath <- EWCE::generate_bootstrap_plots_for_transcriptome(</pre> ``` ``` sct_data = ctd, tt = tt_alzh, thresh = thresh, annotLevel = 1, full_results = tt_results, listFileName = "examples", reps = reps, ttSpecies = "human", sctSpecies = "mouse", # Only do one plot type for demo purposes plot_types = "bootstrap" ``` generate_celltype_data Generate CellTypeData (CTD) file ## Description generate_celltype_data takes gene expression data and cell type annotations and creates Cell-TypeData (CTD) files which contain matrices of mean expression and specificity per cell type. #### Usage ``` generate_celltype_data(exp, annotLevels, groupName, no_cores = 1, savePath = tempdir(), file_prefix = "ctd", as_sparse = TRUE, as_DelayedArray = FALSE, normSpec = FALSE, convert_orths = FALSE, input_species = "mouse", output_species = "human", non121_strategy = "drop_both_species", method = "homologene", force_new_file = TRUE, specificity_quantiles = TRUE, numberOfBins = 40, dendrograms = TRUE, return_ctd = FALSE, verbose = TRUE,) ``` #### **Arguments** exp Numerical matrix with row for each gene and column for each cell. Row names are gene symbols. Column names are cell IDs which can be cross referenced against the annot data frame. annotLevels List with arrays of strings containing the cell type names associated with each column in exp. groupName A human readable name for referring to the dataset being no_cores Number of cores that should be used to speedup the computation. *NOTE*: Use no_cores=1 when using this package in windows system. savePath Directory where the CTD file should be saved. file_prefix Prefix to add to saved CTD file name. as_sparse Convert exp to a sparse Matrix. as_DelayedArray Convert exp to DelayedArray. normSpec Boolean indicating whether specificity data should be transformed to a normal distribution by cell type, giving equivalent scores across all cell types. convert_orths If input_species!=output_species and convert_orths=TRUE, will drop genes without 1:1 output_species orthologs and then convert exp gene names to those of output_species. input_species The species that the exp dataset comes from. See list_species for all available species. output_species Species to convert exp to (Default: "human"). See list species for all available species. non121_strategy How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include: - "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT). - "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species. - "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species. - "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species. - "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs. • "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species. method R package to to use for gene mapping: - "gprofiler": Slower but more species and genes. - "homologene": Faster but fewer species and genes. - "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). force_new_file If a file of the same name as the one being created already exists, overwrite it. specificity_quantiles Compute specificity quantiles. Recommended to set to TRUE. numberOfBins Number of quantile 'bins' to use (40 is recommended). dendrograms Add dendrogram plots return_ctd Return the CTD object in a list along with the file name, instead of just the file name. verbose Print messages. . . . Additional arguments passed to convert_orthologs. #### Value File names for the saved CellTypeData (CTD) files. ## **Examples** ``` # Load the single cell data cortex_mrna <- ewceData::cortex_mrna() # Use only a subset to keep the example quick expData <- cortex_mrna$exp[1:100,] 11 <- cortex_mrna$annot$level1class 12 <- cortex_mrna$annot$level2class annotLevels <- list(11 = 11, 12 = 12) fNames_ALLCELLS <- EWCE::generate_celltype_data(exp = expData, annotLevels = annotLevels, groupName = "allKImouse")</pre> ```
is_delayed_array ``` get_celltype_table get_celltype_table ``` #### **Description** get_celltype_table Generates a table that can be used for supplemenary tables of publications. The table lists how many cells are associated with each cell type, the level of annotation, and the dataset from which it was generated. #### Usage ``` get_celltype_table(annot) ``` #### **Arguments** annot An annotation dataframe, which columns named 'level1class', 'level2class' and 'dataset_name' #### Value A dataframe with columns 'name', 'level', 'freq' and 'dataset_name' #### **Examples** ``` # See PrepLDSC.Rmd for origin of merged_ALLCELLS$annot cortex_mrna <- ewceData::cortex_mrna() cortex_mrna$annot$dataset_name <- "cortex_mrna" celltype_table <- EWCE::get_celltype_table(cortex_mrna$annot)</pre> ``` is_delayed_array Assess whether an object is a DelayedArray. #### **Description** Assess whether an object is a DelayedArray or one of its derived object types. ## Usage ``` is_delayed_array(X) ``` ## Arguments Χ Object. #### Value boolean is_matrix 35 is_matrix Assess whether an object is a Matrix ## Description Assess whether an object is a Matrix or one of its derived object types. ## Usage ``` is_matrix(X) ``` ## Arguments Χ Object. ## Value boolean is_sparse_matrix Assess whether an object is a sparse matrix ## Description Assess whether an object is a sparse matrix or one of its derived object types. ## Usage ``` is_sparse_matrix(X) ``` ## Arguments Χ Object. #### Value boolean 36 load_rdata list_species List all species #### **Description** List all species that EWCE can convert genes from/to. Wrapper function for map_species. #### Usage ``` list_species(verbose = TRUE) ``` ## **Arguments** verbose Print messages. #### Value List of species EWCE can input/output genes as. #### **Examples** ``` list_species() ``` load_rdata load_rdata ## **Description** Load processed data (.*rda* format) using a function that assigns it to a specific variable (so you don't have to guess what the loaded variable name is). ## Usage ``` load_rdata(fileName) ``` ## Arguments fileName Name of the file to load. ## Value Data object. ## **Examples** ``` tmp <- tempfile() save(mtcars, file = tmp) mtcars2 <- load_rdata(tmp)</pre> ``` merged_ewce 37 merged_ewce Multiple EWCE results from multiple studies ## **Description** merged_ewce combines enrichment results from multiple studies targetting the same scientific problem ## Usage ``` merged_ewce(results, reps = 100) ``` #### **Arguments** results a list of EWCE results generated using add_res_to_merging_list. reps Number of random gene lists to generate (Default=100 but should be >=10,000 for publication-quality results). #### Value dataframe in which each row gives the statistics (p-value, fold change and number of standard deviations from the mean) associated with the enrichment of the stated cell type in the gene list. ## Examples ``` # Load the single cell data ctd <- ewceData::ctd()</pre> # Use 3 bootstrap lists for speed, for publishable analysis use >10000 reps <- 3 # Use 5 up/down regulated genes (thresh) for speed, default is 250 thresh <- 5 # Load the data tt_alzh_BA36 <- ewceData::tt_alzh_BA36()</pre> tt_alzh_BA44 <- ewceData::tt_alzh_BA44()</pre> # Run EWCE analysis tt_results_36 <- EWCE::ewce_expression_data(sct_data = ctd, tt = tt_alzh_BA36, thresh = thresh, annotLevel = 1, reps = reps, ttSpecies = "human", sctSpecies = "mouse") tt_results_44 <- EWCE::ewce_expression_data(</pre> sct_data = ctd, ``` 38 merge_ctd ``` tt = tt_alzh_BA44, thresh = thresh, annotLevel = 1, reps = reps, ttSpecies = "human", sctSpecies = "mouse") # Fill a list with the results results <- EWCE::add_res_to_merging_list(tt_results_36)</pre> results <- EWCE::add_res_to_merging_list(tt_results_44, results)</pre> # Perform the merged analysis # For publication reps should be higher merged_res <- EWCE::merged_ewce(</pre> results = results, reps = 2) print(merged_res) ``` merge_ctd Merge multiple CellTypeDataset references ## **Description** Import CellTypeDataset (CTD) references from a remote repository, standardize each, and then merge into one CTD. #### Usage ``` merge_ctd(CTD_list, save_dir = tempdir(), standardise_CTD = FALSE, as_SCE = FALSE, gene_union = TRUE, merge_levels = seq(1, 5), save_split_SCE = FALSE, save_split_CTD = FALSE, save_merged_SCE = TRUE, force_new_quantiles = FALSE, numberOfBins = 40, as_sparse = TRUE, as_DelayedArray = FALSE, verbose = TRUE,) ``` merge_ctd 39 #### **Arguments** CTD_list (Named) list of CellTypeDatasets. save_dir The directory to save merged files in. standardise_CTD Whether to run standardise_ctd. as_SCE If =T, will return a the merged CTD as a SingleCellExperiment. Otherwise, will return a list of unmerged CTD. gene_union Whether to take the gene union or intersection when merging matrices (mean_exp,specificity, etc.). merge_levels Which CTD levels you want to merge. Can be a single value (e.g. merge_levels=5) or a list $c(e.g. merge_levels=c(1:5))$. If some CTD don't have the same number of levels, the maximum level depth available in that CTD will be used instead save_split_SCE Whether to save individual SCE files in the subdirectory *standardized_CTD_SCE*. save_split_CTD Whether to save individual CTD files in the subdirectory standardized_CTD. save_merged_SCE Save the final merged SCE object, or simply to return it. force_new_quantiles If specificity quantiles matrix already exists, create a new one. numberOfBins Number of bins to compute specificity quantiles with. as_sparse Convert matrices to sparse matrix. as_DelayedArray Convert matrices to DelayedArray. verbose Print messages. . . . Additional arguments to be passed to standardise_ctd. #### **Details** Optionally, can return these as a merged SingleCellExperiment. #### Value List of CellTypeDatasets or SingleCellExperiments. #### **Examples** ``` ## Let's pretend these are different CTD datasets ctd1 <- ewceData::ctd() ctd2 <- ctd1 CTD_list <- list(ctd1, ctd2) SCE_merged <- EWCE::merge_ctd(CTD_list = CTD_list, as_SCE = TRUE, gene_union = TRUE)</pre> ``` 40 merge_sce | merge_sce Merge multiple SingleCellExperiment objects | |---| |---| ## Description Merge several SingleCellExperiment (SCE) objects from different batches/experiments. Extracted from the scMerge package. #### Usage ``` merge_sce(sce_list, method = "intersect", cut_off_batch = 0.01, cut_off_overall = 0.01, use_assays = NULL, colData_names = NULL, batch_names = NULL, verbose = TRUE) ``` ## Arguments | sce_list | A list contains the SingleCellExperiment Object from each batch. | |-----------------|---| | method | A string indicates the method of combining the gene expression matrix, either union or intersect. Default to intersect. union only supports matrix class. | | cut_off_batch | A numeric vector indicating the cut-off for the proportion of a gene is expressed within each batch. | | cut_off_overall | | | | A numeric vector indicating the cut-off for the proportion of a gene is expressed overall data. | | use_assays | A string vector indicating the expression matrices to be combined. The first assay named will be used to determine the proportion of zeros. | | colData_names | A string vector indicating the colData that are combined. | | batch_names | A string vector indicating the batch names for the output SCE object. | | verbose | Print messages. | #### Value A SingleCellExperiment object with the list of SCE objects combined. ## Author(s) Yingxin Lin (modified by Brian Schilder) merge_two_expfiles 41 #### Source ``` scMerge.\\ ``` ## **Examples** ``` ctd <- ewceData::ctd() sce_list <- EWCE::ctd_to_sce(object = ctd) sce_combine <- merge_sce(sce_list = sce_list)</pre> ``` merge_two_expfiles Merge two exp files ## Description merge_two_expfiles Used to combine two single cell type datasets. ## Usage ``` merge_two_expfiles(exp1, exp2, annot1, annot2, name1 = "", name2 = "", as_sparse = TRUE, as_DelayedArray = FALSE, verbose = TRUE) ``` ## Arguments | exp1 | Numerical expression matrix for dataset1 with row for each gene and column for each cell. Row names are gene symbols. Column names are cell IDs which can be cross referenced against the annot data frame. | |-----------|---| | exp2 | Numerical expression matrix for dataset2 with row for each gene and column for each cell. Row names are gene symbols. Column names are cell IDs which can be cross referenced against the annot data frame. | | annot1 | Annotation data frame for dataset1 which contains three columns at least: cell_id, level1class and level2class | | annot2 | Annotation data frame for dataset2 which contains three columns at least: cell_id, level1class and level2class | | name1 | Name used to refer to dataset 1. Leave blank if it's already a merged dataset. | | name2 | Name used to refer to dataset 2. Leave blank if it's already a merged dataset. | | as_sparse | Convert the merged exp to a sparse matrix. | | | | 42 plot_ctd ``` as_DelayedArray ``` Convert the merged exp to a DelayedArray. verbose Print messages. #### Value List containing merged exp and annot. #### **Examples** ``` cortex_mrna <- ewceData::cortex_mrna() exp1 <- cortex_mrna$exp[, 1:50] exp2 <- cortex_mrna$exp[, 51:100] annot1 <- cortex_mrna$annot[1:50,] annot2 <- cortex_mrna$annot[51:100,] merged_res <- EWCE::merge_two_expfiles(exp1 = exp1, exp2 = exp2, annot1 = annot1, annot2 = annot2, name1 = "dataset1", name2 = "dataset2")</pre> ``` plot_ctd Plot CellTypeData metrics #### **Description** Plot CellTypeData metrics such as mean_exp, specificity and/or
specificity_quantiles. Whether to print the plot or simply return it. ## Usage ``` plot_ctd(ctd, genes, level = 1, metric = "specificity", show_plot = TRUE) ``` #### **Arguments** show_plot | CellTypeDataset. | |---| | Which genes in ctd to plot. | | Annotation level in ctd to plot. | | Which metric in the ctd to plot: | | "mean_exp" | | "specificity" | | "specificity_quantiles" | | | prep.dendro 43 #### Value ``` ggplot object. ``` ## **Examples** ``` ctd <- ewceData::ctd() plt <- EWCE::plot_ctd(ctd, genes = c("Apoe", "Gfap", "Gapdh"))</pre> ``` prep.dendro prep.dendro ## Description ``` prep_dendro adds a dendrogram to a CellTypeDataset (CTD). ``` ## Usage ``` prep.dendro(ctdIN) ``` #### **Arguments** ctdIN A single annotLevel of a ctd, i.e. ctd[[1]] (the function is intended to be used via apply). #### Value A CellTypeDataset with dendrogram plotting info added. sct_normalize Normalize expression matrix ## Description Normalize expression matrix by accounting for library size. Uses sctransform. ## Usage ``` sct_normalize(exp, as_sparse = TRUE, verbose = TRUE) ``` #### **Arguments** exp Gene x cell expression matrix. as_sparse Convert exp to sparse matrix. verbose Print messages. 44 standardise_ctd #### Value Normalised expression matrix. #### **Examples** ``` cortex_mrna <- ewceData::cortex_mrna() exp_sct_normed <- EWCE::sct_normalize(exp = cortex_mrna$exp[1:300,])</pre> ``` standardise_ctd Convert a CellTypeDataset into standardized format #### **Description** This function will take a CTD, drop all genes without 1:1 orthologs with the output_species ("human" by default), convert the remaining genes to gene symbols, assign names to each level, and convert all matrices to sparse matrices and/or DelayedArray. #### Usage ``` standardise_ctd(ctd, dataset, input_species = NULL, output_species = "human", non121_strategy = "drop_both_species", method = "homologene", force_new_quantiles = TRUE, force_standardise = FALSE, remove_unlabeled_clusters = FALSE, numberOfBins = 40, keep_annot = TRUE, keep_plots = TRUE, as_sparse = TRUE, as_DelayedArray = FALSE, rename_columns = TRUE, make_columns_unique = FALSE, verbose = TRUE) ``` #### **Arguments** ctd Input CellTypeData. dataset CellTypeData. name. input_species Which species the gene names in exp come from. See list_species for all avail- able species. standardise_ctd 45 output_species Which species' genes names to convert exp to. See <u>list_species</u> for all available species. non121_strategy How to handle genes that don't have 1:1 mappings between input_species:output_species. Options include: - "drop_both_species" or "dbs" or 1: Drop genes that have duplicate mappings in either the input_species or output_species (DEFAULT). - "drop_input_species" or "dis" or 2: Only drop genes that have duplicate mappings in the input_species. - "drop_output_species" or "dos" or 3: Only drop genes that have duplicate mappings in the output_species. - "keep_both_species" or "kbs" or 4: Keep all genes regardless of whether they have duplicate mappings in either species. - "keep_popular" or "kp" or 5: Return only the most "popular" interspecies ortholog mappings. This procedure tends to yield a greater number of returned genes but at the cost of many of them not being true biological 1:1 orthologs. - "sum", "mean", "median", "min" or "max": When gene_df is a matrix and gene_output="rownames", these options will aggregate many-to-one gene mappings (input_species-to-output_species) after dropping any duplicate genes in the output_species. method R package to to use for gene mapping: - "gprofiler": Slower but more species and genes. - "homologene": Faster but fewer species and genes. - "babelgene": Faster but fewer species and genes. Also gives (slower but more species and genes) or "homologene" (faster but fewer species and genes). force_new_quantiles By default, quantile computation is skipped if they have already been computed. Set =TRUE to override this and generate new quantiles. force_standardise If ctd has already been standardised, whether to rerun standardisation anyway (Default: FALSE). remove_unlabeled_clusters Remove any samples that have numeric column names. numberOfBins Number of non-zero quantile bins. keep_annot Keep the column annotation data if provided. keep_plots Keep the dendrograms if provided. as_sparse Convert to sparse matrix. as_DelayedArray Convert to DelayedArray. standardise_ctd ``` \label{lem:columns} \begin{tabular}{ll} rename_columns & Remove \ replace_chars \ from \ column \ names. \\ make_columns_unique \\ \end{tabular} ``` $Rename\ each\ columns\ with\ the\ prefix\ {\tt dataset.species.celltype}.$ verbose Print messages. Set verbose=2 if you want to print all messages from internal functions as well. #### Value Standardised CellTypeDataset. ## **Examples** ``` ctd <- ewceData::ctd() ctd_std <- EWCE::standardise_ctd(ctd = ctd, input_species = "mouse", dataset = "Zeisel2016")</pre> ``` ## **Index** ``` add_res_to_merging_list, 4, 37 load_rdata, 36 align_plots(), 19 map_genes, 9 bin_columns_into_quantiles, 5 map_species, 36 bin_specificity_into_quantiles, 5 merge_ctd, 38 bootstrap_enrichment_test, 4, 6, 10, 18, merge_sce, 40 19, 27 merge_two_expfiles, 41 merged_ewce, 37 check_ewce_genelist_inputs, 8 check_percent_hits, 10 p.adjust, 7, 14, 19 controlled_geneset_enrichment, 11 plot_ctd, 42 convert_orthologs, 33 prep.dendro, 43 ctd_to_sce, 13 sct_normalize, 43 drop_uninformative_genes, 14 standardise_ctd, 44 EWCE (EWCE-package), 3 topTable, 17, 29 EWCE-package, 3 ewce_expression_data, 4, 16, 18, 20, 29 ewce_plot, 18 example_bootstrap_results, 19 example_transcriptome_results, 20 filter_genes_without_1to1_homolog, 21 filter_nonorthologs, 21, 22 fix_bad_hgnc_symbols, 23 fix_bad_mgi_symbols, 24 fix_celltype_names, 25 generate_bootstrap_plots, 26 generate_bootstrap_plots_for_transcriptome, generate_celltype_data, 7, 9, 12, 16, 26, 29, 31 get_celltype_table, 34 is_delayed_array, 34 is_matrix, 35 is_sparse_matrix, 35 list_species, 7, 9, 12, 15, 17, 27, 29, 32, 36, 44, 45 ```