Package 'ChromSCape'

October 18, 2022

Title Analysis of single-cell epigenomics datasets with a Shiny App

Version 1.6.0

Description ChromSCape - Chromatin landscape profiling for Single Cells - is a ready-to-launch userfriendly Shiny Application for the analysis of single-cell epigenomics datasets (scChIPseq, scATAC-seq, scCUT&Tag, ...) from aligned data to differential analysis & gene set enrichment analysis. It is highly interactive, enables users to save their analysis and covers a wide range of analytical steps: QC, preprocessing, filtering, batch correction, dimensionality reduction, vizualisation, clustering, differential analysis and gene set analysis.

License GPL-3

biocViews Software, SingleCell, ChIPSeq, ATACSeq, MethylSeq, Classification, Clustering, Epigenetics, PrincipalComponent, SingleCell, ATACSeq, ChIPSeq, Annotation, BatchEffect, MultipleComparison, Normalization, Pathways, Preprocessing, QualityControl, ReportWriting, Visualization, GeneSetEnrichment, DifferentialPeakCalling

VignetteBuilder knitr

URL https://github.com/vallotlab/ChromSCape

BugReports https://github.com/vallotlab/ChromSCape/issues

Encoding UTF-8

LazyData false

Suggests testthat, knitr, markdown, rmarkdown, BiocStyle, Signac, future, igraph, bluster, httr

RoxygenNote 7.1.2

Roxygen list(markdown = TRUE)

Imports shiny, colourpicker, shinyjs, rtracklayer, shinyFiles, shinyhelper, shinyWidgets, shinydashboardPlus, shinycssloaders, Matrix, plotly, shinydashboard, colorRamps, kableExtra, viridis, batchelor, BiocParallel, parallel, Rsamtools, ggplot2, ggrepel, gggenes, gridExtra, qualV, stringdist, fs, qs, DT, scran, scater, ConsensusClusterPlus, Rtsne, dplyr, tidyr, GenomicRanges, IRanges, irlba, rlist, umap, tibble, methods, jsonlite, edgeR, stats, graphics, grDevices, utils, S4Vectors, SingleCellExperiment, SummarizedExperiment, msigdbr, forcats, Rcpp, coop, matrixTests, DelayedArray

Depends R (>= 4.1)

LinkingTo Rcpp

git_url https://git.bioconductor.org/packages/ChromSCape

git_branch RELEASE_3_15

git_last_commit f0f1527

git_last_commit_date 2022-04-26

Date/Publication 2022-10-18

Author Pacome Prompsy [aut, cre] (<https://orcid.org/0000-0003-4375-7583>), Celine Vallot [aut] (<https://orcid.org/0000-0003-1601-2359>)

Maintainer Pacome Prompsy <pacome.prompsy@curie.fr>

R topics documented:

annotation_from_merged_peaks
annotToCol2
anocol_binary
anocol_categorical
bams_to_matrix_indexes
beds_to_matrix_indexes 8
calculate_CNA 9
calculate_cyto_mat
calculate_gain_or_loss
calculate_logRatio_CNA
call_macs2_merge_peaks
changeRange
CheA3_TF_nTargets
check_correct_datamatrix
choose_cluster_scExp
choose_perplexity
col2hex
colors_scExp
combine_datamatrix
combine_enrichmentTests
CompareedgeRGLM
CompareWilcox
concatenate_scBed_into_clusters
consensus_clustering_scExp 22
$correlation_and_hierarchical_clust_scExp~\dots~\dots~\dots~\dots~\dots~24$
count_coverage
create_project_folder
create_sample_name_mat
create_scDataset_raw

create_scExp	28
DA_custom	29
DA_one_vs_rest	30
DA_pairwise	31
define_feature	32
detect_samples	
differential_activation	
differential_analysis_scExp	
distPearson	36
enrichmentTest	
enrich_TF_ChEA3_genes	
enrich_TF_ChEA3_scExp	37
exclude_features_scExp	
feature_annotation_scExp	
filter_correlated_cell_scExp	
filter_genes_with_refined_peak_annotation	
filter_scExp	
find_clusters_louvain_scExp	
find_top_features	
generate_analysis	
generate_count_matrix	
generate_coverage_tracks	
generate_feature_names	
generate_report	
gene_set_enrichment_analysis_scExp	
getExperimentNames	
getMainExperiment	
get_color_dataframe_from_input	
get_cyto_features	
get_genomic_coordinates	
get_most_variable_cyto	
gg_fill_hue	
groupMat	
H1proportion	
has_genomic_coordinates	
hclustAnnotHeatmapPlot	
hg38.chromosomes	
hg38.cytoBand	59
hg38.GeneTSS	60
imageCol	60
import_count_input_files	61
import_scExp	62
index_peaks_barcodes_to_matrix_indexes	63
inter_correlation_scExp	63
intra_correlation_scExp	64
launchApp	65
load_MSIGdb	66
merge_MACS2_peaks	66

mm10.chromosomes	
mm10.cytoBand	. 67
mm10.GeneTSS	
normalize_scExp	
num_cell_after_cor_filt_scExp	
num_cell_after_QC_filt_scExp	. 70
num_cell_before_cor_filt_scExp	. 70
num_cell_in_cluster_scExp	
num_cell_scExp	
pca_irlba_for_sparseMatrix	
plot_cluster_consensus_scExp	
plot_correlation_PCA_scExp	. 74
plot_coverage_BigWig	
plot_differential_summary_scExp	
plot_differential_volcano_scExp	
plot_distribution_scExp	
plot_gain_or_loss_barplots	
plot_heatmap_scExp	
plot_inter_correlation_scExp	
plot_intra_correlation_scExp	
plot_most_contributing_features	
plot_pie_most_contributing_chr	
plot_reduced_dim_scExp	
plot_reduced_dim_scExp_CNA	
plot_top_TF_scExp	. 85
plot_violin_feature_scExp	. 86
preprocessing_filtering_and_reduction	. 87
preprocess_CPM	
preprocess_feature_size_only	. 89
preprocess_RPKM	
preprocess_TFIDF	
preprocess_TPM	
rawfile_ToBigWig	
raw_counts_to_sparse_matrix	
read_count_mat_with_separated_chr_start_end	
read_sparse_matrix	
rebin_matrix	
reduce_dims_scExp	
reduce_dim_batch_correction	
remove_chr_M_fun	
remove_non_canonical_fun	
results_enrichmentTest	
retrieve_top_bot_features_pca	
run_pairwise_tests	
run_tsne_scExp	
scExp	
separate_BAM_into_clusters	
separator_count_mat	. 103

smoothBin	• •	. 1	.04
subsample_scExp	•	. 1	.04
subset_bam_call_peaks	•	. 1	05
summary_DA		. 1	.07
swapAltExp_sameColData		. 1	.07
table_enriched_genes_scExp		. 1	.08
warning_DA		. 1	.09
warning_filter_correlated_cell_scExp	•	. 1	.09
warning_plot_reduced_dim_scExp		. 1	10
warning_raw_counts_to_sparse_matrix	•	. 1	11
wrapper_Signac_FeatureMatrix	•	. 1	12
		1	14

Index

annotation_from_merged_peaks Find nearest peaks of each gene and return refined annotation

Description

Find nearest peaks of each gene and return refined annotation

Usage

```
annotation_from_merged_peaks(scExp, odir, merged_peaks, geneTSS_annotation)
```

Arguments

scExp	A SingleCellExperiment object	
odir	An output directory where to write the mergedpeaks BED file	
merged_peaks	A list of GRanges object containing the merged peaks	
geneTSS_annotation		
	A GRanges object with reference genes	

Value

A data.frame with refined annotation

annotToCol2

Description

annotToCol2

Usage

```
annotToCol2(
  annotS = NULL,
  annotT = NULL,
  missing = c("", NA),
  anotype = NULL,
  maxnumcateg = 2,
  categCol = NULL,
  quantitCol = NULL,
  plotLegend = TRUE,
  plotLegendFile = NULL
)
```

Arguments

annotS	A color matrix
annotT	A color matrix
missing	Convert missing to NA
anotype	Annotation type
maxnumcateg	Maximum number of categories
categCol	Categorical columns
quantitCol	Quantitative columns
plotLegend	Plot legend ?
plotLegendFile	Which file to plot legend ?

Value

A matrix of continuous or discrete colors

```
data("scExp")
annotToCol2(SingleCellExperiment::colData(scExp), plotLegend = FALSE)
```

anocol_binary

Description

Helper binary column for anocol function

Usage

anocol_binary(anocol, anotype, plotLegend, annotS)

Arguments

anocol	The color feature matrix
anotype	The feature types
plotLegend	Plot legend ?
annotS	A color matrix

Value

A color matrix similar to anocol with binrary columns colored

anocol_categorical Helper binary column for anocol function

Description

Helper binary column for anocol function

Usage

anocol_categorical(anocol, categCol, anotype, plotLegend, annotS)

Arguments

anocol	The color feature matrix
categCol	Colors for categorical features
anotype	The feature types
plotLegend	Plot legend ?
annotS	A color matrix

Value

A color matrix similar to anocol with binrary columns colored

```
bams_to_matrix_indexes
```

Count bam files on interval to create count indexes

Description

Count bam files on interval to create count indexes

Usage

```
bams_to_matrix_indexes(dir, which, BPPARAM = BiocParallel::bpparam())
```

Arguments

dir	A directory containing single cell BAM files and BAI files
which	Genomic Range on which to count
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations.
	Will take the default BPPARAM set in your R session.

Value

A list containing a "feature index" data.frame and a count vector for non 0 entries, both used to form the sparse matrix

```
beds_to_matrix_indexes
```

Count bed files on interval to create count indexes

Description

Count bed files on interval to create count indexes

Usage

```
beds_to_matrix_indexes(dir, which, BPPARAM = BiocParallel::bpparam())
```

Arguments

dir	A directory containing the single cell BED files
which	Genomic Range on which to count
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations.
	Will take the default BPPARAM set in your R session.

Value

A list containing a "feature index" data.frame and a names of cells as vector both used to form the sparse matrix

calculate_CNA

Description

Cytobands are considered large enough in order that a variation at the cytoband level is not considered as an epigenetic event but as a genetic event, e.g. Copy Number Alterations. The function successively :

- Calculates the fraction of reads in each cytoband (FrCyto). See calculate_cyto_mat
- Calculates the log2-ratio FrCyto of each cell by the average FrCyto in normal cells. See calculate_logRatio_CNA
- Estimates if there was a gain or a loss of copy in each cyto band. See calculate_gain_or_loss

The corresponding matrices are accessibles in the reducedDim slots "cytoBands", "logRatio_cytoBands" and "gainOrLoss_cytoBands" respectively.

Usage

```
calculate_CNA(
  scExp,
  control_samples = unique(scExp$sample_id)[1],
  ref_genome = c("hg38", "mm10")[1],
  quantiles_to_define_gol = c(0.05, 0.95)
)
```

Arguments

scExp	A SingleCellExperiment with "logRatio_cytoBand" reducedDim slot filled. See <code>calculate_logRatio_CNA</code>	
control_samples		
	Sample IDs of the normal sample to take as reference.	
ref_genome	Reference genome ('hg38' or 'mm10')	
<pre>quantiles_to_define_gol</pre>		
	Quantiles of normal log2-ratio distribution below/above which cytoband is considered to be a loss/gain. (c(0.05,0.95)). See calculate_gain_or_loss	

Value

The SCE with the fraction of reads, log2-ratio and gain or loss in each cytobands in each cells (of dimension cell x cytoband) in the reducedDim slots.

Examples

```
data("scExp")
scExp = calculate_CNA(scExp, control_samples = unique(scExp$sample_id)[1],
ref_genome="hg38", quantiles_to_define_gol = c(0.05,0.95))
SingleCellExperiment::reducedDim(scExp, "cytoBand")
SingleCellExperiment::reducedDim(scExp, "logRatio_cytoBand")
SingleCellExperiment::reducedDim(scExp, "gainOrLoss_cytoBand")
```

calculate_cyto_mat Calculate Fraction of reads in each cytobands

Description

Re-Count binned reads onto cytobands and calculate the fraction of reads in each of the cytoband in each cell. For each cell, the fraction of reads in any given cytoband is calculated. Cytobands are considered large enough in order that a variation at the cytoband level is not considered as an epigenetic event but as a genetic event, e.g. Copy Number Alterations.

Usage

```
calculate_cyto_mat(scExp, ref_genome = c("hg38", "mm10")[1])
```

Arguments

scExp	A SingleCellExperiment with genomic coordinate as features (peaks or bins)
ref_genome	Reference genome ('hg38' or 'mm10')

Value

The SCE with the fraction of reads in each cytobands in each cells (of dimension cell x cytoband) in the reducedDim slot "cytoBand".

Examples

```
data("scExp")
scExp = calculate_cyto_mat(scExp, ref_genome="hg38")
SingleCellExperiment::reducedDim(scExp, "cytoBand")
```

10

```
calculate_gain_or_loss
```

Estimate the copy gains/loss of tumor vs normal based on log2-ratio of fraction of reads

Description

Given a SingleCellExperiment object with the slot "logRatio_cytoBand" containing the log2-ratio of the fraction of reads in each cytoband, estimate if the cytoband was lost or acquired a gain in a non-quantitative way. To do so, the quantiles distribution of the normal cells are calculated, and any cytoband below or above will be considered as a loss/gain. The False Discovery Rate is directly proportional to the quantiles.

Usage

```
calculate_gain_or_loss(scExp, controls, quantiles = c(0.05, 0.95))
```

Arguments

scExp	A SingleCellExperiment with "logRatio_cytoBand" reducedDim slot filled. See calculate_logRatio_CNA
controls	Sample IDs or Cell IDs of the normal sample to take as reference.
quantiles	Quantiles of normal log2-ratio distribution below/above which cytoband is considered to be a loss/gain. $(c(0.05,0.95))$

Value

The SCE with the gain or loss in each cytobands in each cells (of dimension cell x cytoband) in the reducedDim slot "gainOrLoss_cytoBand".

```
data("scExp")
scExp = calculate_cyto_mat(scExp, ref_genome="hg38")
scExp = calculate_logRatio_CNA(scExp, controls=unique(scExp$sample_id)[1])
scExp = calculate_gain_or_loss(scExp, controls=unique(scExp$sample_id)[1])
SingleCellExperiment::reducedDim(scExp, "gainOrLoss_cytoBand")
```

```
calculate_logRatio_CNA
```

Calculate the log2-ratio of tumor vs normal fraction of reads in cytobands

Description

Given a SingleCellExperiment object with the slot "cytoBand" containing the fraction of reads in each cytoband, calculates the log2-ratio of tumor vs normal fraction of reads in cytobands, cell by cell. If the average signal in normal sample in a cytoband is 0, set this value to 1 so that the ratio won't affect the fraction of read value.

Usage

```
calculate_logRatio_CNA(scExp, controls)
```

Arguments

scExp	A SingleCellExperiment with "cytoBand" reducedDim slot filled.
	 see calculate_cyto_mat
controls	Sample IDs or Cell IDs of the normal sample to take as reference.

Value

The SCE with the log2-ratio of fraction of reads in each cytobands in each cells (of dimension cell x cytoband) in the reducedDim slot "logRatio_cytoBand".

Examples

```
data("scExp")
scExp = calculate_cyto_mat(scExp, ref_genome="hg38")
scExp = calculate_logRatio_CNA(scExp, controls=unique(scExp$sample_id)[1])
SingleCellExperiment::reducedDim(scExp, "logRatio_cytoBand")
```

call_macs2_merge_peaks

Calling MACS2 peak caller and merging resulting peaks

Description

Calling MACS2 peak caller and merging resulting peaks

changeRange

Usage

```
call_macs2_merge_peaks(
   affectation,
   odir,
   p.value,
   format = c("scBED", "BAM")[1],
   ref,
   peak_distance_to_merge
)
```

Arguments

affectation	Annotation data.frame with cell cluster and cell id information
odir	Output directory to write MACS2 output
p.value	P value to detect peaks, passed to MACS2
format	File format, either "BAM" or "scBED"
ref	Reference genome to get chromosome information from.
<pre>peak_distance_</pre>	to_merge
	Distance to merge peaks

Value

A list of merged GRanges peaks

changeRange	changeRange	

Description

changeRange

Usage

```
changeRange(v, newmin = 1, newmax = 10)
```

Arguments

V	A numeric vector
newmin	New min
newmax	New max

Value

A matrix with values scaled between newmin and newmax

CheA3_TF_nTargets A data.frame with the number of targets of each TF in ChEA3

Description

This data.frame was obtained by downloading datasets from ChEA3 database (https://maayanlab.cloud/chea3/) and merging targets for :

- ARCHS4_Coexpression
- ENCODE_ChIP-seq
- Enrichr_Queries
- GTEx_Coexpression
- Literature_ChIP-seq
- ReMap_ChIP-seq

Usage

```
data("CheA3_TF_nTargets")
```

Format

CheA3_TF_nTargets - a data.frame with 1632 rows (unique TFs) and 2 columns

References

Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz M, Utti V, Jagodnik K, Kropiwnicki E, Wang Z, Ma'ayan A (2019) ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Research. doi: 10.1093/nar/gkz446

The data.frame is composed of two columns:

- TF column containing the TF gene names (human)
- nTargets_TF containing the number of targets for this TF in the combined database.

```
data("CheA3_TF_nTargets")
head(CheA3_TF_nTargets)
```

check_correct_datamatrix

Check if matrix rownames are well formated and correct if needed

Description

Throws warnings / error if matrix is in the wrong format

Usage

```
check_correct_datamatrix(datamatrix_single, sample_name = "")
```

Arguments

datamatrix_single		
	A sparse matrix	
sample_name	Matrix sample name for warnings	

Value

A sparseMatrix in the right rownames format

choose_cluster_scExp Choose a number of clusters

Description

This functions takes as input a SingleCellExperiment object and a number of cluster to select. It outputs a SingleCellExperiment object with each cell assigned to a correlation cluster in colData. Also calculates a hierarchical clustering of the consensus associations calculated by Consensus-ClusterPlus.

Usage

```
choose_cluster_scExp(
   scExp,
   nclust = 3,
   consensus = FALSE,
   hc_linkage = "ward.D"
)
```

Arguments

scExp	A SingleCellExperiment object containing consclust in metadata.
nclust	Number of cluster to pick (3)
consensus	Use consensus clustering results instead of simple hierarchical clustering ? (FALSE)
hc_linkage	A linkage method for hierarchical clustering. See cor. ('ward.D')

Value

Returns a SingleCellExperiment object with each cell assigned to a correlation cluster in colData.

Examples

```
data("scExp")
scExp_cf = correlation_and_hierarchical_clust_scExp(scExp)
scExp_cf = choose_cluster_scExp(scExp_cf,nclust=3,consensus=FALSE)
table(scExp_cf$cell_cluster)
scExp_cf = consensus_clustering_scExp(scExp)
scExp_cf_consensus = choose_cluster_scExp(scExp_cf,nclust=3,consensus=TRUE)
table(scExp_cf_consensus$cell_cluster)
```

choose_perplexity Choose perplexity depending on number of cells for Tsne

Description

Choose perplexity depending on number of cells for Tsne

Usage

```
choose_perplexity(dataset)
```

Arguments

dataset A matrix of features x cells (rows x columns)

Value

A number between 5 and 30 to use in Rtsne function

col2hex

Col2Hex

Description

Transform character color to hexadecimal color code.

Usage

col2hex(cname)

colors_scExp

Arguments

cname

Color name

Value

The HEX color code of a particular color

colors_scExp

Adding colors to cells & features

Description

Adding colors to cells & features

Usage

```
colors_scExp(
  scExp,
  annotCol = "sample_id",
  color_by = "sample_id",
  color_df = NULL
)
```

Arguments

scExp	A SingleCellExperiment Object
annotCol	Column names to color
color_by	If specifying color_df, column names to color
color_df	Color data.frame to specify which color for which condition

Value

A SingleCellExperiment with additionnal "color" columns in colData

```
data("scExp")
scExp = colors_scExp(scExp,annotCol = c("sample_id",
    "total_counts"),
    color_by = c("sample_id","total_counts"))
#Specific colors using a manually created data.frame :
    color_df = data.frame(sample_id=unique(scExp$sample_id),
        sample_id_color=c("red","blue","green","yellow"))
scExp = colors_scExp(scExp,annotCol="sample_id",
        color_by="sample_id",color_df=color_df)
```

combine_datamatrix Combine two matrices and emit warning if no regions are in common

Description

Combine two matrices and emit warning if no regions are in common

Usage

```
combine_datamatrix(datamatrix, datamatrix_single, file_names, i)
```

Arguments

datamatrix	A sparse matrix or NULL if empty
datamatrix_sing	gle
	Another sparse matrix
file_names	File name corresponding to the matrix for warnings
i	file number

Value

A combined sparse matrix

```
combine_enrichmentTests
```

```
Run enrichment tests and combine into list
```

Description

Run enrichment tests and combine into list

Usage

```
combine_enrichmentTests(
  diff,
  enrichment_qval,
  qval.th,
  logFC.th,
  min.percent,
  annotFeat_long,
  peak_distance,
  refined_annotation,
  GeneSets,
  GeneSetsDf,
  GenePool,
  progress = NULL
)
```

CompareedgeRGLM

Arguments

diff	Differential list	
enrichment_qval		
	Adusted p-value threshold above which a pathway is considered significative list	
qval.th	Differential analysis adjusted p.value threshold	
logFC.th	Differential analysis log-fold change threshold	
min.percent	Minimum fraction of cells having the feature active to consider it as significantly differential. (0.01)	
annotFeat_long	Long annotation	
peak_distance	Maximum gene to peak distance	
refined_annotation		
	Refined annotation data.frame if peak calling is done	
GeneSets	List of pathways	
GeneSetsDf	Data.frame of pathways	
GenePool	Pool of possible genes for testing	
progress	A shiny Progress instance to display progress bar.	

Value

A list of list of pathway enrichment data.frames for Both / Over / Under and for each cluster

CompareedgeRGLM	Creates a summary table with the number of genes under- or overex-
	pressed in each group and outputs several graphical representations

Description

Creates a summary table with the number of genes under- or overexpressed in each group and outputs several graphical representations

Usage

```
CompareedgeRGLM(
  dataMat = NULL,
  annot = NULL,
  ref_group = NULL,
  groups = NULL,
  featureTab = NULL,
  norm_method = "TMMwsp"
)
```

Arguments

dataMat	reads matrix
annot	selected annotation of interest
ref_group	List containing one or more vectors of reference samples. Name of the vectors will be used in the results table. The length of this list should be 1 or the same length as the groups list
groups	List containing the IDs of groups to be compared with the reference samples. Names of the vectors will be used in the results table
featureTab	Feature annotations to be added to the results table
norm_method	Which method to use for normalizing ('upperquantile')

Value

A dataframe containing the foldchange and p.value of each feature

Author(s)

Eric Letouze & Celine Vallot

Examples

```
data("scExp")
scExp_cf = correlation_and_hierarchical_clust_scExp(scExp)
scExp_cf = choose_cluster_scExp(scExp_cf,nclust=2,consensus=FALSE)
featureTab = as.data.frame(SummarizedExperiment::rowRanges(scExp_cf))
rownames(featureTab) = featureTab$ID
ref_group = list("C1"=scExp_cf$cell_id[which(scExp_cf$cell_cluster=="C1")])
groups = list("C2"=scExp_cf$cell_id[which(scExp_cf$cell_cluster=="C2")])
myres = CompareedgeRGLM(as.matrix(SingleCellExperiment::counts(scExp_cf)),
annot=as.data.frame(SingleCellExperiment::colData(scExp_cf)),
ref_group=ref_group,groups=groups, featureTab=featureTab)
```

CompareWilcox CompareWilcox

Description

CompareWilcox

CompareWilcox

Usage

```
CompareWilcox(
   dataMat = NULL,
   annot = NULL,
   ref_group = NULL,
   groups = NULL,
   featureTab = NULL,
   block = NULL,
   BPPARAM = BiocParallel::bpparam()
)
```

Arguments

dataMat	A raw count matrix
annot	A cell annotation data.frame
ref_group	List with cells in reference group(s)
groups	List with cells in group(s) to test
featureTab	data.frame with feature annotation
block	Use a blocking factor to conteract batch effect ?
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.

Value

A dataframe containing the foldchange and p.value of each feature

Author(s)

Eric Letouze & Celine Vallot & Pacome Prompsy

```
data("scExp")
scExp_cf = correlation_and_hierarchical_clust_scExp(scExp)
scExp_cf = choose_cluster_scExp(scExp_cf,nclust=2,consensus=FALSE)
featureTab = as.data.frame(SummarizedExperiment::rowRanges(scExp_cf))
rownames(featureTab) = featureTab$ID
ref_group = list("C1"=scExp_cf$cell_id[which(scExp_cf$cell_cluster=="C1")])
groups = list("C2"=scExp_cf$cell_id[which(scExp_cf$cell_cluster=="C1")])
myres = CompareWilcox(as.matrix(SingleCellExperiment::normcounts(scExp_cf)),
annot=as.data.frame(SingleCellExperiment::colData(scExp_cf)),
ref_group=ref_group,groups=groups, featureTab=featureTab)
```

concatenate_scBed_into_clusters

Concatenate single-cell BED into clusters

Description

Concatenate single-cell BED into clusters

Usage

```
concatenate_scBed_into_clusters(affectation, files_list, odir)
```

Arguments

affectation	Annotation data.frame containing cluster information
files_list	Named list of scBED file paths to concatenate. List Names must match affecta- tion\$sample_id and basenames must match affectation\$barcode.
odir	Output directory to write concatenate pseudo-bulk BEDs.

Value

Merge single-cell BED files into cluster BED files. Ungzip file if BED is gzipped.

Description

Runs consensus hierarchical clustering on PCA feature space of scExp object. Plot consensus scores for each number of clusters. See ConsensusClusterPlus - Wilkerson, M.D., Hayes, D.N. (2010). ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010 Jun 15;26(12):1572-3.

Usage

```
consensus_clustering_scExp(
  scExp,
  prefix = NULL,
  maxK = 10,
  reps = 100,
  pItem = 0.8,
  pFeature = 1,
  distance = "pearson",
  clusterAlg = "hc",
```

```
innerLinkage = "ward.D",
finalLinkage = "ward.D",
plot_consclust = "pdf",
plot_icl = "png"
```

Arguments

scExp	A SingleCellExperiment object containing 'PCA' in reducedDims.
prefix	character value for output directory. Directory is created only if plot_consclust is not NULL. This title can be an abosulte or relative path.
maxK	integer value. maximum cluster number to evaluate. (10)
reps	integer value. number of subsamples. (100)
pItem	numerical value. proportion of items to sample. (0.8)
pFeature	numerical value. proportion of features to sample. (1)
distance	character value. 'pearson': (1 - Pearson correlation), 'spearman' (1 - Spear- man correlation), 'euclidean', 'binary', 'maximum', 'canberra', 'minkowski' or custom distance function. ('pearson')
clusterAlg	character value. cluster algorithm. 'hc' heirarchical (hclust), 'pam' for pari- tioning around medoids, 'km' for k-means upon data matrix, 'kmdist' ('hc') for k-means upon distance matrices (former km option), or a function that returns a clustering. ('hc')
innerLinkage	hierarchical linkage method for subsampling. ('ward.D')
finalLinkage	hierarchical linkage method for consensus matrix. ('ward.D')
plot_consclust	character value. NULL - print to screen, 'pdf', 'png', 'pngBMP' for bitmap png, helpful for large datasets. ('pdf')
plot_icl	same as above for item consensus plot. ('png')

Details

This functions takes as input a SingleCellExperiment object that must have 'PCA' in reducedDims and outputs a SingleCellExperiment object containing consclust list calculated cluster consensus and item consensus scores in metadata.

Value

Returns a SingleCellExperiment object containing consclust list, calculated cluster consensus and item consensus scores in metadata.

References

ConsensusClusterPlus package by Wilkerson, M.D., Hayes, D.N. (2010). ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010 Jun 15;26(12):1572-3.

Examples

```
data("scExp")
scExp_cf = correlation_and_hierarchical_clust_scExp(scExp)
scExp_cf = consensus_clustering_scExp(scExp)
```

Description

Calculates cell to cell correlation matrix based on the PCA feature space and runs hierarchical clustering taking 1 - correlation scores as distance.

Usage

```
correlation_and_hierarchical_clust_scExp(scExp, hc_linkage = "ward.D")
```

Arguments

scExp	A SingleCellExperiment object, containing 'PCA' in reducedDims.
hc_linkage	A linkage method for hierarchical clustering. See cor. ('ward.D')

Details

This functions takes as input a SingleCellExperiment object that must have PCA calculated and outputs a SingleCellExperiment object with correlation matrix and hierarchical clustering.

Value

Return a SingleCellExperiment object with correlation matrix & hiearchical clustering.

Examples

```
data("scExp")
scExp_cf = correlation_and_hierarchical_clust_scExp(scExp)
```

24

count_coverage

Create a smoothed and normalized coverage track from a BAM file and given a bin GenomicRanges object (same as deepTools bamCoverage)

Description

Normalization is CPM, smoothing is done by averaging on n_smoothBin regions left and right of any given region.

Usage

```
count_coverage(
  filename,
  format = "BAM",
  bins,
  canonical_chr,
  n_smoothBin = 5,
  ref = "hg38",
  read_size = 101
)
```

Arguments

filename	Path towards the BAM to create coverage from
format	File format, either "BAM" or "BED"
bins	A GenomicRanges object of binned genome
canonical_chr	GenomicRanges of the chromosomes to read the BAM file.
n_smoothBin	Number of bins left and right to smooth the signal.
ref	Genomic reference
read_size	Length of the reads

Value

A binned GenomicRanges that can be readily exported into bigwig file.

create_project_folder Create ChromSCape project folder

Description

Creates a project folder that will be recognizable by ChromSCape Shiny application.

Usage

```
create_project_folder(
   output_directory,
   analysis_name = "Analysis_1",
   ref_genome = c("hg38", "mm10")[1]
)
```

Arguments

output_directory		
	Path towards the directory to create the 'ChromSCape_Analyses' folder and the analysis subfolder. If this path already contains the 'ChromSCape_Analyses' folder, will only create the analysis subfolder.	
analysis_name	Name of the analysis. Must only contain alphanumerical characters or '_'.	
ref_genome	Reference genome, either 'hg38' or 'mm10'.	

Value

Creates the project folder and returns the root of the project.

Examples

```
dir = tempdir()
create_project_folder(output_directory = dir,
    analysis_name = "Analysis_1")
list.dirs(file.path(dir))
```

create_sample_name_mat

Create a sample name matrix

Description

Create a sample name matrix

Usage

```
create_sample_name_mat(nb_samples, samples_names)
```

Arguments

nb_samples	Number of samples
samples_names	Character vector of sample names

Value

A matrix

26

create_scDataset_raw Create a simulated single cell datamatrix & cell annotation

Description

Create a simulated single cell datamatrix & cell annotation

Usage

```
create_scDataset_raw(
   cells = 300,
   features = 600,
   featureType = c("window", "peak", "gene"),
   sparse = TRUE,
   nsamp = 4,
   ref = "hg38",
   batch_id = factor(rep(1, nsamp))
)
```

Arguments

cells	Number of cells (300)
features	Number of features (600)
featureType	Type of feature (window)
sparse	Is matrix sparse ? (TRUE)
nsamp	Number of samples (4)
ref	Reference genome ('hg38')
batch_id	Batch origin (factor((1,1,1,1))

Value

A list composed of * mat : a sparse matrix following an approximation of the negative binomial law (adapted to scChIPseq) * annot : a data.frame of cell annotation * batches : an integer vector with the batch number for each cell

```
# Creating a basic sparse 600 genomic bins x 300 cells matrix and annotation
l = create_scDataset_raw()
head(l$mat)
head(l$mat)
head(l$batches)
# Specifying number of cells, features and samples
l2 = create_scDataset_raw(cells = 500, features = 500, nsamp=2)
```

```
# Specifying species
mouse_l = create_scDataset_raw(ref="mm10")
# Specifying batches
batch_l = create_scDataset_raw(nsamp=4, batch_id = factor(c(1,1,2,2)))
# Peaks of different size as features
peak_l = create_scDataset_raw(featureType="peak")
head(peak_l$mat)
# Genes as features
gene_l = create_scDataset_raw(featureType="gene")
head(gene_l$mat)
```

create_scExp Wrapper to create the single cell experiment from count matrix and feature dataframe

Description

Create the single cell experiment from (sparse) datamatrix and feature dataframe containing feature names and location. Also optionally removes zero count Features, zero count Cells, non canconical chromosomes, and chromosome M. Calculates QC Metrics (scran).

Usage

```
create_scExp(
   datamatrix,
   annot,
   remove_zero_cells = TRUE,
   remove_zero_features = TRUE,
   remove_non_canonical = TRUE,
   remove_chr_M = TRUE,
   mainExpName = "main",
   verbose = TRUE
)
```

Arguments

datamatrix	A matrix or sparseMatrix of raw counts. Features x Cells (rows x columns).
annot	A data.frame containing informations on cells. Should have the same number of
	rows as the number of columns in datamatrix.
remove_zero_ce	lls
	remove cells with zero counts ? (TRUE)
remove_zero_fe	atures
	remove cells with zero counts ? (TRUE)
remove_non_car	onical
	remove non canonical chromosomes ?(TRUE)

28

DA_custom

remove_chr_M	remove chromosomes M ? (TRUE)
mainExpName	Name of the mainExpName e.g. 'bins', 'peaks' ("default")
verbose	(TRUE)

Value

Returns a SingleCellExperiment object.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp</pre>
```

```
DA_custom
```

Differential Analysis in 'One vs Rest' mode

Description

Differential Analysis in 'One vs Rest' mode

Usage

```
DA_custom(
    affectation,
    counts,
    method,
    feature,
    block,
    ref,
    group,
    progress = NULL,
    BPPARAM = BiocParallel::bpparam()
)
```

Arguments

affectation	An annotation data.frame with cell_id and cell_cluster columns
counts	Count matrix
method	DA method : Wilcoxon or EdgeR
feature	Feature tables
block	Blocking feature
ref	If de_type is custom, the reference to compare (data.frame), must be a one- column data.frame with cell_clusters or sample_id as character in rows

group	If de_type is custom, the group to compare (data.frame), must be a one-column data.frame with cell_clusters or sample_id as character in rows
progress	A shiny Progress instance to display progress bar.
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.

Value

A list of results, groups compared and references

DA_one_vs_rest

Differential Analysis in 'One vs Rest' mode

Description

Differential Analysis in 'One vs Rest' mode

Usage

```
DA_one_vs_rest(
   affectation,
   nclust,
   counts,
   method,
   feature,
   block,
   progress = NULL,
   BPPARAM = BiocParallel::bpparam()
)
```

Arguments

affectation	An annotation data.frame with cell_id and cell_cluster columns	
nclust	Number of clusters	
counts	Count matrix	
method	DA method : Wilcoxon or EdgeR	
feature	Feature tables	
block	Blocking feature	
progress	A shiny Progress instance to display progress bar.	
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.	

Value

A list of results, groups compared and references

DA_pairwise

Description

Run differential analysis in Pairwise mode

Usage

```
DA_pairwise(
    affectation,
    nclust,
    counts,
    method,
    feature,
    block,
    progress = NULL,
    BPPARAM = BiocParallel::bpparam()
)
```

Arguments

affectation	An annotation data.frame with cell_cluster and cell_id columns
nclust	Number of clusters
counts	Count matrix
method	DA method, Wilcoxon or edgeR
feature	Feature data.frame
block	Blocking feature
progress	A shiny Progress instance to display progress bar.
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.

Value

A list of results, groups compared and references

define_feature

Description

Define the features on which reads will be counted

Usage

```
define_feature(ref = c("hg38","mm10")[1],
    peak_file = NULL,
    bin_width = NULL,
    genebody = FALSE,
    extendPromoter = 2500)
```

Arguments

ref	Reference genome
peak_file	A bed file if counting on peaks
bin_width	A number of bins if divinding genome into fixed width bins
genebody	A logical indicating if feature should be counted in genebodies and promoter.
extendPromoter	Extension length before TSS (2500).

Value

A GRanges object

Examples

```
gr_bins = define_feature("hg38", bin_width = 50000)
gr_genes = define_feature("hg38", genebody = TRUE, extendPromoter = 5000)
```

detect_samples Heuristic discovery of samples based on cell labels

Description

Identify a fixed number of common string (samples) in a set of varying strings (cells). E.g. in the set "Sample1_cell1", "Sample1_cell2", "Sample2_cell1", "Sample2_cell2" and with nb_samples=2, the function returns "Sample1", "Sample1", "Sample2", "Sample2".

Usage

```
detect_samples(barcodes, nb_samples = 1)
```

Arguments

barcodes	Vector of cell barcode names (e.g. Sample1_cell1, Sample1_cell2)
nb_samples	Number of samples to find

Value

character vector of sample names the same length as cell labels

Examples

```
barcodes = c(paste0("HBCx22_BC_",seq_len(100)),
paste0("mouse_sample_XX",208:397))
samples = detect_samples(barcodes, nb_samples=2)
```

differential_activation

Find Differentialy Activated Features (One vs All)

Description

Based on the statement that single-cell epigenomic dataset are very sparse, specifically when analysis small bins or peaks, we can define each feature as being 'active' or not simply by the presence or the absence of reads in this feature. This is the equivalent of binarize the data. When trying to find differences in signal for a feature between multiple cell groups, this function simply compare the percentage of cells 'activating' the feature in each of the group. The p.values are then calculated using a Pearson's Chi-squared Test for Count Data (comparing the number of active cells in one group vs the other) and corrected using Benjamini-Hochberg correction for multiple testing.

Usage

```
differential_activation(
   scExp,
   group_by = c("cell_cluster", "sample_id")[1],
   verbose = TRUE,
   progress = NULL
)
```

Arguments

scExp	A SingleCellExperiment object containing consclust with selected number of cluster.
group_by	Which grouping to run the marker enrichment ?
verbose	Print ?
progress	A shiny Progress instance to display progress bar.

Details

To calculate the logFC, the percentage of activation of the features are corrected for total number of reads to correct for library size bias. For each cluster ('group') the function consider the rest of the cells as the reference.

Value

Returns a dataframe of differential activation results that contains the rowData of the SingleCellExperiment with additional logFC, q.value, group activation (fraction of cells active for each feature in the group cells), reference activation (fraction of cells active for each feature in the reference cells).

See Also

For Pearson's Chi-squared Test for Count Data chisq.test. For other differential analysis see differential_analysis_scExp.

Examples

```
data("scExp")
res = differential_activation(scExp, group_by = "cell_cluster")
res = differential_activation(scExp, group_by = "sample_id")
```

differential_analysis_scExp

Runs differential analysis between cell clusters

Description

Based on clusters of cell defined previously, runs non-parametric Wilcoxon Rank Sum test to find significantly depleted or enriched features, in 'one_vs_rest' mode or 'pairwise' mode. In pairwise mode, each cluster is compared to all other cluster individually, and then pairwise comparisons between clusters are combined to find overall differential features using combineMarkers function from scran.

Usage

```
differential_analysis_scExp(
   scExp,
   de_type = c("one_vs_rest_fast", "one_vs_rest", "pairwise")[1],
   method = "wilcox",
   block = NULL,
   group = NULL,
   ref = NULL,
   prioritize_genes = nrow(scExp) > 20000,
   max_distanceToTSS = 1000,
   progress = NULL,
   BPPARAM = BiocParallel::bpparam()
)
```

Arguments

scExp	A SingleCellExperiment object containing consclust with selected number of cluster.	
de_type	Type of comparisons. Either 'one_vs_rest', to compare each cluster against all others, or 'pairwise' to make 1 to 1 comparisons. ('one_vs_rest')	
method	Differential testing method, either 'wilcox' for Wilcoxon non- parametric testing or 'neg.binomial' for edgerGLM based testing. ('wilcox')	
block	Use batches as blocking factors ? If TRUE, block will be taken as the column "batch_id" from the SCE. Cells will be compared only within samples belonging to the same batch.	
group	If de_type = "custom", the sample / cluster of interest as a one- column data.frame. The name of the column is the group name and the values are character either cluster ("C1", "C2",) or sample_id.	
ref	If de_type = "custom", the sample / cluster of reference as a one- column data.frame. The name of the column is the group name and the values are character either cluster ("C1", "C2",) or sample_id.	
prioritize_genes		
	First filter by loci being close to genes ? E.g. for differential analysis, it is more relevant to keep features close to genes	
<pre>max_distanceTo</pre>	TSS	
	If prioritize_genes is TRUE, the maximum distance to consider a feature close to a gene.	
progress	A shiny Progress instance to display progress bar.	
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.	

Details

This functions takes as input a SingleCellExperiment object with consclust, the type of comparison, either 'one_vs_rest' or 'pairwise', the adjusted p-value threshold (qval.th) and the fold-change threshold (logFC.th). It outputs a SingleCellExperiment object containing a differential list.

Value

Returns a SingleCellExperiment object containing a differential list.

```
data("scExp")
scExp_cf = differential_analysis_scExp(scExp)
```

distPearson distPearson

Description

distPearson

Usage

distPearson(m)

Arguments

m A matrix

Value

A dist object

enrichmentTest enrichmentTest

Description

enrichmentTest

Usage

```
enrichmentTest(gene.sets, mylist, possibleIds, sep = ";", silent = FALSE)
```

Arguments

gene.sets	A list of reference gene sets
mylist	A list of genes to test
possibleIds	All existing genes
sep	Separator used to collapse genes
silent	Silent mode ?

Value

A dataframe with the gene sets and their enrichment p.value
enrich_TF_ChEA3_genes Find the TF that are enriched in the differential genes using ChEA3 API

Description

Find the TF that are enriched in the differential genes using ChEA3 API

Usage

enrich_TF_ChEA3_genes(genes)

Arguments

genes A character vector with the name of genes to enrich for TF.

Value

Returns a SingleCellExperiment object containing list of enriched Gene Sets for each cluster, either in depleted features, enriched features or simply differential features (both).

References

Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz M, Utti V, Jagodnik K, Kropiwnicki E, Wang Z, Ma'ayan A (2019) ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Research. doi: 10.1093/nar/gkz446 +

Examples

```
data(scExp)
enrich_TF_ChEA3_genes(head(unlist(strsplit(SummarizedExperiment::rowData(scExp)$Gene, split = ",", fixed = TRUE)
```

enrich_TF_ChEA3_scExp Find the TF that are enriched in the differential genes using ChEA3 database

Description

Find the TF that are enriched in the differential genes using ChEA3 database

Usage

```
enrich_TF_ChEA3_scExp(
    scExp,
    ref = "hg38",
    qval.th = 0.01,
    logFC.th = 1,
    min.percent = 0.01,
    peak_distance = 1000,
    use_peaks = FALSE,
    progress = NULL,
    verbose = TRUE
)
```

Arguments

scExp	A SingleCellExperiment object containing list of differential features.
ref	A reference annotation, either 'hg38' or 'mm10'. ('hg38')
qval.th	Adjusted p-value threshold to define differential features. (0.01)
logFC.th	Fold change threshold to define differential features. (1)
min.percent	Minimum fraction of cells having the feature active to consider it as significantly differential. (0.01)
peak_distance	Maximum distanceToTSS of feature to gene TSS to consider associated, in bp. (1000)
use_peaks	Use peak calling method (must be calculated beforehand). (FALSE)
progress	A shiny Progress instance to display progress bar.
verbose	A logical to print message or not. (TRUE)

Value

Returns a SingleCellExperiment object containing list of enriched Gene Sets for each cluster, either in depleted features, enriched features or simply differential features (both).

Examples

```
data("scExp")
scExp = enrich_TF_ChEA3_scExp(
    scExp,
    ref = "hg38",
    qval.th = 0.01,
    logFC.th = 1,
    min.percent = 0.01)
```

exclude_features_scExp

Remove specific features (CNA, repeats)

Description

Remove specific features (CNA, repeats)

Usage

```
exclude_features_scExp(
   scExp,
   features_to_exclude,
   by = "region",
   verbose = TRUE
)
```

Arguments

scExp	A SingleCellExperiment object.		
features_to_ex	features_to_exclude		
	A GenomicRanges object or data.frame containing genomic regions or features to exclude or path towards a BED file containing the features to exclude.		
by	Type of features. Either 'region' or 'feature_name'. If 'region', will look for genomic coordinates in columns 1-3 (chr,start,stop). If 'feature_name', will look for a genes in first column. ('region')		
verbose	(TRUE)		

Value

A SingleCellExperiment object without features to exclude.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
features_to_exclude = data.frame(chr=c("chr4","chr7","chr17"),
start=c(50000,8000000,2000000),
end=c(100000,16000000,2500000))
features_to_exclude = as(features_to_exclude,"GRanges")
scExp = exclude_features_scExp(scExp,features_to_exclude)
scExp</pre>
```

```
feature_annotation_scExp
```

Add gene annotations to features

Description

Add gene annotations to features

Usage

```
feature_annotation_scExp(scExp, ref = "hg38", reference_annotation = NULL)
```

Arguments

scExp	A SingleCellExperiment object.	
ref	Reference genome. Either 'hg38' or 'mm10'. ('hg38')	
reference_annotation		
	A data.frame containing gene (or else) annotation with genomic coordinates.	

Value

A SingleCellExperiment object with annotated rowData.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = feature_annotation_scExp(scExp)
head(SummarizedExperiment::rowRanges(scExp))</pre>
```

```
# Mouse
raw = create_scDataset_raw(ref = "mm10")
scExp = create_scExp(raw$mat, raw$annot)
scExp = feature_annotation_scExp(scExp,ref="mm10")
head(SummarizedExperiment::rowRanges(scExp))
```

filter_correlated_cell_scExp

Filter lowly correlated cells

Description

Remove cells that have a correlation score lower than what would be expected by chance with other cells.

Usage

```
filter_correlated_cell_scExp(scExp, random_iter = 5,
corr_threshold = 99, percent_correlation = 1,
downsample = 2500, verbose = TRUE, n_process = 250,
BPPARAM = BiocParallel::bpparam())
```

Arguments

scExp	A SingleCellExperiment object containing 'Cor', a correlation matrix, in re- ducedDims.	
random_iter	Number of random matrices to create to calculate random correlation scores. (50)	
corr_threshold	Quantile of random correlation score above which a cell is considered to be 'correlated' with another cell. (99)	
percent_correlation		
	Percentage of the cells that any cell must be 'correlated' to in order to not be filtered. (1)	
downsample	Number of cells to calculate correlation filtering threshold ? (2500)	
verbose	Print messages ? (TRUE)	
n_process	Number of cell to proceed at a time. Increase this number to increase speed at memory cost	
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.	

Details

This functions takes as input a SingleCellExperiment object that must have correlation matrix calculated and outputs a SingleCellExperiment object without lowly correlated cells. TSNE is recalculated.

Value

Returns a SingleCellExperiment object without lowly correlated cells. The calculated correlation score limit threshold is saved in metadata.

Examples

```
data("scExp")
dim(scExp)
scExp_cf = filter_correlated_cell_scExp(scExp,
corr_threshold = 99, percent_correlation = 1)
dim(scExp_cf)
```

Description

Filter genes based on peak calling refined annotation

Usage

```
filter_genes_with_refined_peak_annotation(
  refined_annotation,
  peak_distance,
  signific,
  over,
  under
)
```

Arguments

refined_annotation		
	A data frame containing each gene distance to real peak	
peak_distance	Minimum distance to an existing peak to accept a given gene	
signific	Indexes of all significantly differential genes	
over	Indexes of all significantly overexpressed genes	
under	Indexes of all significantly underexpressed genes	

Value

List of significantly differential, overexpressed and underexpressed genes close enough to existing peaks

filter_scExp Filter cells and features

Description

Function to filter out cells & features from SingleCellExperiment based on total count per cell, number of cells 'ON' in features and top covered cells that might be doublets.

Usage

```
filter_scExp(
   scExp,
   min_cov_cell = 1600,
   quant_removal = 95,
   min_count_per_feature = 10,
   verbose = TRUE
)
```

Arguments

scExp	A SingleCellExperiment object.	
<pre>min_cov_cell</pre>	Minimum counts for each cell. (1600)	
quant_removal	Centile of cell counts above which cells are removed. (95)	
<pre>min_count_per_feature</pre>		
	Minimum number of reads per feature (10).	
verbose	(TRUE)	

Value

Returns a filtered SingleCellExperiment object.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp. = filter_scExp(scExp)</pre>
```

```
# No feature filtering (all features are valuable)
scExp. = filter_scExp(scExp,min_count_per_feature=30)
```

```
# No cell filtering (all features are valuable)
scExp. = filter_scExp(scExp,min_cov_cell=0,quant_removal=100)
```

find_clusters_louvain_scExp Build SNN graph and find cluster using Louvain Algorithm

Description

Build SNN graph and find cluster using Louvain Algorithm

Usage

```
find_clusters_louvain_scExp(
   scExp,
   k = 10,
   use.dimred = "PCA",
   type = c("rank", "number", "jaccard")[3],
   BPPARAM = BiocParallel::bpparam()
)
```

Arguments

scExp	A SingleCellExperiment with PCA calculated
k	An integer scalar specifying the number of nearest neighbors to consider during graph construction.
use.dimred	A string specifying the dimensionality reduction to use.
type	A string specifying the type of weighting scheme to use for shared neighbors.
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.

Value

A SingleCellExperiment containing the vector of clusters (named C1, C2)

Examples

data('scExp')

scExp = find_clusters_louvain_scExp(scExp, k = 10)

find_top_features Find most covered features

Description

Find the top most covered features that will be used for dimensionality reduction. Optionally remove non-top features.

Usage

```
find_top_features(
    scExp,
    n = 20000,
    keep_others = FALSE,
    prioritize_genes = FALSE,
    max_distanceToTSS = 10000,
    verbose = TRUE
)
```

Arguments

scExp	A SingleCellExperiment.	
n	Either an integer indicating the number of top covered regions to find or a char- acter vector of the top percentile of features to keep (e.g. 'q20' to keep top 20% features).	
keep_others	Logical indicating if non-top regions are to be removed from the SCE or not (FALSE).	
prioritize_genes		
	First filter by loci being close to genes ? E.g. for differential analysis, it is more relevant to keep features close to genes	
<pre>max_distanceToTSS</pre>		
	If prioritize_genes is TRUE, the maximum distance to consider a feature close	
	to a gene.	
verbose	Print ?	

Value

A SCE with top features

Examples

```
data(scExp)
scExp_top = find_top_features(scExp, n = 4000, keep_others = FALSE)
```

generate_analysis G	enerate a complete ChromSCape analysis
-----------------------	--

Description

Generate a complete ChromSCape analysis

Usage

```
generate_analysis(input_data_folder,
analysis_name = "Analysis_1",
output_directory = "./",
input_data_type = c("scBED", "DenseMatrix", "SparseMatrix",
                      "scBAM")[1],
feature_count_on = c("bins","genebody","peaks")[1],
feature_count_parameter = 50000,
ref_genome = c("hg38","mm10")[1],
run = c("filter", "CNA","cluster", "consensus","peak_call", "coverage",
                      "DA", "GSA", "report")[c(1,3,6,7,8,9)],
min_reads_per_cell = 1000,
max_quantile_read_per_cell = 99,
```

```
n_top_features = 40000,
norm_type = "CPM",
subsample_n = NULL,
exclude_regions = NULL,
n_clust = NULL,
corr_threshold = 99,
percent_correlation = 1,
maxK = 10,
qval.th = 0.1,
logFC.th = 1,
enrichment_qval = 0.1,
doBatchCorr = FALSE,
batch_sels = NULL,
control_samples_CNA = NULL,
genes_to_plot = c("Krt8", "Krt5", "Tgfb1", "Foxq1", "Cdkn2b",
                 "Cdkn2a", "chr7:15000000-20000000")
)
```

Arguments

input_data_folder Directory containing the input data. Name given to the analysis. analysis_name output_directory Directory where to create the analysis and the HTML report. input_data_type The type of input data. feature_count_on For raw data type, on which features to count the cells. feature_count_parameter Additional parameter corresponding to the 'feature_count_on' parameter. E.g. for 'bins' must be a numeric, e.g. 50000, for 'peaks' must be a character containing path towards a BED peak file. The genome of reference. ref_genome run What steps to run. By default runs everything. Some steps are required in order to run downstream steps. min_reads_per_cell Minimum number of reads per cell. max_quantile_read_per_cell Upper quantile above which to consider cells doublets. n_top_features Number of features to keep in the analysis. Normalization type. norm_type Number of cells per condition to downsample to, for performance principally. subsample_n exclude_regions Path towards a BED file containing CNA to exclude from the analysis (optional).

n_clust	Number of clusters to force choice of clusters.	
corr_threshold	Quantile of correlation above which two cells are considered as correlated.	
percent_correla	ation	
	Percentage of the total cells that a cell must be correlated with in order to be kept in the analysis.	
maxK	Upper cluster number to rest for ConsensusClusterPlus.	
qval.th	Adjusted p-value below which to consider features differential.	
logFC.th	Log2-fold-change above/below which to consider a feature depleted/enriched.	
enrichment_qval		
	Adjusted p-value below which to consider a gene set as significantly enriched in differential features.	
doBatchCorr	Logical indicating if batch correction using fastMNN should be run.	
batch_sels	If doBatchCorr is TRUE, a named list containing the samples in each batch.	
control_samples_CNA		
	If running CopyNumber Analysis, a character vector of the sample names that are 'normal'.	
<pre>genes_to_plot</pre>	A character vector containing genes of interest of which to plot the coverage.	

Value

Creates a ChromSCape-readable directory and saved objects, as well as a multi-tabbed HTML report resuming the analysis.

Examples

Not run: generate_analysis("/path/to/data/", "Analysis_1")

End(Not run)

generate_count_matrix Generate count matrix

Description

Generate count matrix

Usage

```
generate_count_matrix(cells, features, sparse, cell_names, feature_names)
```

Arguments

cells	Number of cells
features	Number of features
sparse	Is matrix sparse ?
cell_names	Cell names
feature_names	Feature names

Value

A matrix or a sparse matrix

generate_coverage_tracks

Generate cell cluster pseudo-bulk coverage tracks

Description

Generate cell cluster pseudo-bulk coverage tracks. First, scBED files are concatenated into cell clusters contained in the 'cell_cluster' column of your SingleCellExperiment object. To do so, for each sample in the given list, the barcodes of each cluster are grepped and BED files are merged into pseudo-bulk of clusters (C1,C2...). Two cells from different can have the same barcode ID as cell affectation is done sample by sample. Then coverage of pseudo-bulk BED files is calculated by averaging & smoothing reads on small genomic window (150bp per default). The pseudo bulk BED and BigWigs coverage tracks are writtend to the output directory. This functionality is not available on Windows as it uses the 'cat' and 'gzip' utilities from Unix OS.

Usage

```
generate_coverage_tracks(
   scExp_cf,
   input,
   odir,
   input_type = "scBED",
   ref_genome = c("hg38", "mm10")[1],
   bin_width = 150,
   n_smoothBin = 5,
   read_size = 101,
   progress = NULL
)
```

Arguments

scExp_cf

A SingleCellExperiment with cluster selected. (see choose_cluster_scExp). It is recommended having a minimum of ~100 cells per cluster in order to obtain smooth tracks.

input	Either a named list of character vector of path towards single-cell BED files or a sparse raw matrix of small bins («500bp). If a named list specifying scBEDn the names MUST correspond to the 'sample_id' column in your SingleCellEx- periment object. The single-cell BED files names MUST match the barcode names in your SingleCellExperiment (column 'barcode'). The scBED files can be gzipped or not.
odir	The output directory to write the cumulative BED and BigWig files.
ref_genome	The genome of reference, used to constrain to canonical chromosomes. Either 'hg38' or 'mm10'. 'hg38' per default.
bin_width	The width of the bin to create the coverage track. The smaller the greater the resolution & runtime. Default to 150.
n_smoothBin	Number of bins left & right to average ('smooth') the signal on. Default to 5.
read_size	The estimated size of reads. Default to 101.
progress	A Progress object for Shiny. Default to NULL.

Value

Generate coverage tracks (.bigwig) for each cluster in the SingleCellExperiment ("cell_cluster" column).

Examples

```
## Not run:
data(scExp)
input_files_coverage = list(
    "scChIP_Jurkat_K4me3" = paste0("/path/to/",scExp$barcode[1:51],".bed"),
    "scChIP_Ramos_K4me3" = paste0("/path/to/",scExp$barcode[52:106],".bed")
)
generate_coverage_tracks(scExp, input_files_coverage, "/path/to/output",
ref_genome = "hg38")
```

End(Not run)

generate_feature_names

Generate feature names

Description

Generate feature names

Usage

generate_feature_names(featureType, ref, features)

Arguments

featureType	Type of feature
ref	Reference genome
features	Number of features to generate

Value

A character vector of feature names

generate_report From a ChromSCape analysis directory, generate an HTML report.

Description

From a ChromSCape analysis directory, generate an HTML report.

Usage

```
generate_report(
  ChromSCape_directory,
  prefix = NULL,
  run = c("filter", "CNA", "cluster", "consensus", "peak_call", "coverage", "DA",
    "GSA", "report")[c(1, 3, 6, 7, 8, 9)],
    genes_to_plot = c("Krt8", "Krt5", "Tgfb1", "Foxq1", "Cdkn2b", "Cdkn2a",
        "chr7:1500000-20000000"),
    control_samples_CNA = NULL
)
```

Arguments

ChromSCape_dir	ectory
	Path towards the ChromSCape directory of which you want to create the report.
	The report will be created at the root of this directory.
prefix	Name of the analysis with the filtering parameters (e.g. Analysis_3000_100000_99_uncorrected). You will find the prefix in the Filtering_Normalize_Reduce subfolder.
run	Which steps to report ("filter", "CNA", "cluster", "consensus", "peak_call", "cov- erage", "DA", "GSA", "report"). Only indicate steps that were done in the anal- ysis. By default do not report CNA, consensus and peak calling.
genes_to_plot	For the UMAP, which genes do you want to see in the report.
control_sample	s_CNA
	If running the Copy Number Alteration (CNA) part, which samples are the con- trols

Value

Generate an HTML report at the root of the analysis directory.

Examples

```
## Not run:
generate_analysis("/path/to/data/", "Analysis_1")
## End(Not run)
```

gene_set_enrichment_analysis_scExp

Runs Gene Set Enrichment Analysis on genes associated with differential features

Description

This function takes previously calculated differential features and runs hypergeometric test to look for enriched gene sets in the genes associated with differential features, for each cell cluster. This functions takes as input a SingleCellExperiment object with consclust, the type of comparison, either 'one_vs_rest' or 'pairwise', the adjusted p-value threshold (qval.th) and the fold-change threshold (logFC.th). It outputs a SingleCellExperiment object containing a differential list.

Usage

```
gene_set_enrichment_analysis_scExp(
  scExp,
  enrichment_qval = 0.1,
  ref = "hg38",
 GeneSets = NULL,
  GeneSetsDf = NULL,
  GenePool = NULL,
  qval.th = 0.01,
  logFC.th = 1,
 min.percent = 0.01,
  peak_distance = 1000,
  use_peaks = FALSE,
 GeneSetClasses = c("c1_positional", "c2_curated", "c3_motif", "c4_computational",
    "c5_GO", "c6_oncogenic", "c7_immunologic", "hallmark"),
  progress = NULL
)
```

Arguments

scExp	A SingleCellExperiment object containing list of differential features.
enrichment_qval	l
	Adjusted p-value threshold for gene set enrichment. (0.1)
ref	A reference annotation, either 'hg38' or 'mm10'. ('hg38')
GeneSets	A named list of gene sets. If NULL will automatically load MSigDB list of gene sets for specified reference genome. (NULL)

GeneSetsDf	A dataframe containing gene sets & class of gene sets. If NULL will auto- matically load MSigDB dataframe of gene sets for specified reference genome. (NULL)
GenePool	The pool of genes to run enrichment in. If NULL will automatically load Gencode list of genes fro specified reference genome. (NULL)
qval.th	Adjusted p-value threshold to define differential features. (0.01)
logFC.th	Fold change threshold to define differential features. (1)
min.percent	Minimum fraction of cells having the feature active to consider it as significantly differential. (0.01)
peak_distance	Maximum distanceToTSS of feature to gene TSS to consider associated, in bp. $\left(1000\right)$
use_peaks	Use peak calling method (must be calculated beforehand). (FALSE)
GeneSetClasses	Which classes of MSIGdb to look for.
progress	A shiny Progress instance to display progress bar.

Value

Returns a SingleCellExperiment object containing list of enriched Gene Sets for each cluster, either in depleted features, enriched features or simply differential features (both).

Examples

```
data("scExp")
#Usually recommanding qval.th = 0.01 & logFC.th = 1 or 2
## Not run: scExp_cf = gene_set_enrichment_analysis_scExp(scExp,
qval.th = 0.4, logFC.th = 0.3)
## End(Not run)
```

getExperimentNames Get experiment names from a SingleCellExperiment

Description

Get experiment names from a SingleCellExperiment

Usage

```
getExperimentNames(scExp)
```

Arguments

scExp A SingleCellExperiment with named mainExp and altExps.

getMainExperiment

Value

Character vector of unique experiment names

Examples

```
data(scExp)
getExperimentNames(scExp)
```

getMainExperiment Get Main experiment of a SingleCellExperiment

Description

Get Main experiment of a SingleCellExperiment

Usage

```
getMainExperiment(scExp)
```

Arguments

scExp A SingleCellExperiment with named mainExp and altExps.

Value

The swapped SingleCellExperiment towards "main" experiment

Examples

```
data(scExp)
getMainExperiment(scExp)
```

get_color_dataframe_from_input

Get color dataframe from shiny::colorInput

Description

Get color dataframe from shiny::colorInput

Usage

```
get_color_dataframe_from_input(
    input,
    levels_selected,
    color_by = c("sample_id", "total_counts"),
    input_id_prefix = "color_"
)
```

Arguments

input	Shiny input object
levels_selected	1
	Names of the features
color_by	Which feature color to retrieve
input_id_prefix	(
	Prefix in front of the feature names

Value

A data.frame with the feature levels and the colors of each level of this feature.

get_cyto_features Map features onto cytobands

Description

Map the features of a SingleCellExperiment onto the cytobands of a given genome. Some features might not be mapped to any cytobands (e.g. if they are not in the canconical chromosomes), and are removed from the returned object.

Usage

get_cyto_features(scExp, ref_genome = c("hg38", "mm10")[1])

Arguments

scExp	A SingleCellExperiment with genomic coordinate as features (peaks or bins)
ref_genome	Reference genome ('hg38' or 'mm10')

Details

The cytobands are an arbitrary cutting of the genome that dates back to staining metaphase chromosomes with Giemsa.

Value

A data.frame of the SCE features with their corresponding cytoband name

Examples

```
data("scExp")
matching_cyto = get_cyto_features(scExp, ref_genome="hg38")
```

get_genomic_coordinates

Get SingleCellExperiment's genomic coordinates

Description

Get SingleCellExperiment's genomic coordinates

Usage

get_genomic_coordinates(scExp)

Arguments

scExp A SingleCellExperiment object.

Value

A GRanges object of genomic coordinates.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
feature_GRanges = get_genomic_coordinates(scExp)</pre>
```

get_most_variable_cyto

Retrieve the cytobands with the most variable fraction of reads

Description

Given a SingleCellExperiment object with the slot "cytoBand" containing the fraction of reads in each cytoband, calculates the variance of each cytoband and returns a data.frame with the top variables cytobands. Most cytobands are expected to be unchanged between normal and tumor samples, therefore focusing on the top variable cytobands enable to focus on the most interseting regions.

Usage

```
get_most_variable_cyto(scExp, top = 50)
```

Arguments

scExp	A SingleCellExperiment with "cytoBand" reducedDim slot filled.
top	Number of cytobands to return (50).

Value

A data.frame of the top variable cytoBands and their variance

Examples

```
data("scExp")
scExp = calculate_cyto_mat(scExp, ref_genome="hg38")
get_most_variable_cyto(scExp, top=50)
```

gg_fill_hue

gg_fill_hue

Description

gg_fill_hue

Usage

gg_fill_hue(n)

Arguments

n num hues

Value

A color in HEX format

groupMat	groupMat	

Description

groupMat

Usage

```
groupMat(mat = NA, margin = 1, groups = NA, method = "mean")
```

H1proportion

Arguments

mat	A matrix
margin	By row or columns ?
groups	Groups
method	Method to group

Value

A grouped matrix

H1proportion H1proportion

Description

H1proportion

Usage

H1proportion(pv = NA, lambda = 0.5)

Arguments

pv	P.value vector
lambda	Lambda value

Value

H1 proportion value

has_genomic_coordinates

Does SingleCellExperiment has genomic coordinates in features ?

Description

Does SingleCellExperiment has genomic coordinates in features ?

Usage

```
has_genomic_coordinates(scExp)
```

Arguments

scExp A SingleCellExperiment object

Value

TRUE or FALSE

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
has_genomic_coordinates(scExp)
raw_genes = create_scDataset_raw(featureType="gene")
scExp_gene = create_scExp(raw_genes$mat, raw_genes$annot)
has_genomic_coordinates(scExp_gene)</pre>
```

hclustAnnotHeatmapPlot

hclustAnnotHeatmapPlot

Description

hclustAnnotHeatmapPlot

Usage

```
hclustAnnotHeatmapPlot(
    x = NULL,
    hc = NULL,
    hmColors = NULL,
    anocol = NULL,
    xpos = c(0.1, 0.9, 0.114, 0.885),
    ypos = c(0.1, 0.5, 0.5, 0.6, 0.62, 0.95),
    dendro.cex = 1,
    xlab.cex = 0.8,
    hmRowNames = FALSE,
    hmRowNames.cex = 0.5
)
```

Arguments

x	A correlation matrix
hc	An hclust object
hmColors	A color palette
anocol	A matrix of colors
xpos	Xpos
ypos	Ypos
dendro.cex	Size of denro names

hg38.chromosomes

xlab.cex	Size of x label
hmRowNames	Write rownames ?
hmRowNames.cex	Size of rownames ?

Value

A heatmap

hg38.chromosomes Data.frame of chromosome length - hg38

Description

This data frame provides the length of each "canonical" chromosomes of Homo Sapiens genome build hg38.

Usage

data("hg38.chromosomes")

Format

hg38.chromosomes - a data frame with 24 rows and 3 variables:

chr Chromosome - character

start Start of the chromosome (bp) - integer

end End of the chromosome (bp) - integer

hg38.cytoBand Data.frame of cytoBandlocation - hg38

Description

This data frame provides the location of each cytoBands of Homo Sapiens genome build hg38.

Usage

```
data("hg38.cytoBand")
```

Format

hg38.cytoBand - a data frame with 862 rows and 4 variables:

chr Chromosome - characterstart Start of the chromosome (bp) - integerend End of the chromosome (bp) - integercytoBand Name of the cytoBand - character

hg38.GeneTSS

Description

This dataframe was extracted from Gencode v25 and report the Transcription Start Site of each gene in the Homo Sapiens genome build hg38.

Usage

data("hg38.GeneTSS")

Format

hg38.GeneTSS - a data frame with 24 rows and 3 variables:

chr Chromosome - characterstart Start of the gene (TSS) - integerend End of the gene - integergene Gene symbol - character

imageCol

imageCol

Description

imageCol

Usage

```
imageCol(
  matcol = NULL,
  strat = NULL,
  xlab.cex = 0.5,
  ylab.cex = 0.5,
  drawLines = c("none", "h", "v", "b")[1],
  ...
)
```

Arguments

matcol	A matrix of colors
strat	Strat
xlab.cex	X label size
ylab.cex	Y label size
drawLines	Draw lines ?
	Additional parameters

Value

A rectangular image

import_count_input_files

Import and count input files depending on their format

Description

Import and count input files depending on their format

Usage

```
import_count_input_files(
   files_dir_list,
   file_type,
   which,
   ref,
   verbose,
   progress,
   BPPARAM = BiocParallel::bpparam()
)
```

Arguments

files_dir_list	A named list of directories containing the input files.
file_type	Input file type.
which	A GRanges object of features.
ref	Reference genome.
verbose	Print ?
progress	A progress object for Shiny.
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.

Value

A list with the feature indexes data.frame containing non-zeroes entries in the count matrix and the cell names

import_scExp

Description

Combine one or multiple matrices together to create a sparse matrix and cell annotation data.frame.

Usage

```
import_scExp(file_paths, remove_pattern = "", temp_path = NULL)
```

Arguments

file_paths	A character vector of file names towards single cell epigenomic matrices (fea- tures x cells) (must be .txt / .tsv)
remove_pattern	A string pattern to remove from the sample names. Can be a regexp.
temp_path	In case matrices are stored in temporary folder, a character vector of path to- wards temporary files. (NULL)

Value

A list containing:

- datamatrix: a sparseMatrix of features x cells
- annot_raw: an annotation of cells as data.frame

Examples

```
mat1 = mat2 = create_scDataset_raw()$mat
tmp1 = tempfile(fileext = ".tsv")
tmp2 = tempfile(fileext = ".tsv")
write.table(as.matrix(mat1),file=tmp1,sep = "\t",
row.names = TRUE,col.names = TRUE,quote = FALSE)
write.table(as.matrix(mat2),file=tmp2, sep = "\t",
row.names = TRUE,col.names = TRUE,quote = FALSE)
file_paths = c(tmp1,tmp2)
out = import_scExp(file_paths)
```

 $index_peaks_barcodes_to_matrix_indexes$

Read index-peaks-barcodes trio files on interval to create count indexes

Description

Read index-peaks-barcodes trio files on interval to create count indexes

Usage

```
index_peaks_barcodes_to_matrix_indexes(
   feature_file,
   matrix_file,
   barcode_file,
   binarize = FALSE
)
```

Arguments

feature_file	A file containing the features genomic locations
matrix_file	A file containing the indexes of non-zeroes values and their value (respectively i,j,x,see sparseMatrix)
barcode_file	A file containing the barcode ids
binarize	Binarize matrix ?

Value

A list containing a "feature index" data.frame, name_cells, and a region GenomicRange object used to form the sparse matrix

inter_correlation_scExp

Calculate inter correlation between cluster or samples

Description

Calculate inter correlation between cluster or samples

Usage

```
inter_correlation_scExp(
    scExp_cf,
    by = c("sample_id", "cell_cluster")[1],
    reference_group = unique(scExp_cf[[by]])[1],
    other_groups = unique(scExp_cf[[by]]),
    fullCor = TRUE
)
```

Arguments

scExp_cf	A SingleCellExperiment
by	On which feature to calculate correlation ("sample_id" or "cell_cluster")
reference_grou	p
	Reference group to calculate correlation with. Must be in accordance with "by".
other_groups	Groups on which to calculate correlation (can contain multiple groups, and also reference_group). Must be in accordance with "by".
fullCor	A logical specifying if the correlation matrix was calculated on the entire set of cells (TRUE).

Value

A data.frame of average inter-correlation of cells in other_groups with cells in reference_group

Examples

data(scExp)
inter_correlation_scExp(scExp)

intra_correlation_scExp

Calculate intra correlation between cluster or samples

Description

Calculate intra correlation between cluster or samples

Usage

```
intra_correlation_scExp(
   scExp_cf,
   by = c("sample_id", "cell_cluster")[1],
   fullCor = TRUE
)
```

launchApp

Arguments

scExp_cf	A SingleCellExperiment
by	On which feature to calculate correlation ("sample_id" or "cell_cluster")
fullCor	Logical specifying if the correlation matrix was run on the entire number of cells or on a subset.

Value

A data.frame of cell average intra-correlation

Examples

```
data(scExp)
intra_correlation_scExp(scExp, by = "sample_id")
intra_correlation_scExp(scExp, by = "cell_cluster")
```

```
launchApp
```

Launch ChromSCape

Description

Main function to launch ChromSCape in your favorite browser. You can pass additional parameters that you would pass to shiny::runApp (runApp)

Usage

```
launchApp(launch.browser = TRUE, ...)
```

Arguments

launch.browserWether to launch browser or not...Additional parameters passed to runApp

Value

Launches the shiny application

Examples

Not run: launchApp()

End(Not run)

load_MSIGdb

Description

Load and format MSIGdb pathways using msigdbr package

Usage

```
load_MSIGdb(ref, GeneSetClasses)
```

Arguments

ref Reference genome, either mm10 or hg38 GeneSetClasses Which classes of MSIGdb to load

Value

A list containing the GeneSet (list), GeneSetDf (data.frame) and GenePool character vector of all possible genes

merge_MACS2_peaks Merge peak files from MACS2 peak caller

Description

Merge peak files from MACS2 peak caller

Usage

merge_MACS2_peaks(odir, class, peak_distance_to_merge, ref)

Arguments

odir	Output directory
class	Cell cluster
<pre>peak_distance_to_merge</pre>	
	Maximum distance to merge two peaks
ref	Reference genome

Value

Peaks as GRanges

mm10.chromosomes Data.frame of chromosome length - mm10

Description

This data frame provides the length of each "canonical" chromosomes of Mus Musculus (Mouse) genome build mm10.

Usage

```
data("mm10.chromosomes")
```

Format

mm10.chromosomes - a data frame with 24 rows and 3 variables:

chr Chromosome - character

start Start of the chromosome (bp) - integer

end End of the chromosome (bp) - integer

mm10.cytoBand Data.frame of cytoBandlocation - mm10

Description

This data frame provides the location of each cytoBands of Homo Sapiens genome build mm10.

Usage

```
data("mm10.cytoBand")
```

Format

mm10.cytoBand - a data frame with 862 rows and 4 variables:

chr Chromosome - character

start Start of the chromosome (bp) - integer

end End of the chromosome (bp) - integer

cytoBand Name of the cytoBand - character

mm10.GeneTSS

Description

This dataframe was extracted from Gencode v25 and report the Transcription Start Site of each gene in the Mus Musculus genome build mm10 (Mouse).

Usage

data("mm10.GeneTSS")

Format

mm10.GeneTSS - a data frame with 24 rows and 3 variables:

chr Chromosome name - character

start Start of the gene (TSS) - integer

end End of the gene - integer

gene Gene symbol - character

normalize_scExp Normalize counts

Description

Normalize counts

Usage

```
normalize_scExp(
   scExp,
   type = c("CPM", "TFIDF", "RPKM", "TPM", "feature_size_only")
)
```

Arguments

scExp	A SingleCellExperiment object.
type	Which normalization to apply. Either 'CPM', 'TFIDF', 'RPKM', 'TPM' or 'fea-
	ture_size_only'. Note that for all normalization by size (RPKM, TPM, fea-
	ture_size_only), the features must have defined genomic coordinates.

Value

A SingleCellExperiment object containing normalized counts. (See ?normcounts())

num_cell_after_cor_filt_scExp

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = normalize_scExp(scExp)
head(SingleCellExperiment::normcounts(scExp))</pre>
```

num_cell_after_cor_filt_scExp
Number of cells before & after correlation filtering

Description

Number of cells before & after correlation filtering

Usage

num_cell_after_cor_filt_scExp(scExp, scExp_cf)

Arguments

scExp	SingleCellExperiment object before correlation filtering.
scExp_cf	SingleCellExperiment object atfer correlation filtering.

Value

A colored kable with the number of cells per sample before and after filtering for display

Examples

```
data("scExp")
scExp_cf = correlation_and_hierarchical_clust_scExp(scExp)
scExp_cf = filter_correlated_cell_scExp(scExp_cf,
corr_threshold = 99, percent_correlation = 1)
## Not run: num_cell_after_cor_filt_scExp(scExp,scExp_cf)
```

num_cell_after_QC_filt_scExp

Table of cells before / after QC

Description

Table of cells before / after QC

Usage

num_cell_after_QC_filt_scExp(scExp, annot, datamatrix)

Arguments

scExp	A SingleCellExperiment object.
annot	A raw annotation data.frame of cells before filtering.
datamatrix	A matrix of cells per regions before filtering.

Value

A formatted kable in HTML.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp_filtered = filter_scExp(scExp)
## Not run: num_cell_after_QC_filt_scExp(
scExp_filtered,SingleCellExperiment::colData(scExp))
## End(Not run)</pre>
```

num_cell_before_cor_filt_scExp
Table of number of cells before correlation filtering

Description

Table of number of cells before correlation filtering

Usage

num_cell_before_cor_filt_scExp(scExp)

Arguments

scExp A SingleCellExperiment Object

Value

A colored kable with the number of cells per sample for display

Examples

```
data("scExp")
## Not run: num_cell_before_cor_filt_scExp(scExp)
```

num_cell_in_cluster_scExp

Number of cells in each cluster

Description

Number of cells in each cluster

Usage

```
num_cell_in_cluster_scExp(scExp)
```

Arguments

scExp A SingleCellExperiment object containing chromatin groups.

Value

A formatted kable of cell assignation to each cluster.

Examples

```
data("scExp")
scExp_cf = correlation_and_hierarchical_clust_scExp(scExp)
scExp_cf = choose_cluster_scExp(scExp_cf,nclust=3,consensus=FALSE)
## Not run: num_cell_in_cluster_scExp(scExp_cf)
```

num_cell_scExp Table of cells

Description

Table of cells

Usage

num_cell_scExp(annot, datamatrix)

Arguments

annot	An annotation of cells. Can be obtain through 'colData(scExp)'.
datamatrix	A matrix of cells per regions before filtering.

Value

A formatted kable in HTML.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
## Not run: num_cell_scExp(SingleCellExperiment::colData(scExp))</pre>
```

Description

This function allows to run a PCA using IRLBA Singular Value Decomposition in a fast & memory efficient way. The increamental Lanczos bidiagonalisation algorithm allows to keep the matrix sparse as the "loci" centering is implicit. The function then multiplies by the approximate singular values (svd\$d) in order to get more importance to the first PCs proportionnally to their singular values. This step is crucial for downstream approaches, e.g. UMAP or T-SNE.

Usage

```
pca_irlba_for_sparseMatrix(x, n_comp, work = 3 * n_comp)
```
x	A sparse normalized matrix (features x cells)
n_comp	The number of principal components to keep
work	Working subspace dimension, larger values can speed convergence at the cost of more memory use.

Value

The rotated data, e.g. the cells x PC column in case of sc data.

plot_cluster_consensus_scExp *Plot cluster consensus*

Description

Plot cluster consensus score for each k as a bargraph.

Usage

plot_cluster_consensus_scExp(scExp)

Arguments

scExp A SingleCellExperiment

Value

The consensus score for each cluster for each k as a barplot

Examples

data("scExp")

plot_cluster_consensus_scExp(scExp)

plot_correlation_PCA_scExp

Plotting correlation of PCs with a variable of interest

Description

Plotting correlation of PCs with a variable of interest

Usage

```
plot_correlation_PCA_scExp(
   scExp,
   correlation_var = "total_counts",
   color_by = NULL,
   topPC = 10
)
```

Arguments

scExp	A SingleCellExperiment Object
correlation_var	
	A string specifying with which numeric variable from colData of scExp to calculate and plot the correlation of each PC with. ('total_counts')
color_by	A string specifying with which categorical variable to color the plot. ('NULL')
topPC	An integer specifying the number of PCs to plot correlation with 10

Value

A ggplot histogram representing the distribution of count per cell

Examples

```
data("scExp")
plot_correlation_PCA_scExp(scExp, topPC = 25)
plot_correlation_PCA_scExp(scExp, color_by = "cell_cluster")
plot_correlation_PCA_scExp(scExp, color_by = "sample_id")
```

Description

Coverage plot

Usage

```
plot_coverage_BigWig(
  coverages,
  label_color_list,
  peaks = NULL,
  chrom,
  start,
  end,
  ref = "hg38"
)
```

Arguments

coverages	A list containing sample coverage as GenomicRanges	
label_color_list		
	List of colors, list names are labels	
peaks	A GRanges object containing peaks location to plot (optional)	
chrom	Chromosome	
start	Start	
end	End	
ref	Genomic Reference	

Value

A coverage plot annotated with genes

Examples

data(scExp)

plot_differential_summary_scExp
 Differential summary barplot

Description

Differential summary barplot

Usage

```
plot_differential_summary_scExp(
    scExp_cf,
    qval.th = 0.01,
    logFC.th = 1,
    min.percent = 0.01
)
```

Arguments

scExp_cf	A SingleCellExperiment object
qval.th	Adjusted p-value threshold. (0.01)
logFC.th	Fold change threshold. (1)
min.percent	Minimum fraction of cells having the feature active to consider it as significantly differential. (0.01)

Value

A barplot summary of differential analysis

Examples

```
data("scExp")
plot_differential_summary_scExp(scExp)
```

plot_differential_volcano_scExp Volcano plot of differential features

Description

Volcano plot of differential features

Usage

```
plot_differential_volcano_scExp(
    scExp_cf,
    group = "C1",
    logFC.th = 1,
    qval.th = 0.01,
    min.percent = 0.01
)
```

Arguments

scExp_cf	A SingleCellExperiment object
group	A character indicating the group for which to plot the differential volcano plot. ("C1") $% \left(\left\ C1\right\ \right) =0$
logFC.th	Fold change threshold. (1)
qval.th	Adjusted p-value threshold. (0.01)
min.percent	Minimum fraction of cells having the feature active to consider it as significantly differential. (0.01)

Value

A volcano plot of differential analysis of a specific cluster

Examples

```
data("scExp")
plot_differential_volcano_scExp(scExp,"C1")
```

plot_distribution_scExp

Plotting distribution of signal

Description

Plotting distribution of signal

```
plot_distribution_scExp(
    scExp,
    raw = TRUE,
    log10 = FALSE,
    pseudo_counts = 1,
    bins = 150
)
```

scExp	A SingleCellExperiment Object
raw	Use raw counts ?
log10	Transform using log10 ?
pseudo_counts	Pseudo-count to add if using log10
bins	Number of bins in the histogram

Value

A ggplot histogram representing the distribution of count per cell

Examples

```
data("scExp")
plot_distribution_scExp(scExp)
```

plot_gain_or_loss_barplots Plot Gain or Loss of cytobands of the most variables cytobands

Description

Plot Gain or Loss of cytobands of the most variables cytobands Plot Gain or Loss of cytobands of the most variables cytobands

Usage

```
plot_gain_or_loss_barplots(scExp, cells = NULL, top = 20)
plot_gain_or_loss_barplots(scExp, cells = NULL, top = 20)
```

Arguments

scExp	A SingleCellExperiment with "logRatio_cytoBand" reducedDim slot filled. See calculate_logRatio_CNA
cells	Cell IDs of the tumor samples to
top	Number of most variables cytobands to plot

Value

Plot the gains/lost in the selected cells of interest as multiple barplots Plot the gains/lost in the selected cells of interest as multiple barplots

plot_heatmap_scExp

Examples

```
data("scExp")
scExp = calculate_CNA(scExp, control_samples = unique(scExp$sample_id)[1],
ref_genome="hg38", quantiles_to_define_gol = c(0.05,0.95))
plot_gain_or_loss_barplots(scExp, cells = scExp$cell_id[which(
scExp$sample_id %in% unique(scExp$sample_id)[2])])
data("scExp")
scExp = calculate_CNA(scExp, control_samples = unique(scExp$sample_id)[1],
ref_genome="hg38", quantiles_to_define_gol = c(0.05,0.95))
plot_gain_or_loss_barplots(scExp, cells = scExp$cell_id[which(
```

```
scExp$sample_id %in% unique(scExp$sample_id)[2])])
```

plot_heatmap_scExp Plot cell correlation heatmap with annotations

Description

Plot cell correlation heatmap with annotations

Usage

```
plot_heatmap_scExp(
   scExp,
   name_hc = "hc_cor",
   corColors = (grDevices::colorRampPalette(c("royalblue", "white", "indianred1")))(256),
   color_by = NULL,
   downsample = 1000,
   hc_linkage = "ward.D"
)
```

Arguments

scExp	A SingleCellExperiment Object
name_hc	Name of the hclust contained in the SingleCellExperiment object
corColors	A palette of colors for the heatmap
color_by	Which features to add as additional bands on top of plot
downsample	Number of cells to downsample
hc_linkage	A linkage method for hierarchical clustering. See cor. ('ward.D')

Value

A heatmap of cell to cell correlation, grouping cells by hierarchical clustering.

Examples

```
data("scExp")
plot_heatmap_scExp(scExp)
```

plot_inter_correlation_scExp

Violin plot of inter-correlation distribution between one or multiple groups and one reference group

Description

Violin plot of inter-correlation distribution between one or multiple groups and one reference group

Usage

```
plot_inter_correlation_scExp(
    scExp_cf,
    by = c("sample_id", "cell_cluster")[1],
    jitter_by = NULL,
    reference_group = unique(scExp_cf[[by]])[1],
    other_groups = unique(scExp_cf[[by]]),
    downsample = 5000
)
```

Arguments

scExp_cf	A SingleCellExperiment
by	Color by sample_id or cell_cluster
jitter_by	Add jitter points of another layer (cell_cluster or sample_id)
reference_group	
	Character containing the reference group name to calculate correlation from.
other_groups	Character vector of the other groups for which to calculate correlation with the reference group.
downsample	Downsample for plotting

Value

A violin plot of inter-correlation

Examples

```
data(scExp)
plot_intra_correlation_scExp(scExp)
```

plot_intra_correlation_scExp

Violin plot of intra-correlation distribution

Description

Violin plot of intra-correlation distribution

Usage

```
plot_intra_correlation_scExp(
   scExp_cf,
   by = c("sample_id", "cell_cluster")[1],
   jitter_by = NULL,
   downsample = 5000
)
```

Arguments

scExp_cf	A SingleCellExperiment
by	Color by sample_id or cell_cluster
jitter_by	Add jitter points of another layer (cell_cluster or sample_id)
downsample	Downsample for plotting

Value

A violin plot of intra-correlation

Examples

```
data(scExp)
plot_intra_correlation_scExp(scExp)
```

plot_most_contributing_features *Plot Top/Bottom most contributing features to PCA*

Description

Plot Top/Bottom most contributing features to PCA

Usage

```
plot_most_contributing_features(
    scExp,
    component = "Component_1",
    n_top_bot = 10
)
```

Arguments

scExp	A SingleCellExperiment containing "PCA" in reducedDims and gene annotation in rowRanges
component	The name of the component of interest
n_top_bot	An integer number of top and bot regions to plot

Details

If a gene TSS is within 10,000bp of the region, the name of the gene(s) will be displayed instead of the region

Value

A barplot of top and bottom features with the largest absolute value in the component of interest

Examples

```
data(scExp)
plot_most_contributing_features(scExp, component = "Component_1")
```

plot_pie_most_contributing_chr

Pie chart of top contribution of chromosomes in the 100 most contributing features to PCA #'

Description

Pie chart of top contribution of chromosomes in the 100 most contributing features to PCA #'

Usage

```
plot_pie_most_contributing_chr(
    scExp,
    component = "Component_1",
    n_top_bot = 100
)
```

scExp	A SingleCellExperiment containing "PCA" in reducedDims and gene annotation in rowRanges
component	The name of the component of interest
n_top_bot	An integer number of top and bot regions to plot (100)

Value

A pie chart showing the distribution of chromosomes in the top features with the largest absolute value in the component of interest

Examples

```
data(scExp)
plot_pie_most_contributing_chr(scExp, component = "Component_1")
```

plot_reduced_dim_scExp

Plot reduced dimensions (PCA, TSNE, UMAP)

Description

Plot reduced dimensions (PCA, TSNE, UMAP)

Usage

```
plot_reduced_dim_scExp(
  scExp,
  color_by = "sample_id",
  reduced_dim = c("PCA", "TSNE", "UMAP"),
  select_x = NULL,
  select_y = NULL,
  downsample = 5000,
  transparency = 0.6,
  size = 1,
  max_distanceToTSS = 1000,
  annotate_clusters = "cell_cluster" %in% colnames(colData(scExp)),
  min_quantile = 0.01,
  max_quantile = 0.99
)
```

Arguments

scExp	A SingleCellExperiment Object	
color_by	Character of eature used for coloration.	Can be cell metadata ('total_counts',
	'sample_id',) or a gene name.	

select_xWhich variable to select for x axisselect_yWhich variable to select for y axisdownsampleNumber of cells to downsampletransparencyAlpha parameter, between 0 and 1sizeSize of the points.max_distanceToTSThe maximum distance to TSS to consider a gene linked to a region. Used only if "color_by" is a gene name.annotate_clustA logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata.min_quantileThe lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0.5 and 1).	reduced_dim	Reduced Dimension used for plotting	
downsampleNumber of cells to downsampletransparencyAlpha parameter, between 0 and 1sizeSize of the points.max_distanceToTSSThe maximum distance to TSS to consider a gene linked to a region. Used only if "color_by" is a gene name.annotate_clust=A logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata.min_quantileThe lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5).max_quantileThe upper threshold to remove outlier cells, as quantile of cell embeddings (be-	<pre>select_x</pre>	Which variable to select for x axis	
transparencyAlpha parameter, between 0 and 1sizeSize of the points.max_distanceToTSSThe maximum distance to TSS to consider a gene linked to a region. Used only if "color_by" is a gene name.annotate_clustersA logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata.min_quantileThe lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5).max_quantileThe upper threshold to remove outlier cells, as quantile of cell embeddings (be-	<pre>select_y</pre>	Which variable to select for y axis	
<pre>size Size of the points. max_distanceToTSS The maximum distance to TSS to consider a gene linked to a region. Used only if "color_by" is a gene name. annotate_clusters A logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata. min_quantile The lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5). max_quantile The upper threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5).</pre>	downsample	Number of cells to downsample	
<pre>max_distanceToTSS The maximum distance to TSS to consider a gene linked to a region. Used only if "color_by" is a gene name. annotate_clusters A logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata. min_quantile The lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5). max_quantile The upper threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5).</pre>	transparency	Alpha parameter, between 0 and 1	
The maximum distance to TSS to consider a gene linked to a region. Used only if "color_by" is a gene name. annotate_clusters A logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata. min_quantile The lower threshold to remove outlier cells, as quantile of cell embeddings (between 0 and 0.5). max_quantile The upper threshold to remove outlier cells, as quantile of cell embeddings (between 0 and 0.5).	size	Size of the points.	
if "color_by" is a gene name. annotate_clusters A logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata. min_quantile The lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5). max_quantile The upper threshold to remove outlier cells, as quantile of cell embeddings (be-	<pre>max_distanceToTSS</pre>		
A logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata.min_quantileThe lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5).max_quantileThe upper threshold to remove outlier cells, as quantile of cell embeddings (be-		e e .	
 should be present in metadata. min_quantile The lower threshold to remove outlier cells, as quantile of cell embeddings (between 0 and 0.5). max_quantile The upper threshold to remove outlier cells, as quantile of cell embeddings (be- 	annotate_clusters		
tween 0 and 0.5). max_quantile The upper threshold to remove outlier cells, as quantile of cell embeddings (be-		c c <u>-</u>	
	<pre>min_quantile</pre>		
	<pre>max_quantile</pre>		

Value

A ggplot geom_point plot of reduced dimension 2D reprensentation

Examples

```
data("scExp")
plot_reduced_dim_scExp(scExp, color_by = "sample_id")
plot_reduced_dim_scExp(scExp, color_by = "total_counts")
plot_reduced_dim_scExp(scExp, reduced_dim = "UMAP")
plot_reduced_dim_scExp(scExp, color_by = "CD52", reduced_dim = "UMAP")
```

plot_reduced_dim_scExp_CNA

Plot UMAP colored by Gain or Loss of cytobands

Description

Plot UMAP colored by Gain or Loss of cytobands

Usage

```
plot_reduced_dim_scExp_CNA(scExp, cytoBand)
```

Arguments

scExp	A SingleCellExperiment with "gainOrLoss_cytoBand" reducedDim slot filled.	
	See calculate_gain_or_loss	
cytoBand	Which cytoBand to color cells by	

plot_top_TF_scExp

Value

Plot the gains/lost of the cytoband overlayed on the epigenetic UMAP.

Examples

```
data("scExp")
scExp = calculate_CNA(scExp, control_samples = unique(scExp$sample_id)[1],
ref_genome="hg38", quantiles_to_define_gol = c(0.05,0.95))
plot_reduced_dim_scExp_CNA(scExp, get_most_variable_cyto(scExp)$cytoBand[1])
```

plot_top_TF_scExp Barplot of top TFs from ChEA3 TF enrichment analysis

Description

Barplot of top TFs from ChEA3 TF enrichment analysis

Usage

```
plot_top_TF_scExp(
    scExp,
    group = unique(scExp$cell_cluster)[1],
    set = c("Differential", "Enriched", "Depleted")[1],
    type = c("Score", "nTargets", "nTargets_over_TF", "nTargets_over_genes")[1],
    n_top = 25
)
```

Arguments

scExp	A SingleCellExperiment
group	A character string specifying the differential group to display the top TFs
set	A character string specifying the set of genes in which the TF were enriched, either 'Differential', 'Enriched' or 'Depleted'.
type	A character string specifying the Y axis of the plot, either the number of differ- ential targets or the ChEA3 integrated mean score. E.g. either "Score", "nTar- gets", "nTargets_over_TF" for the number of target genes over the total number of genes targeted by the TF or "nTargets_over_genes" for the number of target genes over the number of genes in the gene set.
n_top	An integer specifying the number of top TF to display

Value

A bar plot of top TFs from ChEA3 TF enrichment analysis

Examples

data("scExp")

```
plot_top_TF_scExp(
 scExp,
 group = "C1",
 set = "Differential",
 type = "Score",
 n_top = 10)
plot_top_TF_scExp(
 scExp,
 group = "C1",
 set = "Enriched",
 type = "nTargets_over_genes",
 n_top = 20)
```

Description

Violin plot of features

Usage

```
plot_violin_feature_scExp(
   scExp,
   gene,
   by = c("cell_cluster", "sample_id")[1],
   downsample = 5000,
   max_distanceToTSS = 1000
)
```

Arguments

scExp	A SingleCellExperiment
gene	A character specifying the gene to plot
by	Color violin by cell_cluster or sample_id ("cell_cluster")
downsample	Downsample for plotting (5000)
<pre>max_distanceToT</pre>	SS
	Numeric. Maximum distance to a gene's TSS to consider a region linked to a gene. (1000)

Value

A violin plot of intra-correlation

Examples

```
data(scExp)
plot_violin_feature_scExp(scExp, "UBXN10")
```

preprocessing_filtering_and_reduction *Preprocess and filter matrix annotation data project folder to SCE*

Description

Preprocess and filter matrix annotation data project folder to SCE

Usage

```
preprocessing_filtering_and_reduction(
    datamatrix,
    annot_raw,
    min_reads_per_cell = 1600,
    max_quantile_read_per_cell = 95,
    n_top_features = 40000,
    norm_type = "CPM",
    remove_PC = NULL,
    subsample_n = NULL,
    ref_genome = "hg38",
    exclude_regions = NULL,
    doBatchCorr = FALSE,
    batch_sels = NULL
)
```

Arguments

datamatrix	A sparse count matrix of features x cells.	
annot_raw	A data.frame with barcode, cell_id, sample_id, batch_id, total_counts	
<pre>min_reads_per_cell</pre>		
	Minimum read per cell to keep the cell	
<pre>max_quantile_read_per_cell</pre>		
	Upper count quantile threshold above which cells are removed	
n_top_features	Number of features to keep	
norm_type	Normalization type c("CPM", "TFIDF", "RPKM", "TPM", "feature_size_only")	

remove_PC	A vector of string indicating which principal components to remove before downstream analysis as probably correlated to library size. Should be under the form : 'Component_1', 'Component_2', Recommended when using 'TFIDF' normalization method. (NULL)	
subsample_n	Number of cells to subsample.	
ref_genome	Reference genome ("hg38" or "mm10").	
exclude_regions		
	GenomicRanges with regions to remove from the object.	
doBatchCorr	Run batch correction ? TRUE or FALSE	
batch_sels	If doBatchCorr is TRUE, List of characters. Names are batch names, characters are sample names.	

Value

A SingleCellExperiment object containing feature spaces.

Examples

```
raw <- create_scDataset_raw()
scExp = preprocessing_filtering_and_reduction(raw$mat, raw$annot)</pre>
```

preprocess_CPM Preprocess scExp - Counts Per Million (CPM)

Description

Preprocess scExp - Counts Per Million (CPM)

Usage

```
preprocess_CPM(scExp)
```

Arguments

scExp A SingleCellExperiment Object

Value

A SingleCellExperiment object.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = preprocess_CPM(scExp)
head(SingleCellExperiment::normcounts(scExp))</pre>
```

preprocess_feature_size_only

Preprocess scExp - size only

Description

Preprocess scExp - size only

Usage

preprocess_feature_size_only(scExp)

Arguments

scExp A SingleCellExperiment Object

Value

A SingleCellExperiment object.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = preprocess_feature_size_only(scExp)
head(SingleCellExperiment::normcounts(scExp))</pre>
```

preprocess_RPKM Preprocess scExp - Read per Kilobase Per Million (RPKM)

Description

Preprocess scExp - Read per Kilobase Per Million (RPKM)

Usage

```
preprocess_RPKM(scExp)
```

Arguments

scExp A SingleCellExperiment Object

Value

A SingleCellExperiment object.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = preprocess_RPKM(scExp)
head(SingleCellExperiment::normcounts(scExp))</pre>
```

preprocess_TFIDF Preprocess scExp - TF-IDF

Description

Preprocess scExp - TF-IDF

Usage

preprocess_TFIDF(scExp, scale = 10000, log = TRUE)

Arguments

scExp	A SingleCellExperiment Object
scale	A numeric to multiply the matrix in order to have human readeable numbers. Has no impact on the downstream analysis
log	Wether to use neperian log on the TF-IDF normalized data or not.

Value

A SingleCellExperiment object.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = preprocess_TFIDF(scExp)
head(SingleCellExperiment::normcounts(scExp))</pre>
```

preprocess_TPM Preprocess scExp - Transcripts per Million (TPM)

Description

Preprocess scExp - Transcripts per Million (TPM)

Usage

```
preprocess_TPM(scExp)
```

Arguments

scExp A SingleCellExperiment Object

Value

A SingleCellExperiment object.

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = preprocess_TPM(scExp)
head(SingleCellExperiment::normcounts(scExp))</pre>
```

rawfile_ToBigWig	rawfile_ToBigWig : reads in BAM file and write out BigWig coverage
	file, normalized and smoothed

Description

rawfile_ToBigWig : reads in BAM file and write out BigWig coverage file, normalized and smoothed

```
rawfile_ToBigWig(
    input,
    BigWig_filename,
    format = "BAM",
    bin_width = 150,
    n_smoothBin = 5,
    ref = "hg38",
    read_size = 101
)
```

input	Path to the BAM file (with index) or BED file or raw_matrix from which to generate coverage (must be small bins).
BigWig_filenam	e
	Path to write the output BigWig file
format	File format, either "BAM" or "BED"
bin_width	Bin size for coverage
n_smoothBin	Number of bins for smoothing values
ref	Reference genome.
read_size	Length of the reads.

Value

Writes a BigWig file as output

raw_counts_to_sparse_matrix

Create a sparse count matrix from various format of input data.

Description

This function takes three different type of single-cell input: - Single cell BAM files (sorted) - Single cell BED files (gzipped) - A combination of an index file, a peak file and cell barcode file (The index file is composed of three column: index i, index j and value x for the non zeroes entries in the sparse matrix.)

```
raw_counts_to_sparse_matrix(
  files_dir_list,
  file_type = c("scBED", "scBAM", "FragmentFile"),
  use_Signac = TRUE,
  peak_file = NULL,
  n_bins = NULL,
  bin_width = NULL,
  genebody = NULL,
  extendPromoter = 2500,
  verbose = TRUE,
  ref = c("hg38", "mm10")[1],
  progress = NULL,
  BPPARAM = BiocParallel::bpparam()
)
```

files_dir_list	A named character vector of directories containing the files. The names correspond to sample names.	
file_type	<pre>Input file(s) type(s) ('scBED','scBAM','FragmentFile')</pre>	
use_Signac	Use Signac wrapper function 'FeatureMatrix' if the Signac package is installed (TRUE).	
peak_file	A file containing genomic location of peaks (NULL)	
n_bins	The number of bins to tile the genome (NULL)	
bin_width	The size of bins to tile the genome (NULL)	
genebody	Count on genes (body + promoter) ? (NULL)	
extendPromoter	If counting on genes, number of base pairs to extend up or downstream of TSS (2500).	
verbose	Verbose (TRUE)	
ref	reference genome to use (hg38)	
progress	Progress object for Shiny	
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.	

Details

This functions re-counts signal on either fixed genomic bins, a set of user-defined peaks or around the TSS of genes.

Value

A sparse matrix of features x cells

References

Stuart el al., Multimodal single-cell chromatin analysis with Signac bioRxiv https://doi.org/ 10.1101/2020.11.09.373613

Description

Read a count matrix with three first columns (chr,start,end)

Usage

```
read_count_mat_with_separated_chr_start_end(
   path_to_matrix,
   format_test,
   separator
)
```

Arguments

<pre>path_to_matrix</pre>	Path to the count matrix
format_test	Sample of the read.table
separator	Separator character

Value

A sparseMatrix with rownames in the form "chr1:1222-55555"

read_sparse_matrix Read in one or multiple sparse matrices (10X format)

Description

Given one or multiple directories, look in each directory for a combination of the following files :

- A 'features' file containing unique feature genomic locations -in tab separated format (*_features.bed / .txt / .tsv / .gz), e.g. chr, start and end
- A 'barcodes' file containing unique barcode names (_barcode.txt / .tsv / .gz)
- A 'matrix' A file containing indexes of non zero entries (_matrix.mtx / .gz)

Usage

```
read_sparse_matrix(files_dir_list, ref = c("hg38", "mm10")[1], verbose = TRUE)
```

Arguments

files_dir_list A		A named character vector containing the full path towards folders. Each folder
		should contain only the Feature file, the Barcode file and the Matrix file (see
		description).
	ref	Reference genome (used to filter non-canonical chromosomes).
	verbose	Print ?

Value

Returns a list containing a datamatrix and cell annotation

rebin_matrix

Examples

```
## Not run:
sample_dirs = c("/path/to/folder1/", "/path/to/folder2/")
names(sample_dirs) = c("sample_1", "sample_2")
out <- read_sparse_matrix(sample_dirs, ref = "hg38")
head(out$datamatrix)
head(out$annot_raw)
```

End(Not run)

rebin_matrix	Transforms a bins x cells count matrix into a larger bins x cells count
	matrix.

Description

This functions is best used to re-count large number of small bins or peaks (e.g. <= 5000bp) into equal or larger sized bins. The genome is either cut in fixed bins (e.g. 50,000bp) or into an user defined number of bins. Bins are calculated based on the canconical chromosomes. Note that if peaks are larger than bins, or if peaks are overlapping multiple bins, the signal is added to each bin. Users can increase the minimum overlap to consider peaks overlapping bins (by default 150bp, size of a nucleosome) to disminish the number of peaks overlapping multiple region. Any peak smaller than the minimum overlapp threshold will be dismissed. Therefore, library size might be slightly different from peaks to bins if signal was duplicated into multiple bins or ommitted due to peaks smaller than minimum overlap.

Usage

```
rebin_matrix(
  mat,
  bin_width = 50000,
  custom_annotation = NULL,
  minoverlap = 500,
  verbose = TRUE,
  ref = "hg38"
)
```

Arguments

A matrix of peaks x of	cells
	A matrix of peaks x of

bin_width Width of bins to produce in base pairs (minimum 500) (50000)

custom_annotation

A GenomicRanges object specifying the new features to count the matrix on instead of recounting on genomic bins. If not NULL, takes predecency over bin_width.

minoverlap	Minimum overlap between the original bins and the new features to consider the
	peak as overlapping the bin . We recommand to put this number at exactly half
	of the original bin size (e.g. 500bp for original bin size of 1000bp) so that no original bins are counted twice. (500)
verbose	Verbose
ref	Reference genome to use (hg38)

Value

A sparse matrix of larger bins or peaks.

Examples

```
mat = create_scDataset_raw()$mat
binned_mat = rebin_matrix(mat,bin_width = 10e6)
dim(binned_mat)
```

reduce_dims_scExp Reduce dimensions (PCA, TSNE, UMAP)

Description

Reduce dimensions (PCA, TSNE, UMAP)

Usage

```
reduce_dims_scExp(
   scExp,
   dimension_reductions = c("PCA", "UMAP"),
   n = 10,
   batch_correction = FALSE,
   batch_list = NULL,
   remove_PC = NULL,
   verbose = TRUE
)
```

Arguments

scExp	A SingleCellExperiment object.
dimension_red	ductions
	A character vector of methods to apply. (c('PCA','TSNE','UMAP'))
n	Numbers of dimensions to keep for PCA. (50)
batch_correct	tion
	Do batch correction ? (FALSE)
batch_list	List of characters. Names are batch names, characters are sample names.

remove_PC	A vector of string indicating which principal components to remove before
	downstream analysis as probably correlated to library size. Should be under the
	form : 'Component_1', 'Component_2', Recommended when using 'TFIDF'
	normalization method. (NULL)
verbose	Print messages ?(TRUE)

Value

A SingleCellExperiment object containing feature spaces. See ?reduceDims().

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp = normalize_scExp(scExp, "CPM")
scExp = reduce_dims_scExp(scExp,dimension_reductions=c("PCA","UMAP"))</pre>
```

reduce_dim_batch_correction

Reduce dimension with batch corrections

Description

Reduce dimension with batch corrections

Usage

reduce_dim_batch_correction(scExp, mat, batch_list, n)

Arguments

scExp	SingleCellExperiment
mat	The normalized count matrix
batch_list	List of batches
n	Number of PCs to keep

Value

A list containing the SingleCellExperiment with batch info and the corrected pca

remove_chr_M_fun Remove chromosome M from scExprownames

Description

Remove chromosome M from scExprownames

Usage

```
remove_chr_M_fun(scExp, verbose)
```

Arguments

scExp	A SingleCellExperiment
verbose	Print ?

Value

A SingleCellExperiment without chromosome M (mitochondrial chr)

remove_non_canonical_fun

Remove non canonical chromosomes from scExp

Description

Remove non canonical chromosomes from scExp

Usage

```
remove_non_canonical_fun(scExp, verbose)
```

Arguments

scExp	A SingleCellExperiment
verbose	Print ?

Value

A SingleCellExperiment without non canonical chromosomes (random, unknown, contigs etc...)

results_enrichmentTest

Resutls of hypergeometric gene set enrichment test

Description

Run hypergeometric enrichment test and combine significant pathways into a data.frame

Usage

```
results_enrichmentTest(
   differentialGenes,
   enrichment_qval,
   GeneSets,
   GeneSetsDf,
   GenePool
)
```

Arguments

differentialGenes		
	Genes significantly over / under expressed	
enrichment_qval		
	Adusted p-value threshold above which a pathway is considered significative	
GeneSets	List of pathways	
GeneSetsDf	Data.frame of pathways	
GenePool	Pool of possible genes for testing	

Value

A data.frame with pathways passing q.value threshold

retrieve_top_bot_features_pca

Retrieve Top and Bot most contributing features of PCA

Description

Retrieve Top and Bot most contributing features of PCA

Usage

```
retrieve_top_bot_features_pca(
    pca,
    counts,
    component,
    n_top_bot,
    absolute = FALSE
)
```

Arguments

рса	A matrix/data.frame of rotated data
counts	the normalized counts used for PCA
component	the componenent of interest
n_top_bot	the number of top & bot features to take
absolute	If TRUE, return the top features in absolute values instead.

Value

a data.frame of top bot contributing features in PCA

run_pairwise_tests Run pairwise tests

Description

Run pairwise tests

Usage

```
run_pairwise_tests(
    affectation,
    nclust,
    counts,
    feature,
    method,
    progress = NULL,
    BPPARAM = BiocParallel::bpparam()
)
```

run_tsne_scExp

Arguments

affectation	An annotation data.frame with cell_cluster and cell_id columins
nclust	Number of clusters
counts	Count matrix
feature	Feature data.frame
method	DA method, Wilcoxon or edgeR
progress	A shiny Progress instance to display progress bar.
BPPARAM	BPPARAM object for multiprocessing. See bpparam for more informations. Will take the default BPPARAM set in your R session.

Value

A list containing objects for DA function

run_tsne_scExp

Run tsne on single cell experiment

Description

Run tsne on single cell experiment

Usage

```
run_tsne_scExp(scExp, verbose = FALSE)
```

Arguments

scExp	A SingleCellExperiment Object
verbose	Print ?

Value

A colored kable with the number of cells per sample for display

scExp

Description

Data from a single-cell ChIP-seq experiment against H3K4me3 active mark from two cell lines, Jurkat B cells and Ramos T cells from Grosselin et al., 2019. The count matrices, on 5kbp bins, were given to ChromSCape and the filtering parameter was set to 3% of cells active in regions and subsampled down to 150 cells per sample. After correlation filtering, the experiment is composed of respectively 51 and 55 cells from Jurkat & Ramos and 5499 5kbp-genomic bins where signal is located.

Usage

data("scExp")

Format

scExp - a SingleCellExperiment with 106 cells and 5499 features (genomic bins) in hg38:

chr A SingleCellExperiment

Details

The scExp is composed of :

- counts and normcounts assays, PCA, UMAP, and Correlation matrix in reducedDims(scExp)
- Assignation of genes to genomic bins in rowRanges(scExp)
- Cluster information in colData(scExp) correlation
- Hierarchical clustering dengogram in metadata\$hc_cor
- Consensus clustering raw data in metadata\$consclust
- · Consensus clustering cluster-consensus and item consensus dataframes in metadata\$icl
- Differential analysis in metadata\$diff
- Gene Set Analysis in metadata\$enr

Examples

```
data("scExp")
plot_reduced_dim_scExp(scExp)
plot_reduced_dim_scExp(scExp,color_by = "cell_cluster")
plot_heatmap_scExp(scExp)
plot_differential_volcano_scExp(scExp, "C1")
plot_differential_summary_scExp(scExp)
```

separate_BAM_into_clusters

Separate BAM files into cell cluster BAM files

Description

Separate BAM files into cell cluster BAM files

Usage

```
separate_BAM_into_clusters(affectation, odir, merged_bam)
```

Arguments

affectation	An annotation data.frame containing cell_id and cell_cluster columns
odir	A valid output directory path
merged_bam	A list of merged bam file paths
	@importFrom Rsamtools filterBam ScanBamParam

Value

Create one BAM per cluster from one BAM per condition

separator_count_mat Determine Count matrix separator ("tab" or ",")

Description

Determine Count matrix separator ("tab" or ",")

Usage

separator_count_mat(path_to_matrix)

Arguments

path_to_matrix A path towards the count matrix to check

Value

A character separator

smoothBin

Description

Smooth a vector of values with nb_bins left and righ values

Usage

```
smoothBin(bin_score, nb_bins = 10)
```

Arguments

bin_score	A numeric vector of values to be smoothed
nb_bins	Number of values to take left and right
	@importFrom BiocParallel bpvec

Value

A smooth vector of the same size

subsample_scExp	Subsample scExp
-----------------	-----------------

Description

Randomly sample x cells from each sample in a SingleCellExperiment to return a subsampled SingleCellExperiment with all samples having maximum n cells. If n is higher than the number of cell in a sample, this sample will not be subsampled.

Usage

```
subsample_scExp(scExp, n_cell_per_sample = 500, n_cell_total = NULL)
```

Arguments

scExp	A SingleCellExperiment
n_cell_per_sam	ple
	An integer number of cells to subsample for each sample. Exclusive with n_cells_total. (500)
n_cell_total	An integer number of cells to subsample in total. Exclusive with n_cell_per_sample (NULL).

Value

A subsampled SingleCellExperiment

Examples

```
raw <- create_scDataset_raw()
scExp = create_scExp(raw$mat, raw$annot)
scExp_sub = subsample_scExp(scExp,50)
## Not run: num_cell_scExp(scExp_sub)</pre>
```

subset_bam_call_peaks Peak calling on cell clusters

Description

This functions does peak calling on each cell population in order to refine gene annotation for large bins. For instance, a 50000bp bins might contain the TSS of several genes, while in reality only one or two of these genes are overlapping the signal (peak). To do so, first in-silico cell sorting is applied based on previously defined clusters contained in the SingleCellExperiment. Taking BAM files of each sample as input, samtools pools then splits reads from each cell barcode into 1 BAM file per cell cluster (pseudo-bulk). Then MACS2 calls peaks on each cluster. The peaks are aggregated and merged if closer to a certain distance defined by user (10000bp). Then,

This function takes as input a SingleCellExperiment, that must contain a 'cell_cluster' column in it's colData, an output directory where to store temporary files, the list of BAM files corresponding to each sample and containing the cell barcode information as a tag (for instance tag CB:Z:xxx, XB:Z:xxx or else...) or single-cell BED files containing the raw reads and corresponding to the 'barcode' column metadata, the p.value used by MACS2 to distinguish significant peaks, the reference genome (either hg38 or mm10), the maximal merging distance in bp and a data.frame containing gene TSS genomic cooridnates of corresponding genome (if set to NULL, will automatically load geneTSS). The output is a SingleCellExperiment with GRanges object containing ranges of each merged peaks that falls within genomic bins of the SingleCellExperiment, saving the bin range as additional column (window_chr, window_start, window_end), as well as the closests genes and their distance relative to the peak. The peaks may be present in several rows if multiple genes are close / overlap to the peaks.

Note that the user must have MACS2 installed and available in the PATH. Users can open command terminal and type 'which macs2' to verify the availability of these programs. Will only work on unix operating system. Check operating system with 'print(.Platform)'.

```
subset_bam_call_peaks(
   scExp,
   odir,
   input,
   format = "BAM",
   p.value = 0.05,
   ref = "hg38",
   peak_distance_to_merge = 10000,
   geneTSS_annotation = NULL,
```

```
run_coverage = FALSE,
progress = NULL
)
```

scExp	A SingleCellExperiment object	
odir	Output directory where to write temporary files and each cluster's BAM file	
input	A character vector of file paths to each sample's BAM file, containing cell bar- code information as tags. BAM files can be paired-end or single-end.	
format	Format of the input data, either "BAM" or "scBED".	
p.value	a p-value to use for MACS2 to determine significant peaks. (0.05)	
ref	A reference genome, either hg38 or mm10. ('hg38')	
peak_distance_to_merge Maximal distance to merge peaks together after peak calling , in bp. (10000)		
geneTSS_annotation		
	A data.frame annotation of genes TSS. If NULL will automatically load Gen- code list of genes fro specified reference genome.	
run_coverage	Create coverage tracks (.bw) for each cluster ?	
progress	A shiny Progress instance to display progress bar.	

Details

The BED files of the peaks called for each clusters, as well as the merged peaks are written in the output directory.

Value

A SingleCellExperiment with refinded annotation

Examples

```
## Not run:
data("scExp")
subset_bam_call_peaks(scExp, "path/to/out/", list("sample1" =
    "path/to/BAM/sample1.bam", "sample2" = "path/to/BAM/sample2.bam"),
    p.value = 0.05, ref = "hg38", peak_distance_to_merge = 10000,
    geneTSS_annotation = NULL)
```

End(Not run)

summary_DA

Description

Summary of the differential analysis

Usage

```
summary_DA(scExp, qval.th = 0.01, logFC.th = 1, min.percent = 0.01)
```

Arguments

scExp	A SingleCellExperiment object containing consclust with selected number of cluster.
qval.th	Adjusted p-value threshold. (0.01)
logFC.th	Fold change threshold. (1)
min.percent	Minimum fraction of cells having the feature active to consider it as significantly differential. (0.01)

Value

A table summary of the differential analysis

Examples

data('scExp')
summary_DA(scExp)

swapAltExp_sameColData

Swap main & alternative Experiments, with fixed colData

Description

Swap main & alternative Experiments, with fixed colData

Usage

swapAltExp_sameColData(scExp, alt)

Arguments

scExp	A SingleCellExperiment
alt	Name of the alternative experiment

Value

A swapped SingleCellExperiment with the exact same colData.

Examples

```
data(scExp)
swapAltExp_sameColData(scExp, "peaks")
```

table_enriched_genes_scExp

Creates table of enriched genes sets

Description

Creates table of enriched genes sets

Usage

```
table_enriched_genes_scExp(
   scExp,
   set = "Both",
   group = "C1",
   enr_class_sel = c("c1_positional", "c2_curated", "c3_motif", "c4_computational",
        "c5_G0", "c6_oncogenic", "c7_immunologic", "hallmark")
)
```

Arguments

scExp	A SingleCellExperiment object containing list of enriched gene sets.
set	A character vector, either 'Both', 'Overexpressed' or 'Underexpressed'. ('Both')
group	The "group" name from differential analysis. Can be the cluster name or the custom name in case of a custom differential analysis.
enr_class_sel	Which classes of gene sets to show. (c('c1_positional', 'c2_curated',))

Value

A DT::data.table of enriched gene sets.

Examples

```
data("scExp")
## Not run: table_enriched_genes_scExp(scExp)
```

warning_DA

Description

Warning for differential_analysis_scExp

Usage

warning_DA(scExp, de_type, method, block, group, ref)

Arguments

scExp	A SingleCellExperiment object containing consclust with selected number of cluster.
de_type	Type of comparisons. Either 'one_vs_rest', to compare each cluster against all others, or 'pairwise' to make 1 to 1 comparisons. ('one_vs_rest')
method	Wilcoxon or edgerGLM
block	Use batches as blocking factors ?
group	If de_type is custom, the group to compare (data.frame), must be a one-column data.frame with cell_clusters or sample_id as character in rows
ref	If de_type is custom, the reference to compare (data.frame), must be a one- column data.frame with cell_clusters or sample_id as character in rows

Value

Warnings or Errors if the input are not correct

Description

warning_filter_correlated_cell_scExp

```
warning_filter_correlated_cell_scExp(
    scExp,
    random_iter,
    corr_threshold,
    percent_correlation,
    run_tsne,
    downsample,
    verbose
)
```

scExp	A SingleCellExperiment object containing 'Cor', a correlation matrix, in reducedDims.	
random_iter	Number of random matrices to create to calculate random correlation scores. (50)	
corr_threshold	Quantile of random correlation score above which a cell is considered to be 'correlated' with another cell. (99)	
percent_correlation		
	Percentage of the cells that any cell must be 'correlated' to in order to not be filtered. (1)	
run_tsne	Re-run tsne? (FALSE)	
downsample	Number of cells to calculate correlation filtering threshold ? (2500)	
verbose	(TRUE)	

Value

Warnings or Errors if the input are not correct

warning_plot_reduced_dim_scExp

A warning helper for plot_reduced_dim_scExp

Description

A warning helper for plot_reduced_dim_scExp

```
warning_plot_reduced_dim_scExp(
    scExp,
    color_by,
    reduced_dim,
    downsample,
    transparency,
    size,
    max_distanceToTSS,
    annotate_clusters,
    min_quantile,
    max_quantile
)
```

scExp	A SingleCellExperiment Object	
color_by	Feature used for coloration	
reduced_dim	Reduced Dimension used for plotting	
downsample	Number of cells to downsample	
transparency	Alpha parameter, between 0 and 1	
size	Size of the points.	
<pre>max_distanceTo</pre>	TSS	
	Numeric. Maximum distance to a gene's TSS to consider a region linked to a	
	gene.	
annotate_clusters		
	A logical indicating if clusters should be labelled. The 'cell_cluster' column should be present in metadata.	
<pre>min_quantile</pre>	The lower threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0 and 0.5).	
<pre>max_quantile</pre>	The upper threshold to remove outlier cells, as quantile of cell embeddings (be- tween 0.5 and 1).	

Value

Warning or errors if the inputs are not correct

Description

Warning for raw_counts_to_sparse_matrix

```
warning_raw_counts_to_sparse_matrix(
    files_dir_list,
    file_type = c("scBAM", "scBED", "SparseMatrix"),
    peak_file = NULL,
    n_bins = NULL,
    bin_width = NULL,
    genebody = NULL,
    extendPromoter = 2500,
    verbose = TRUE,
    ref = "hg38"
)
```

files_dir_list	A named character vector of directory containing the raw files
file_type	Input file(s) type(s) ('scBED','scBAM','SparseMatrix')
peak_file	A file containing genomic location of peaks (NULL)
n_bins	The number of bins to tile the genome (NULL)
bin_width	The size of bins to tile the genome (NULL)
genebody	Count on genes (body + promoter) ? (NULL)
extendPromoter	If counting on genes, number of base pairs to extend up or downstream of TSS (2500).
verbose	Verbose (TRUE)
ref	reference genome to use (hg38)

Value

Error or warnings if the input are not correct

```
wrapper_Signac_FeatureMatrix
```

Wrapper around 'FeatureMatrix' function from Signac Package

Description

Wrapper around 'FeatureMatrix' function from Signac Package

Usage

```
wrapper_Signac_FeatureMatrix(
  files_dir_list,
  which,
  ref = "hg38",
  process_n = 2000,
  set_future_plan = TRUE,
  verbose = TRUE,
  progress = NULL
)
```

Arguments

files_dir_list	A named character vector of directories containing the files. The names correspond to sample names.
which	A GenomicRanges containing the features to count on.
ref	Reference genome to use (hg38).Chromosomes that are not present in the canon- ical chromosomes of the given reference genome will be excluded from the ma- trix.

process_n	Number of regions to load into memory at a time, per thread. Processing more regions at once can be faster but uses more memory. (2000)	
set_future_plan		
	Set 'multisession' plan within the function (TRUE). If TRUE, the previous plan (e.g. future::plan()) will be set back on exit.	
verbose	Verbose (TRUE).	
progress	Progress object for Shiny.	

Details

Signac & future are not required packages for ChromSCape as they are required only for the fragment matrix calculations. To use this function, install Signac package first (future will be installed as a dependency). For the simplicity of the application & optimization, the function by defaults sets future::plan("multisession") with workers = future::availableCores(omit = 1) in order to allow parallel processing with Signac. On exit the plan is re-set to the previously set future plan. Note that future multisession may have trouble running when VPN is on. To run in parallel, first deactivate your VPN if you encounter long runtimes.

Value

A sparse matrix of features x cells

References

Stuart el al., Multimodal single-cell chromatin analysis with Signac bioRxiv https://doi.org/ 10.1101/2020.11.09.373613

Examples

```
## Not run:
gr_bins = define_feature("hg38", bin_width = 50000)
wrapper_Signac_FeatureMatrix("/path/to/dir_containing_fragment_files",
gr_bins, ref = "hg38")
```

End(Not run)

Index

* datasets CheA3_TF_nTargets, 14 hg38.chromosomes, 59 hg38.cytoBand, 59 hg38.GeneTSS, 60 mm10.chromosomes, 67 mm10.cytoBand, 67 mm10.GeneTSS, 68 scExp, 102 annotation_from_merged_peaks, 5 annotToCol2.6 anocol_binary, 7 anocol_categorical, 7 bams_to_matrix_indexes, 8 beds_to_matrix_indexes, 8 bpparam, 8, 21, 30, 31, 35, 41, 44, 61, 93, 101 calculate_CNA, 9 calculate_cyto_mat, 9, 10, 12 calculate_gain_or_loss, 9, 11, 84 calculate_logRatio_CNA, 9, 11, 12, 78 call_macs2_merge_peaks, 12 changeRange, 13 CheA3_TF_nTargets, 14 check_correct_datamatrix, 15 chisq.test, 34 choose_cluster_scExp, 15, 48 choose_perplexity, 16 col2hex, 16 colors_scExp, 17 combine_datamatrix, 18 combine_enrichmentTests, 18 CompareedgeRGLM, 19 CompareWilcox, 20 concatenate_scBed_into_clusters, 22 consensus_clustering_scExp, 22 ConsensusClusterPlus, 22 cor, 15, 24, 79

enrich_TF_ChEA3_genes, 37
enrich_TF_ChEA3_scExp, 37
enrichmentTest, 36
exclude_features_scExp, 39

gene_set_enrichment_analysis_scExp, 51
generate_analysis, 45
generate_count_matrix, 47
generate_coverage_tracks, 48
generate_feature_names, 49
generate_report, 50
get_color_dataframe_from_input, 53
get_cyto_features, 54
get_genomic_coordinates, 55
get_most_variable_cyto, 55

INDEX

getExperimentNames, 52 getMainExperiment, 53 gg_fill_hue, 56 groupMat, 56 H1proportion, 57 has_genomic_coordinates, 57 hclustAnnotHeatmapPlot, 58 hg38.chromosomes, 59 hg38.cytoBand, 59 hg38.GeneTSS, 60 imageCol, 60 import_count_input_files, 61 import_scExp, 62 index_peaks_barcodes_to_matrix_indexes, 63 inter_correlation_scExp, 63 intra_correlation_scExp, 64 launchApp, 65 load_MSIGdb, 66 merge_MACS2_peaks, 66

merge_MACS2_peaks, 60
mm10.chromosomes, 67
mm10.cytoBand, 67
mm10.GeneTSS, 68

normalize_scExp, 68
num_cell_after_cor_filt_scExp, 69
num_cell_after_QC_filt_scExp, 70
num_cell_before_cor_filt_scExp, 70
num_cell_in_cluster_scExp, 71
num_cell_scExp, 72

```
pca_irlba_for_sparseMatrix, 72
plot_cluster_consensus_scExp, 73
plot_correlation_PCA_scExp, 74
plot_coverage_BigWig, 75
plot_differential_summary_scExp, 76
plot_differential_volcano_scExp, 76
plot_distribution_scExp, 77
plot_gain_or_loss_barplots, 78
plot_heatmap_scExp, 79
plot_inter_correlation_scExp, 80
plot_intra_correlation_scExp, 81
plot_most_contributing_features, 81
plot_pie_most_contributing_chr, 82
plot_reduced_dim_scExp, 83
plot_reduced_dim_scExp_CNA, 84
```

scExp, 102 separate_BAM_into_clusters, 103 separator_count_mat, 103 smoothBin, 104 subsample_scExp, 104 subset_bam_call_peaks, 105 summary_DA, 107 swapAltExp_sameColData, 107

table_enriched_genes_scExp, 108