Package ‘CellTrails’

October 18, 2022
Type Package

Title Reconstruction, visualization and analysis of branching
trajectories

Version 1.14.0

Description CellTrails is an unsupervised algorithm for the de novo
chronological ordering, visualization and analysis of single-cell expression
data. CellTrails makes use of a geometrically motivated concept of
lower-dimensional manifold learning, which exhibits a multitude of virtues that
counteract intrinsic noise of single cell data caused by drop-outs, technical
variance, and redundancy of predictive variables. CellTrails enables the
reconstruction of branching trajectories and provides an intuitive graphical
representation of expression patterns along all branches simultaneously. It
allows the user to define and infer the expression dynamics of individual and
multiple pathways towards distinct phenotypes.

License Artistic-2.0

Encoding UTF-8

VignetteBuilder knitr

Depends R (>=3.5), SingleCellExperiment

Imports BiocGenerics, Biobase, cba, dendextend, dtw, EnvStats,
ggplot2, ggrepel, grDevices, igraph, maptree, methods, mgcv,
reshape2, Rtsne, stats, splines, SummarizedExperiment, utils

Suggests AnnotationDbi, destiny, RUnit, scater, scran, knitr,
org.Mm.eg.db, rmarkdown

RoxygenNote 7.1.0

biocViews ImmunoOncology, Clustering, DataRepresentation,
DifferentialExpression, DimensionReduction, GeneExpression,
Sequencing, SingleCell, Software, TimeCourse

Collate 'AllClasses.R' 'AllGenerics.R' 'accessor-methods.R'
'cluster-methods.R' 'data-sets.R' 'diffexp-methods.R'
'dimred-methods.R' 'export-methods.R' "filter-methods.R'
'fitting-methods.R' 'import-methods.R' 'imputation-methods.R’
'layout-methods.R' 'plot-methods.R' 'show-methods.R'

1

2 R topics documented:

'simulation-methods.R' 'test-methods.R' 'trajectory-methods.R’
"utility-methods.R'

git_url https://git.bioconductor.org/packages/CellTrails
git_branch RELEASE_3_15

git_last_commit 3ad6bc4

git_last_commit_date 2022-04-26

Date/Publication 2022-10-18

Author Daniel Ellwanger [aut, cre, cph]

Maintainer Daniel Ellwanger <dc.ellwanger.dev@gmail.com>

R topics documented:

addTrail L e 3
COMMECESEALES v v v v ot e e e e e e e e e e e e e 4
contrastTrailEXpr e 6
embedSamples 8
enrichment.test e 10
exSCE 11
featureNames,SingleCellExperiment-method 11
filterTrajFeaturesByCOV 12
filterTrajFeaturesByDL 13
filterTrajFeaturesByFF 15
findSpectrum 16
findStates 17
fitDynamic L 19
fitTrajectory o o e e e e e e e e 20
landmarks L 21
latentSpace e 22
latentSpace<- L e e e e 23
manifold2Do 24
manifold2D<-o 25
PCA . o v e e e e e e 25
phenoNames e 27
plotDynamic L 28
plotManifold e e 29
PlotMap e 30
plotStateExpressiono e e 32
plotStateSize L e e e 33
plotStateTrajectory L 34
plotTrail 35
plotTrajectoryFit 36
read.ygraphml 37
removeTrail 38
sampleNames,SingleCellExperiment-method 39

selectTrajectory o o 40

addTrail 3
showTrajInfo e 41
SIMUIALE_EXPIS v v v e e e e 41
SLALES . . . e e e e e e e e e e e 42
SEALES<- . . . e e e e e e 43
stateTrajLayout<- L 44
trailNames e e e 45
trailNames<- 45
trails . . . L e e e e e e 46
trajComponents e e e e e e e e 47
trajFeatureNames 48
trajFeatureNames<- e 49
trajlayout L e e e e e 49
trajlayout<-o e 50
trajResidualso 51
trajSampleNames e 52
userLandmarks L 53
userLandmarks<- 54
write.ygraphml e 55

Index 57

addTrail ADD trail

Description

Function to define a single trail on the trajectory.

Usage

addTrail(sce, from, to, name)

Arguments
sce An object of class SingleCellExperiment
from Start landmark
to End landmark
name Name of trail
Details

A trajectory can be composed of multiple single trails (e.g., developmental progression from a
common start towards distinct terminal phenotypes). Start and endpoints of trails can be identified
visually using the plot function plotMap. Here, start (=from) and end (=to) IDs of landmarks are
starting with the character "B" (for branching points), "H" (for trail heads, i.e. terminal nodes), and
"U" for user-defined landmarks.

4 connectStates
Diagnostic messages

An error is thrown if the trajectory has not been fitted yet. Please, call fitTrajectory first. Further,
an error is thrown if the provided start or end ID is unknown. A warning is shown if a trail with the
same name already exists and gets re-defined.

Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

See Also

fitTrajectory landmarks plotMap

Examples

Example data
data(exSCE)

Add trail

exSCE <- addTrail(exSCE, "H1", "H2", "Tr3")
trailNames(exSCE)

phenoNames (exSCE)

connectStates Connect trajectory states

Description

Connects states using maximum interface scoring. For each state an interface score is defined by
the relative distribution of states in its local I-neighborhood. A filter is applied to remove outliers
(ie. false positive neighbors). States are spanned by maximizing the total interface score.

Usage

connectStates(sce, 1 = 10)

Arguments

sce A SingleCellExperiment object
1 Neighborhood size (default: 10)

connectStates 5

Details

CellTrails assumes that the arrangement of samples in the computed lower-dimensional latent space
constitutes a trajectory. Therefore, CellTrails aims to place single samples along a maximum parsi-
mony tree, which resembles a branching developmental continuum. Distances between samples in
the latent space are computed using the Euclidean distance.

To avoid overfitting and to facilitate the accurate identification of bifurcations, CellTrails simpli-
fies the problem. Analogous to the idea of a ‘broken-stick regression’, CellTrails groups the data
and perform linear fits to separate trajectory segments, which are determined by the branching
chronology of states. This leaves the optimization problem of finding the minimum number of as-
sociations between states while maximizing the total parsimony, which in theory can be solved by
any minimum spanning tree algorithm. CellTrails adapts this concept by assuming that adjacent
states should be located nearby and therefore share a relative high number of neighboring cells.

Each state defines a submatrix of samples that is composed of a distinct set of data vectors, i.e.,
each state is a distinct set of samples represented in the lower-dimensional space. For each state
CellTrails identifies the /-nearest neighbors to each state’s data vector and takes note of their state
memberships and distances. This results in two vectors of length / times the state size (i.e., a vector
with memberships and a vector with distances).

CellTrails removes spurious neighbors (outliers), whose distance to a state is greater than or equal

to
emedian(log(D))+MAD(log(D))

where D is a matrix containing all collected 1-nearest neighbor sample distances to any state in the
latent space.

For each state CellTrails calculates the relative frequency on how often a state occurs in the neigh-
borhood of a given state, which is refered to as the interface cardinality scores.

CellTrails implements a greedy algorithm to find the tree maximizing the total interface cardinality
score, similar to a minimum spanning tree algorithm (Kruskal, 1956). In a nutshell, all interface
cardinality scores are organized in a sorted linked list, and a graph with no edges, but k nodes (one
for each state) is initialized. During each iteration the highest score is selected, removed from the
list and its corresponding edge (connecting two states), if it is not introducing a cycle or is already
existent, is added to the graph. The algorithm terminates if the size of the graph is k-1 (with k equals
number of states) or the list is empty. A cycle is determined if nodes were revisited while traversing
the graph using depth-first search. Its construction has a relaxed requirement (number of edges <
number of nodes) compared to a tree (number of edges = number of nodes - 1), which may result in
a graph (forest) having multiple tree components, i.e. several trajectories or isolated nodes.

Diagnostic messages

An error is thrown if the states have not been defined yet; function findStates needs to be called
first.

Value

An updated SingleCellExperiment object

6 contrastTrailExpr

Author(s)

Daniel C. Ellwanger

References

Kruskal, J.B. (1956). On the shortest spanning subtree of a graph and the traveling salesman prob-
lem. Proc Amer Math Soc 7, 48-50.

See Also

findStates states

Examples

Example data
data(exSCE)

Connect states
exSCE <- connectStates(exSCE, 1=30)

contrastTrailExpr Differential trail expression analysis

Description

Comparison of feature expression dynamic between two trails.

Usage

contrastTrailExpr(
sce,
feature_names = featureNames(sce),
trail_names,
score = "rmsd"

Arguments

sce A SingleCellExperiment object
feature_names Name of feature; can be multiple names
trail_names Name of trails

"non

score Score type; one of {"rmsd", "tad", "abc", "cor"

contrastTrailExpr 7

Details

Genes have non-uniform expression rates and each trail has a distinct set of upregulated genes, but
also contains unequal numbers of cells. Because pseudotime is based on transcriptional change,
its axis may be distorted, leading to stretched or compressed sections of longitudinal expression
data that make comparison of trails challenging. To align different trails, despite these differences,
CellTrails employs a dynamic programming based algorithm that has long been known in speech
recognition, called dynamic time warping (Sakoe and Chiba, 1978). RNA expression rates are mod-
eled analogous to speaking rates (Aach and Church, 2001); the latter accounts for innate non-linear
variation in the length of individual phonemes (i.e., states) resulting in stretching and shrinking of
word (i.e., trail) segments. This allows the computation of inter-trail alignment warps of individual
expression time series that are similar but locally out of phase.

Univariate pairwise alignments are computed resulting in one warp per feature and per trail set.
Similar to a (global) pairwise protein sequence alignment, monotonicity (i.e., no time loops) and
continuity (i.e., no time leaps) constraints have to be imposed on the warping function to preserve
temporal sequence ordering. To find the optimal warp, a recursion rule is applied which selects the
local minimum of three moves through a dynamic programming matrix: suppose that query snap-
shot g and reference snapshot / have already been aligned, then the alignment of s+1 with g+1 is a
(unit slope) diagonal move, 7 with g+1 denotes an expansion by repetition of 4, and h+2 with g+1
contracts the query by dropping /+1.

The overall dissimilarity between two aligned expression time series x and y of length n is es-
timated by either the root-mean-square deviation RMSD(x,y) = /(3 (z — y)?/n), the total
aboslute deviation TAD(z,y) = > _(|]z — y|), the area between the aligned dynamic curves (ABC),
or Pearson’s correlation coefficient (cor) over all aligned elements.

Value

Numeric value

Author(s)

Daniel C. Ellwanger

References

Sakoe, H., and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signaling Processing 26, 43-49.

Aach, J., and Church, G.M. (2001). Aligning gene expression time series with time warping algo-
rithms. Bioinformatics 17, 495-508.
See Also

dtw

Examples

Example data
data(exSCE)

8 embedSamples

Differential expression between trails

contrastTrailExpr(exSCE, feature_name=c("feature_1", "feature_10"),
trail_names=c("Tr1", "Tr2"), score="rmsd")
embedSamples Spectral embedding of biological samples
Description

Non-linear learning of a data representation that captures the intrinsic geometry of the trajec-
tory. This function performs spectral decomposition of a graph encoding conditional entropy-based
sample-to-sample similarities.

Usage
embedSamples(x, design = NULL)

S4 method for signature 'matrix’
embedSamples(x, design = NULL)

Arguments
X A SingleCellExperiment object or a numeric matrix with samples in columns
and features in rows
design A numeric matrix describing the factors that should be blocked
Details

Single-cell gene expression measurements comprise high-dimensional data of large volume, i.e.
many features (e.g., genes) are measured in many samples (e.g., cells); or more formally, m sam-
ples can be described by the expression of n features (i.e., n dimensions). The cells’ expression
profiles are shaped by many distinct unobserved biological causes related to each cell’s geno- and
phenotype, such as developmental age, tissue region of origin, cell cycle stage, as well as extrinsic
sources such as status of signaling receptors, and environmental stressors, but also technical noise.
In other words, a single dimension, despite just containing gene expression information, represents
an underlying combination of multiple dependent and independent, relevant and non-relevant fac-
tors, whereat each factors’ individual contribution is non-uniform. To obtain a better resolution and
to extract underlying information, CellTrails aims to find a meaningful low-dimensional structure -
a manifold - that represents cells mainly by their temporal relation along a biological process.

This method assumes that the expression vectors are lying on or near a manifold with dimension-
ality d that is embedded in the n-dimensional space. By using spectral embedding CellTrails aims
to amplify latent temporal information; it reduces noise (ie. truncates non-relevant dimensions) by
transforming the expression matrix into a new dataset while retaining the geometry of the original
dataset as much as possible.CellTrails captures overall cell-to-cell relations based on the statistical
mutual dependency between any two data vectors. A high dependency between two samples should

embedSamples 9

be represented by their close proximity in the lower-dimensional space.

First, the mutual depencency between samples is scored using mutual information. This entropy
framework naturally requires discretization of data vectors by an indicator function, which assigns
each continuous data point (expression value) to exactly one discrete interval (e.g. low, mid or
high). However, measurement points located close to the interval borders may get wrongly as-
signed due to noise-induced fluctuations. Therefore, CellTrails fuzzifies the indicator function by
using a piecewise polynomial function, i.e. the domain of each sample expression vector is divided
into contiguous intervals (based on Daub ef al., 2004). Second, the computed mutual information
matrix, which is left-bounded and composed of bits, is scaled to a generalized correlation coeffi-
cient. Third, CellTrails constructs a simple complete graph with m nodes, one for each data vector
(ie. sample), and weights each edge between two nodes by a heat kernel function applied on the
generalzied correlation coefficient. Finally, nonlinear spectral embedding (ie. spectral decomposi-
tion of the graph’s adjacency matrix) is performed (Belkin & Niyogi, 2003; Sussman et al., 2012)
unfolding the manifold. Please note that this methods only uses the set of defined trajectory features
in a SingleCellExperiment object; spike-in controls are ignored and are not listed as trajectory
features.

To account for systematic bias in the expression data (e.g., cell cycle effects), a design matrix
can be provided for the learning process. It should list the factors that should be blocked and their
values per sample. It is suggested to construct a design matrix with model.matrix.

Diagnostic messages

The method throws an error if expression matrix contains samples with zero entropy (e.g., the
samples exclusively contain non-detects, that is all expression values are zero).

Value

A list containing the following components:

eigenvectors Ordered components of latent space

eigenvalues Information content of latent components

Author(s)

Daniel C. Ellwanger

References

Daub, C.O., Steuer, R., Selbig, J., and Kloska, S. (2004). Estimating mutual information using
B-spline functions — an improved similarity measure for analysing gene expression data. BMC
Bioinformatics 5, 118.

Belkin, M., and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation 15, 1373-1396.

Sussman, D.L., Tang, M., Fishkind, D.E., and Priebe, C.E. (2012). A Consistent Adjacency Spectral
Embedding for Stochastic Blockmodel Graphs. J Am Stat Assoc 107, 1119-1128.

10 enrichment.test

See Also

SingleCellExperiment trajectoryFeatureNames model.matrix

Examples

Example data
data(exSCE)

Embed samples
res <- embedSamples(exSCE)

enrichment. test Enrichment test

Description

Statistical enrichment analysis using either a Hypergeometric or Fisher’s test

Usage

enrichment.test(
sample_true,
sample_size,

pop_true,
pop_size,
method = c("fisher”, "hyper")
)
Arguments
sample_true Number of hits in sample
sample_size Size of sample
pop_true Number of hits in population
pop_size Size of population
method Statistical method that should be used
Details

Hypergeometric or one-tailed Fisher exact test is useful for enrichment analyses. For example, one
needs to estimate which features are enriched among a set of instances sampled from a population.

Value

A list containing the following components:

p.value P-value of the test
odds.ratio Odds ratio
conf.int Confidence interval for the odds ratio (only shown with method="fisher")

method Used statistical test

exSCE 11

Author(s)

Daniel C. Ellwanger

See Also

Hypergeometric and fisher.test

Examples

Population has 13 of total 52 instances positive for a given feature
Sample has 1 of total 5 instances positive for a given feature
Test for significance of enrichment in sample
enrichment.test(sample_true=1, sample_size=5,

pop_true=13, pop_size=52, method="fisher")

exSCE Example single-cell expression data

Description

This dataset contains simulated transcript expression profiles of 25 genes in expressed 100 cells.
Simulation was performed using using the Negative Binomial Distribution. Distribution parameters
for each feature were sampled from a Gamma distribution. The resulting expression matrix is log2-
scaled and was stored in in an object of class ’SingleCellExperiment’ (assay logcounts). The
sample metainformation contains the underlying (discrete) simulated age of the cells.

Usage

data(exSCE)

Format

An object of class SingleCellExperiment

featureNames,SingleCellExperiment-method
GET feature names

Description

Retrieve feature names from a SingleCellExperiment object

Usage

S4 method for signature 'SingleCellExperiment'’
featureNames(object)

12
Arguments

object An object of class SingleCellExperiment
Details

Wrapper for rownames (object)
Value

A character vector
Author(s)

Daniel C. Ellwanger
See Also

SingleCellExperiment
Examples

Example data

data(exSCE)

featureNames (exSCE)

filterTrajFeaturesByCOV

filterTrajFeaturesByCOV

Filter features by Coefficient of Variation (COV)

Description

Filters trajectory features by their coefficient of variation.

Usage

filterTrajFeaturesByCOV(sce, threshold, design = NULL, show_plot = TRUE)

Arguments
sce An SingleCellExperiment object
threshold Minimum coefficient of variation; numeric value between O and 1
design A numeric matrix describing the factors that should be blocked

show_plot Indicates if plot should be shown (default: TRUE)

filterTrajFeaturesByDL 13

Details

For each trajectory feature x listed in the SingleCellExperiment object the coefficient of varia-
tion is computed by CoV (z) = sd(z)/mean(z). Features with a CoV(x) greater than threshold
remain labeled as trajectory feature in the SingleCellExperiment object, otherwise they are not
considered for dimensionality reduction, clustering and trajectory reconstruction. Please note that
spike-in controls are ignored and are not listed as trajectory features.

To account for systematic bias in the expression data (e.g., cell cycle effects), a design matrix
can be provided for the learning process. It should list the factors that should be blocked and their
values per sample. It is suggested to construct a design matrix with model.matrix.

Value

A character vector

Author(s)

Daniel C. Ellwanger

See Also

trajFeatureNames model.matrix

Examples

Simulate example data
set.seed(1101)
dat <- simulate_exprs(n_features=15000, n_samples=100)

Create container
alist <- list(logcounts=dat)
sce <- SingleCellExperiment(assays=alist)

Filter incrementally
trajFeatureNames(sce) <- filterTrajFeaturesByDL(sce, threshold=2)
trajFeatureNames(sce) <- filterTrajFeaturesByCOV(sce, threshold=0.5)

Number of features
length(trajFeatureNames(sce)) #filtered
nrow(sce) #total

filterTrajFeaturesByDL
Filter trajectory features by Detection Level (DL)

Description

Filters trajectory features that are detected in a minimum number of samples.

14 filterTrajFeaturesByDL

Usage

filterTrajFeaturesByDL(sce, threshold, show_plot = TRUE)

Arguments
sce An SingleCellExperiment object
threshold Minimum number of samples; if value < 1 it is interpreted as fraction, otherwise
as absolute sample count
show_plot Indicates if plot should be shown (default: TRUE)
Details

The detection level denotes the fraction of samples in which a feature was detected. For each
trajectory feature listed in the CellTrailsSet object the relative number of samples having a feature
expression value greater than O is counted. Features that are expressed in a fraction of all samples
greater than threshold remain labeled as trajectory feature as listed in the SingleCellExperiment
object, otherwise they may be not considered for dimensionality reduction, clustering, and trajectory
reconstruction. If the parameter threshold fullfills threshold >= 1 it becomes converted to a
relative fraction of the total sample count. Please note that spike-in controls are ignored and are not
listed as trajectory features.

Value

A character vector

Author(s)

Daniel C. Ellwanger

See Also

trajFeatureNames

Examples

Example data
set.seed(1101)
dat <- simulate_exprs(n_features=15000, n_samples=100)

Create container
alist <- list(logcounts=dat)
sce <- SingleCellExperiment(assays=alist)

Filter features
tfeat <- filterTrajFeaturesByDL(sce, threshold=2)
head(tfeat)

Set trajectory features to object
trajFeatureNames(sce) <- tfeat

filterTrajFeaturesByFF 15

Number of features
length(trajFeatureNames(sce)) #filtered
nrow(sce) #total

filterTrajFeaturesByFF
Filter features by Fano Factor

Description

Filters trajectory features that exhibit a significantly high fano factor (index of dispersion) by con-
sidering average expression levels.

Usage

filterTrajFeaturesByFF(
sce,
threshold = 1.7,
min_expr = 0,
design = NULL,
show_plot = TRUE

)

Arguments
sce An SingleCellExperiment object
threshold A Z-score cutoff (default: 1.7)
min_expr Minimum average expression of feature to be considered
design A numeric matrix describing the factors that should be blocked
show_plot Indicates if plot should be shown (default: TRUE)

Details

To identify the most variable features an unsupervised strategy that controls for the relationship be-
tween a features’s average expression intensity and its expression variability is applied. Features are
placed into 20 bins based on their mean expression. For each bin the fano factor (a windowed ver-
sion of the index of dispersion, IOD = variance / mean) distribution is computed and standardized
(Z-score(x) = x/sd(x) - mean(x)/sd(x)). Features with a Z-score greater than threshold remain la-
beled as trajectory feature in the SingleCellExperiment object. The parameter min_expr defines
the minimum average expression level of a feature to be considered for this filter method. Please
note that spike-in controls are ignored and are not listed as trajectory features.

To account for systematic bias in the expression data (e.g., cell cycle effects), a design matrix
can be provided for the learning process. It should list the factors that should be blocked and their
values per sample. It is suggested to construct a design matrix with model.matrix.

16 findSpectrum

Value

A character vector

Author(s)

Daniel C. Ellwanger

See Also

trajFeatureNames model.matrix

Examples

Simulate example data
set.seed(1101)
dat <- simulate_exprs(n_features=15000, n_samples=100)

Create container
alist <- list(logcounts=dat)
sce <- SingleCellExperiment(assays=alist)

Filter incrementally

trajFeatureNames(sce) <- filterTrajFeaturesByDL(sce, threshold=2)
trajFeatureNames(sce) <- filterTrajFeaturesByCOV(sce, threshold=0.5)
trajFeatureNames(sce) <- filterTrajFeaturesByFF(sce, threshold=1.7)

Number of features
length(trajFeatureNames(sce)) #filtered
nrow(sce) #total

findSpectrum Determine number of informative latent dimensions

Description

Identifies the dimensionality of the latent space

Usage

findSpectrum(x, frac = 100)

Arguments
X A numeric vector with eigenvalues
frac Fraction or number (if frac > 1) of eigengaps used to perform linear fit. (default:

100)

findStates 17

Details

Similar to a scree plot, this method generates a simple line segement plot showing the lagged differ-
ences between ordered eigenvalues (eigengaps). A linear fit is calucated on a fraction of top ranked
values to identify informative eigenvectors.

Value

A numeric vector with indices of relevant dimensions

Author(s)

Daniel C. Ellwanger

See Also

pca embedSamples

Examples

Example data
data(exSCE)

Embedding
res <- embedSamples(exSCE)

Find spectrum
d <- findSpectrum(res$eigenvalues, frac=30)
d

findStates Identify trajectory states

Description

Determines states using hierarchical spectral clustering with a post-hoc test.

Usage

findStates(sce, min_size = 0.01, min_feat = 5, max_pval = 1e-04, min_fc = 2)

Arguments
sce A SingleCellExperiment object
min_size The initial cluster dedrogram is cut at an height such that the minimum cluster

size is at least min_size; if min_size < 1 than the fraction of total samples is
used, otherwise it is used as absoulte count (default: 0.01).

18 findStates

min_feat Minimum number of differentially expressed features between siblings. If this
number is not reached, two neighboring clusters (siblings) in the pruned dendro-
gram get joined. (default: 5)

max_pval Maximum P-value for differential expression computation. (default: 1e-4)
min_fc Mimimum fold-change for differential expression computation (default: 2)
Details

To identify cellular subpopulations, CellTrails performs hierarchical clustering via minimization of
a square error criterion (Ward, 1963) in the lower-dimensional space. To determine the cardinality
of the clustering, CellTrails conducts an unsupervised post-hoc analysis. Here, it is assumed that
differential expression of assayed features determines distinct cellular stages. First, Celltrails iden-
tifies the maximal fragmentation of the data space, i.e. the lowest cutting height in the clustering
dendrogram that ensured that the resulting clusters contained at least a certain fraction of samples.
Then, processing from this height towards the root, CellTrails iteratively joins siblings if they did
not have at least a certain number of differentially expressed features. Statistical significance is
tested by means of a two-sample non-parametric linear rank test accounting for censored values
(Peto & Peto, 1972). The null hypothesis is rejected using the Benjamini-Hochberg (Benjamini &
Hochberg, 1995) procedure for a given significance level.

Since this methods performs pairwise comparisons, the fold change threshold value is valid in both
directions: higher and lower expressed than min_fc. Thus, input values < 0 are interpreted as a fold-
change of 0. For example, min_fc=2 checks for features that are 2-fold differentially expressed in
two given states (e.g., S1, S2). Thus, a feature can be either 2-fold higher expressed in state S1 or
two-fold lower expressed in state S2 to be validated as differentially expressed.

Please note that this methods only uses the set of defined trajectory features in a SingleCellExperiment
object; spike-in controls are ignored and are not listed as trajectory features.

Diagnostic messages

An error is thrown if the samples stored in the SingleCellExperiment object were not embed-
ded yet (ie. the SingleCellExperiment object does not contain a latent space matrix object;
latentSpace(object)is NULL).

Value

A factor vector

Author(s)

Daniel C. Ellwanger

References
Ward, J.H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the Amer-
ican Statistical Association, 58, 236-244.

Peto, R., and Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures (with Dis-
cussion). Journal of the Royal Statistical Society of London, Series A 135, 185-206.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289-300.

fitDynamic

See Also

latentSpace trajectoryFeatureNames

Examples

Example data
data(exSCE)

Find states
cl <- findStates(exSCE, min_feat=2)
head(cl)

19

fitDynamic Fit expression dynamic

Description

Fits feature expression as a function of pseudotime along a defined trail.

Usage

fitDynamic(sce, feature_name, trail_name)

Arguments
sce A SingleCellExperiment object
feature_name Name of feature
trail_name Name of trail

Details

A trail is an induced subgraph of the trajectory graph. A trajectory graph is composed of samples
(nodes) that are connected (by weighted edges) if they are chronologically related. A trail has to be
defined by the user using addTrail. A pseudotime vector is extracted by computing the geodesic
distance for each sample from the trail’s start node. To infer the expression level of a feature as a
function of pseudotime, CellTrails used generalized additive models with a single smoothing term
with four basis dimensions. Here, for each feature CellTrails introduces prior weights for each
observation to lower the confounding effect of drop-outs to the maximum-likelihood-based fitting
process as follows. Each non-detect of feature j in state % is weighted by the relative fraction of

non-detects of feature j in state &; detected values are always assigned weight = 1.

Value
An object of type 1ist with the following components

pseudotime The pseudotime along the trail
expression The fitted expression values for each value of pseudotime

gam A object of class gamObject

20

fitTrajectory

Author(s)

Daniel C. Ellwanger

See Also

addTrail gamObject

Examples

Example data
data(exSCE)

Fit dynamic
fit <- fitDynamic(exSCE, feature_name="feature_3", trail_name="Tr1")

summary (fit)

fitTrajectory Align samples to trajectory

Description

Orthogonal projection of each sample to the trajectory backbone.

Usage

fitTrajectory(sce)
Arguments

sce A SingleCellExperiment object
Details

The previously selected component (with k states) defines the trajectory backbone. With this func-
tion CellTrails embeds the trajectory structure in the latent space by computing k-1 straight lines
passing through k mediancentres (Bedall & Zimmermann, 1979) of adjacent states. Then, a fitting
function is learned. Each sample is projected to its most proximal straight line passing through the
mediancentre of its assigned state. Here, whenever possible, projections on line segments between
two mediancentres are preferred. Residuals (fitting deviations) are given by the Euclidean distance
between the sample’s location and the straight line. Finally, a weighted acyclic trajectory graph can
be constructed based on each sample’s position along its straight line. In addition, data vectors are
connected to mediancentres to enable the proper determination of branching points. Each edge is
weighted by the distance between each node (sample) after orthogonal projection.

Of note, the fitting function implies potential side branches in the trajectory graph; those could
be caused due to technical variance or encompass samples that were statistically indistinguishable
from the main trajectory given the selected genes used for trajectory reconstruction.

landmarks 21

Diagnostic messages

An error is thrown if an trajectory graph component was not computed or selected yet; functions
connectStates and selectTrajectory need to be run first.

Value

An updated SingleCellExperiment object

Author(s)
Daniel C. Ellwanger

References
Bedall, FK., and Zimmermann, H. (1979). Algorithm AS143. The mediancentre. Appl Statist 28,
325-328.

See Also

connectStates selectTrajectory

Examples

Example data
data(exSCE)

Align samples to trajectory
exSCE <- fitTrajectory(exSCE)

landmarks GET landmarks

Description

Gets landmarks from a SingleCellExperiment object.

Usage

landmarks(object)
Arguments

object A SingleCellExperiment object
Details

Trail branches (B) and heads (H) are automatically assigned; landmarks can also be defined on the
trajectory by the user (U). Landmarks can be used to extract single trails from a trajectory.

22 latentSpace

Value

A character vector with sample names

Author(s)

Daniel C. Ellwanger

See Also

userLandmarks

Examples

Example data
data(exSCE)

Get landmarks
landmarks (exSCE)[seq_len(5)]

latentSpace GET CellTrails’ latent space

Description

Retrieve computed latent space from a SingleCellExperiment object.

Usage

latentSpace(object)
Arguments

object A SingleCellExperiment object
Details

Returns the latent space set for a CellTrails analysis. The resulting matrix is numeric. Rows are
samples and columns are d components. It is a wrapper for reducedDim to ensure that the proper
matrix is received from a SingleCellExperiment object.

Value

An object of class matrix

Author(s)

Daniel C. Ellwanger

latentSpace<-

See Also

SingleCellExperiment reducedDim

Examples

Example data
data(exSCE)

Get latent space
latentSpace(exSCE)[seq_len(5), 1]

23

latentSpace<- SET latent space

Description

Set CellTrails’ latent space to a SingleCellExperiment object.

Usage

latentSpace(object) <- value

Arguments

object A SingleCellExperiment object

value A numeric matrix with rows are samples and columns are components

Details

Rows need to be samples and columns to be d components (spanning the lower-dimensional latent

space).

Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

See Also

SingleCellExperiment reducedDim

24 manifold2D

Examples

Example data
data(exSCE)

Set latent space
latentSpace(exSCE) <- pca(exSCE)$components[, seq_len(10)]

manifold2D GET 2D manifold representation

Description

Returns 2D manifold representation of latent space from SingleCellExperiment object

Usage

manifold2D(object)
Arguments

object A SingleCellExperiment object
Value

A numeric matrix

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

manifold2D(exSCE)[seq_len(5), 1

manifold2D<- 25

manifold2D<- SET 2D manifold representation

Description

Stores 2D manifold representation in SingleCellExperiment object

Usage

manifold2D(object) <- value

Arguments

object A SingleCellExperiment object

value A numeric matrix with one column per dimension
Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

gp <- plotManifold(exSCE, color_by="featureName", name="feature_10",
recalculate=TRUE)
manifold2D(exSCE) <- gp

pca Principal Component Analysis

Description
Performs principal component analysis by spectral decomposition of a covariance or correlation
matrix

Usage

pca(sce, do_scaling = TRUE, design = NULL)

26 pca

Arguments
sce SingleCellExperiment object
do_scaling FALSE = covariance matrix, TRUE = correlation matrix
design A numeric matrix describing the factors that should be blocked
Details

The calculation is done by a spectral decomposition of the (scaled) covariance matrix of the tra-
jectory features as defined in the SingleCellExperiment object. Features with zero variance get
automatically removed. Please note that this methods only uses the set of defined trajectory features
in a SingleCellExperiment object; spike-in controls are ignored and are not listed as trajectory
features.

To account for systematic bias in the expression data (e.g., cell cycle effects), a design matrix
can be provided for the learning process. It should list the factors that should be blocked and their
values per sample. It is suggested to construct a design matrix with model.matrix.

Value

A list object containing the following components:

components Principal components
eigenvalues Variance per component
variance Fraction of variance explained by each component
loadings Loading score for each feature
Author(s)

Daniel C. Ellwanger

See Also

SingleCellExperiment model.matrix

Examples

Example data
data(exSCE)

Principal component analysis
res <- pca(exSCE)

Find relevant number of principal components
d <- findSpectrum(res$eigenvalues, frac=20)

barplot(res$variance[d] * 100, ylab="Variance (%)",
names.arg=colnames(res$components)[d], las=2)
plot(res$component, xlab="PC1", ylab="PC2")

phenoNames

phenoNames GET phenotype names

Description

Retrieve phenotype names from a SingleCellExperiment object

Usage

phenoNames(object)
Arguments

object An object of class SingleCellExperiment
Details

Wrapper for colnames(colData(object))

Value

A character vector

Author(s)

Daniel C. Ellwanger

See Also

SingleCellExperiment

Examples

Example data
data(exSCE)

phenoNames (exSCE)

28 plotDynamic

plotDynamic Visualize dynamics

Description

Shows dynamics of one or multiple features along a given trail

Usage

plotDynamic(sce, feature_name, trail_name)

Arguments

sce A SingleCellExperiment object
feature_name Name of one or multiple features

trail_name Name of trail

Details
An error is thrown if the trail_name or feature_name are unknown. The function is case-sensitiv.
All available trails can be listed by trailNames, all features with featureNames.

Value

A ggplot object

Author(s)

Daniel C. Ellwanger

See Also

addTrail trailNames featureNames

Examples

Example data
data(exSCE)

Plot dynamic of feature_10

plotDynamic(exSCE, trail_name="Tr1", feature_name="feature_1")

Plot dynamic of feature_1 and feature_10

plotDynamic(exSCE, trail_name="Tr1",
feature_name=c("feature_1", "feature_10"))

plotManifold 29

plotManifold Visualize the learned manifold

Description

Method visualizes an approximation of the manifold in the latent space in two dimensions.

Usage

plotManifold(
sce,
color_by = c("phenoName"”, "featureName"),
name,
perplexity = 30,
recalculate = FALSE

)
Arguments
sce A SingleCellExperiment object
color_by Indicates if nodes are colorized by a feature expression (’featureName’) or phe-
notype label (’phenoName’)
name A character string specifying the featureName or phenoName
perplexity Perplexity parameter for tSNE computation (default: 30)

recalculate Indicates if tSNE should be recalcuated and results returned (default: FALSE)

Details

Visualizes the learned lower-dimensional manifold in two dimensions using an approximation ob-
tained by Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding (tSNE; van
der Maaten and Hinton 2008). Each point in this plot represents a sample. Points can be colorized
according to feature expression or experimental metadata. The points’ coloration can be defined
via the attributes color_by and name, respectively. A previously computed tSNE visualization will
be reused if it was set accordingly (see manifold2D<-). The parameter perplexity is used for the
tSNE calculation.

Value

A ggplot object

Author(s)

Daniel C. Ellwanger

30 plotMap

References

van der Maaten, L.J.P. & Hinton, G.E., 2008. Visualizing High-Dimensional Data Using t-SNE.
Journal of Machine Learning Research, 9, pp.2579-2605.

See Also

Rtsne latentSpace manifold2D

Examples

Example data
data(exSCE)

plotManifold(exSCE, color_by="featureName"”, name="feature_10")

gp <- plotManifold(exSCE, color_by="phenoName", name="age",
recalculate=TRUE)

manifold2D(exSCE) <- gp

plotMap Visualize expression maps

Description

Method visualizes topographical expression maps in two dimensions.

Usage
plotMap(
sce,
color_by = c("phenoName"”, "featureName"),
name,
type = c("surface.fit"”, "surface.se”, "raw"),
samples_only = FALSE
)
Arguments
sce A SingleCellExperiment object
color_by Indicates if nodes are colorized by a feature expression
name A character string specifying the featureName or phenoName
type Type of map; one of "raw","surface.fit","surface.se"

samples_only If only individual samples should be colorized rather than the whole surface
(default: FALSE)

plotMap 31

Details

Two-dimensional visualization of the trajectory. The red line representsthe trajectory and individual
points denote samples. This plot type can either show thetopography of a given feature’s expression
landscape or colorizes individual samples by a metadata label. The feature is selected by setting
the parameter color_type and the respecitve name. To show feature expression, a surface is fitted
using isotropic (i.e., same parameters for both map dimensions) thin-plate spline smoothing in gam.
It gives an overview of expression dynamics along all branches of the trajectory. The parameter
type defines if either the raw/original expression data shoud be shown, the full fitted expression
surface should be shown (type="surface.fit") or the standard error of the surface prediction
(type="surface.se"), or the expression values of single samples only (type="surface.fit"” and
only_samples=TRUE).

To show all landmarks on the map, please use the parameters color_by="phenoName" and name="1andmark".

Value

A ggplot object

Author(s)

Daniel C. Ellwanger

See Also

gam

Examples

Example data
data(exSCE)

Plot landmarks
plotMap(exSCE, color_by="phenoName"”, name="landmark")

Plot phenotype
plotMap(exSCE, color_by="phenoName”, name="age")

Plot feature expression map

plotMap(exSCE, color_by="featureName"”, name="feature_10", type="surface.fit")

plotMap(exSCE, color_by="featureName"”, name="feature_10", type="surface.fit",
samples_only=TRUE)

#Plot surface fit standard errors
plotMap(exSCE, color_by="featureName", name="feature_10", type="surface.se")

32

plotStateExpression

plotStateExpression Visualize feature expression distribution per state

Description

Violin plots showing the expression distribution of a feature per state.

Usage

plotStateExpression(sce, feature_name)

Arguments

sce A SingleCellExperiment object

feature_name The name of the feature to be visualized

Details

Each data point displays the feature’s expression value in a single sample. A violine plot shows the

density (mirrored on the y-axis) of the expression distribution per sample.

Value

A ggplot object

Author(s)

Daniel C. Ellwanger

See Also

ggplot states

Examples

Example data
data(exSCE)

plotStateExpression(exSCE, feature_name="feature_1")

plotStateSize 33

plotStateSize Visualize the number of samples per state

Description

Shows barplot of state size distribution

Usage

plotStateSize(sce)
Arguments

sce A SingleCellExperiment object
Details

Barplot showing the absolute number of samples per state.

Value

A ggplot object

Author(s)

Daniel C. Ellwanger

See Also

ggplot states

Examples

Example data
data(exSCE)

plotStateSize(exSCE)

34 plotStateTrajectory

plotStateTrajectory Visualize state trajectory graph

Description

Method visualizes the state-to-state relations delineating the trajectory backbone.

Usage
plotStateTrajectory(
sce,
color_by = c("phenoName"”, "featureName"),
name,
component = NULL,
point_size = 3,
label_offset = 2,

recalculate = FALSE

)
Arguments
sce A SingleCellExperiment object
color_by Indicates if nodes are colorized by a feature expression (’featureName’) or phe-
notype label (’phenoName’)
name A character string specifying the featureName or phenoName
component Component of trajectory graph that should be shown (integer value)
point_size Adjusts the point size of the data points shown

label_offset Adjusts the offset of the data point labels
recalculate If layout should be re-drawn (default: FALSE)

Details

Shows a single tree component of the computed trajectory graph. Each point in this plot represents a
state and can be colorized according to feature expression (mean expression per state) or experimen-
tal metadata (arithmetic mean or percentage distribution of categorial values). The component is
defined by parameter component. If the trajectory graph contains only a single component, then this
parameter can be left undefined. The points’ coloration can be defined via the attributes color_by
and name, respectively. Missing sample lables are recovered using nearest neighbor learning.

If the state trajectory graph layout was set with stateTrajLayout<- then the layout will be reused
for visualization.

Value

A ggplot object

plotTrail 35

Author(s)

Daniel C. Ellwanger

See Also

connectStates

Examples

Example data
data(exSCE)

plotStateTrajectory(exSCE, color_by="phenoName”, name="age",
component=1, point_size = 1.5, label_offset = 4)

gp <- plotStateTrajectory(exSCE, color_by="featureName”, name="feature_1",
component=1, recalculate=TRUE)
stateTrajLayout(exSCE) <- gp

plotTrail Visualize single trails

Description

Method highlights a single trail on the trajectory map

Usage

plotTrail(sce, name)

Arguments
sce A SingleCellExperiment object
name Name of the trail

Details

A trail can be defined with the function addTrail between two landmarks. User-defined landmarks
can be set with the function userLandmarks. This function visualizes the start and endpoints, and
the pseudotime of a defined trail along the trajectory. The trail pseudotimes can be directly accessed
via the trails.

An error is thrown if the trail_name is unknown. The function is case-sensitiv. All available
trails can be listed by trailNames.

Value

A ggplot object

36

Author(s)

Daniel C. Ellwanger

See Also

addTrail userLandmarks trailNames trails

Examples

Example data
data(exSCE)

Plot trail
plotTrail(exSCE, name="Tr1")

plotTrajectoryFit

plotTrajectoryFit Visualize trajectory fit residuals

Description

Method visualizes the fitting residuals along the trajectory backbone.

Usage

plotTrajectoryFit(sce)

Arguments

sce A SingleCellExperiment object

Details

Shows the trajectory backbone (longest shortest path between two samples) and the fitting devia-
tions of each sample indicated by the perpendicular jitter. Data points are colorized by state.

Value

A ggplot object

Author(s)

Daniel C. Ellwanger

See Also

fitTrajectory trajResiduals

read.ygraphml 37

Examples

Example data
data(exSCE)

plotTrajectoryFit(exSCE)

read.ygraphml Reads trajectory graph layout

Description

Reads ygraphml file containing the trajectory graph’s layout

Usage

read.ygraphml(file)

Arguments

file A character string naming a file

Details

To visualize the trajectory graph, a proper graph layout has to be computed. Ideally, edges should
not cross and nodes should not overlap. CellTrails enables the export and import of the trajectory
graph structure using the graphml file format. This file format can be interpreted by most third-party
graph analysis applications, allowing the user to subject the trajectory graph to a wide range of lay-
out algorithms. Please note that the graphml file needs to contain layout information ("<y:Geometry
x=... y=... >" entries) as provided by the *ygraphml’ file definition used by the Graph Visualization
Software "yEd’ (freely available from yWorks GmbH, http://www.yworks.com/products/yed).

Value

An data. frame with coordinates of data points and visualization metadata

Author(s)

Daniel C. Ellwanger

See Also

write.ygraphml

38

Examples

Example data
data(exSCE)

Not run:
fn <- system.file("exdata”, "exDat.graphml”, package="CellTrails")
tl <- read.ygraphml(fn)

End(Not run)

removeTrail

removeTrail REMOVE trail

Description

Removes trail from a SingleCellExperiment object.

Usage

removeTrail (sce, name)

Arguments
sce An object of class SingleCellExperiment
name Name of trail

Details

Diagnostic messages

An error is thrown if the trail name is unknown. All stored trail names can be shown using function

trailNames.

Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

See Also

trailNames addTrail

sampleNames,SingleCellExperiment-method

Examples

Example data
data(exSCE)

Remove trail

trailNames (exSCE)

exSCE <- removeTrail (exSCE, "Tr1")
trailNames(exSCE)

39

sampleNames,SingleCellExperiment-method
GET sample names

Description

Retrieve sample names from a SingleCellExperiment object

Usage
S4 method for signature 'SingleCellExperiment'’
sampleNames(object)
Arguments
object An object of class SingleCellExperiment
Details

Wrapper for colnames(object)

Value

A character vector

Author(s)
Daniel C. Ellwanger

See Also

SingleCellExperiment

Examples

Example data
data(exSCE)

sampleNames (exSCE) [seqg_len(5)]

40 selectTrajectory

selectTrajectory Select component from trajectory graph

Description

Retains a single component of a trajectory graph.

Usage

selectTrajectory(sce, component)

Arguments
sce A SingleCellExperiment object
component Number of component to be selected
Details

The construction of a trajectory graph may result in a forest having multiple tree components, which
may represent individual trajectories or isolated nodes. This method should be used to extract a sin-
gle component from the graph. A component is identified by its (integer) number.

Diagnostic messages

An error is thrown if the states have not been connected yet; function connectStates needs to
be called first. An error is thrown if an unknown component (number) is selected.
Value

An updated SingleCellExperiment object

Author(s)

Daniel C. Ellwanger

See Also

connectStates
findStates states

Examples

Example data
data(exSCE)

Select trajectory
exSCE <- selectTrajectory(exSCE, component=1)

showTrajInfo 41

showTrajInfo Shows relevant content of a SingleCellExperiment object for a Cell-
Trails analysis

Description

Shows relevant content of a SingleCellExperiment object for a CellTrails analysis

Usage

showTrajInfo(object)
Arguments

object A SingleCellExperiment object
Value

showTrajInfo returns an invisible NULL

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

showTrajInfo(exSCE)

simulate_exprs Simulation of RNA-Seq expression data

Description

Simple simulation of RNA-Seq expression data estimating counts based on the negative binomial
distribution

Usage

simulate_exprs(n_features, n_samples, prefix_sample = "")

42 states

Arguments
n_features Number of genes
n_samples Number of samples

prefix_sample Prefix of sample name

Details

RNA-Seq counts are generated using the Negative Binomial Distribution. Distribution parameters
for each feature are sampled from a Gamma distribution. The resulting expression matrix is log2-
scaled.

Value

A numeric matrix with genes in rows and samples in columns

Author(s)

Daniel C. Ellwanger

See Also

NegBinomial and GammaDist

Examples

Matrix with 100 genes and 50 cells
dat <- simulate_exprs(n_features=100, n_samples=50)

states GET states

Description

Retrieve computed states from a SingleCellExperiment object

Usage

states(object)

Arguments

object An object of class SingleCellExperiment

Details

State information is extracted from colData; factor levels are alphanumerically ordered by ID.

states<- 43

Value

A factor vector

Author(s)

Daniel C. Ellwanger

See Also

SingleCellExperiment findStates

Examples

Example data
data(exSCE)

states(exSCE)[seqg_len(5)]

states<- SET states

Description

Sets states to a SingleCellExperiment object

Usage

states(object) <- value

Arguments
object An object of class SingleCellExperiment
value A numeric, character or factor vector
Details

State information is added to a SingleCellExperiment object via colData. If the vector contain-
ing the cluster assignments is numeric, the prefix "S" is added and the vector is converted to type
factor.

Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

44 stateTrajLayout<-

See Also

colData

Examples

Example data
data(exSCE)

Assign clusters
cl <- kmeans(logcounts(exSCE), centers=10)$cluster
states(exSCE) <- cl

stateTrajLayout<- SET state trajectory layout

Description

Stores layout of state trajectory in SingleCellExperiment object

Usage

stateTrajlLayout(object) <- value

Arguments
object A SingleCellExperiment object
value A ggplot object

Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

gp <- plotStateTrajectory(exSCE, color_by="featureName”,
name="feature_10", recalculate=TRUE)
stateTrajLayout(exSCE) <- gp

trailNames 45

trailNames GET trail names

Description

Function to extract trail names from SingleCellExperiment object.

Usage

trailNames(object)
Arguments

object An object of class SingleCellExperiment
Value

A character vector

Author(s)

Daniel C. Ellwanger

See Also
addTrail

Examples

Example data
data(exSCE)

trailNames(exSCE)

trailNames<- SET trail names

Description

Enables to rename trails stored in a SingleCellExperiment object.

Usage

trailNames(object) <- value

46

Arguments
object An object of class SingleCellExperiment
value A character vector with the trail names
Details

Diagnostic messages

trails

An error is thrown if the number of names does not correspond to the number of trails stored in

the object. Further, trail names are required to be unique.

Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

See Also
addTrail

Examples

Example data
data(exSCE)

trailNames(exSCE)
trailNames(exSCE) <- c("ABC", "DEF")
trailNames (exSCE)

trails GET trails

Description

Function to extract trail pseudotimes from a SingleCellExperiment object.

Usage

trails(object)

Arguments

object An object of class SingleCellExperiment

trajComponents

Value

A DataFrame with numeric columns

Author(s)

Daniel C. Ellwanger

See Also
addTrail

Examples

Example data
data(exSCE)

trails(exSCE)

trajComponents GET trajectory component states

Description

Returns states of trajectory components SingleCellExperiment object

Usage

trajComponents(object)

Arguments

object A SingleCellExperiment object

Value

A character vector

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

trajComponents(exSCE)

48 trajFeatureNames

trajFeatureNames GET trajectory feature names

Description

Retrieve names of features that were selected for trajectory reconstruction from a SingleCellExperiment
object.

Usage

trajFeatureNames(object)

Arguments

object An object of class SingleCellExperiment

Details

Features can be selected prior to trajectory inference. This method retrieves the user-defined fea-
tures from a SingleCellExperiment object. The return value is a character vector containing the
feature names.

Value

An object of class character

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

Get trajectory features
trajFeatureNames (exSCE)[seq_len(5)]

trajFeatureNames<- 49

trajFeatureNames<- SET trajectory features by name

Description

Function to set trajectory features by name

Usage

trajFeatureNames(object) <- value

Arguments
object An object of class SingleCellExperiment
value A character vector

Value

An updated object of class SingleCellExperiment

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

Set trajectory features
trajFeatureNames(exSCE) <- rownames(exSCE)[seq_len(5)]

trajLayout GET trajectory layout

Description

Returns trajectory layout from SingleCellExperiment object

Usage
trajlLayout(object)

Arguments

object A SingleCellExperiment object

50 trajLayout<-

Value

A data.frame

Author(s)
Daniel C. Ellwanger

Examples

Example data
data(exSCE)

trajLayout(exSCE)[seq_len(5), 1]

trajlLayout<- SET trajectory layout

Description

Sets layout used for trajectory visualization to a SingleCellExperiment object.

Usage

trajlLayout(object, adjust) <- value

Arguments
object An object of class SingleCellExperiment
adjust Indicates if layout has to be adjusted such that edge lengths correlate to pseudo-
time (default: TRUE)
value A data.frame with x- and y-coordinates for each sample (rows = samples, columns
= coordinates)
Details

CellTrails implements a module which can incorporate pseudotime information into the the graph
layout (activated via parameter adjust). Here, edge lengths between two nodes (samples) will then
correspond to the inferred pseudotime that separates two samples along the trajectory.

Diagnostic messages
An error is thrown if the number of rows of the layout does not correspond to the number of trajec-

tory samples or if the number of columns is less than 2, or if the row names do not correspond to
sampleNames.

Value

An updated object of class SingleCellExperiment

trajResiduals 51

Author(s)

Daniel C. Ellwanger

See Also

write.ygraphml trajSampleNames

Examples

Example data
data(exSCE)
tl <- trajLayout(exSCE)

trajLayout(exSCE) <- tl

trajResiduals GET trajectory fitting residuals

Description

Returns trajectory fitting residuals from SingleCellExperiment object

Usage

trajResiduals(object)

Arguments

object A SingleCellExperiment object

Details

The trajectory fitting deviation is defined as the vector rejection from a sample in the latent space
to the trajectory backbone. The trajectory backbone is defined by a tree spanning all relevant states.
Samples get orthogonally projected onto straight lines connecting related states. This function
quantifies the distance between the actual positon of a sample in the latent space and its projectd
position on the trajectory backbone. In other words, the higher the distance, the higher its deviation
(residual) from the trajectory fit. This function returns all residuals for each projected sample.
Residuals of samples which were exluded for trajectory reconstruction are NA.

Value

A numeric vector

Author(s)

Daniel C. Ellwanger

52 trajSampleNames

See Also

fitTrajectory trajSampleNames

Examples

Example data
data(exSCE)

trajResiduals(exSCE)[seq_len(5)]

trajSampleNames GET trajectory sample names

Description
Retrieve names of samples that were aligned onto the trajectory from a SingleCellExperiment
object.

Usage

trajSampleNames(object)

Arguments

object An object of class SingleCellExperiment

Details
A trajectory graph can be initially a forest. Trajectory fitting is performed on one component. This
function returns the names of the samples which are member of the selected component.

Value

An object of class character

Author(s)

Daniel C. Ellwanger

Examples

Example data
data(exSCE)

Get trajectory samples
trajSampleNames(exSCE)[seq_len(5)]

userLandmarks 53

userLandmarks GET user-defined landmarks

Description

Gets user-defined landmarks from a SingleCellExperiment object.

Usage

userLandmarks(object)

Arguments

object A SingleCellExperiment object

Details

Landmarks can be defined on the trajectory by the user with userLandmarks. Landmarks can be
used to extract single trails from a trajectory.

Value

A character vector with sample names

Author(s)

Daniel C. Ellwanger

See Also

SingleCellExperiment

Examples

Example data
data(exSCE)

Get landmarks
userLandmarks (exSCE)

54

userLandmarks<-

userLandmarks<- SET user-defined landmarks

Description

Set user-defined landmarks to a SingleCellExperiment object.

Usage

userLandmarks(object) <- value

Arguments
object A SingleCellExperiment object
value A character vector with sample names
Details

Landmarks can be defined on the trajectory and can be necessary to extract individual trails from a

trajectory.

Diagnostic messages

An error is thrown if the trajectory has not been reconstructed yet.

Value

An updated SingleCellExperiment object

Author(s)

Daniel C. Ellwanger

See Also

SingleCellExperiment fitTrajectory

Examples

Example data
data(exSCE)

Set landmarks
userLandmarks(exSCE) <- colnames(exSCE)[5:7]

write.ygraphml 55

write.ygraphml Export trajectory graph

Description

Writes graphml file containing the trajectory graph’s structure.

Usage
write.ygraphml(
sce,
file,
color_by = c("phenoName"”, "featureName"),
name,
node_label = "state”
)
Arguments
sce A SingleCellExperiment object
file Character string naming a file
color_by Indicates if nodes are colorized by a feature expression (’featureName’) or phe-
notype label (’phenoName’)
name A character string specifying the featureName or phenoName
node_label Defines the node label name (optional). Can be either set to the samples’ states
(’state’) or the samples’ names ("name’).
Details

To visualize the trajectory graph, a proper graph layout has to be computed. Ideally, edges should
not cross and nodes should not overlap (i.e., a planar embedding of the graph). CellTrails enables
the export and import of the trajectory graph structure using the graphml file format. This file format
can be interpreted by most third-party graph analysis applications, allowing the user to subject the
trajectory graph to a wide range of (tree) layout algorithms. In particular, its format has additional
ygraph attributes best suited to be used with the Graph Visualization Software "yEd’ which is freely
available from yWorks GmbH (http://www.yworks.com/products/yed) for all major platforms.

The colors of the nodes can be defined by the parameters color_by and name. Please note that
the trajectory landmarks are indicated by setting color_by="'phenoName' and name="landmark’.

States can be indicated by color_by="'phenoName' and name="state’.

If a layout is already present in the provided CellTrailsSet object, the samples’ coordinates will
be listed in the graphml file.

Diagnostic messages

56 write.ygraphml

An error is thrown if the trajectory has not been computed yet; function fitTrajectory needs
to be called first. Feature names and phenotype names get checked and will throw an error if not
contained in the dataset. Please note, the parameter name is case-sensitive.

Value

write.ygraphml returns an invisible NULL

Author(s)

Daniel C. Ellwanger

See Also

fitTrajectory featureNames phenoNames

Examples

Example data
data(exSCE)

Not run:

Export trajectory graph structure to graphml

Color nodes by gene expression (e.g, feature_10)

write.ygraphml(sce, file="yourFilePath", color_by="featureName",
name="feature_10")

Color nodes by metadata (e.g., state) and

label nodes by the (simulated) age of each sample

write.ygraphml(sce, file="yourFilePath”, color_by="phenoName",
name="state", node_label="age")

Color and label nodes by landmark type and id

write.ygraphml(sce, file="yourFilePath”, color_by="phenoName",
name="landmark"”, node_label="landmark")

End(Not run)

Index

x datasets
exSCE, 11

addTrail, 3
addTrail,SingleCellExperiment-method
(addTrail), 3

connectStates, 4
connectStates,SingleCellExperiment-method

(connectStates), 4
contrastTrailExpr, 6

contrastTrailExpr,SingleCellExperiment-method

(contrastTrailExpr), 6

embedSamples, 8

embedSamples,matrix-method
(embedSamples), 8

embedSamples,SingleCellExperiment-method
(embedSamples), 8

enrichment. test, 10

exSCE, 11

featureNames,SingleCellExperiment-method,
11
filterTrajFeaturesByCOV, 12

fitDynamic,SingleCellExperiment-method
(fitDynamic), 19

fitTrajectory, 20

fitTrajectory,SingleCellExperiment-method
(fitTrajectory), 20

landmarks, 21

landmarks,SingleCellExperiment-method
(landmarks), 21

latentSpace, 22

latentSpace,SingleCellExperiment-method
(latentSpace), 22

latentSpace<-, 23

latentSpace<-,SingleCellExperiment-method
(latentSpace<-), 23

manifold2D, 24

manifold2D,SingleCellExperiment-method
(manifold2D), 24

manifold2D<-, 25

manifold2D<-,SingleCellExperiment-method
(manifold2D<-), 25

pca, 25

filterTrajFeaturesByCOV,SingleCellExperiment-meahdingleCellExperiment-method (pca),

(filterTrajFeaturesByCOV), 12
filterTrajFeaturesByDL, 13

25
phenoNames, 27

filterTrajFeaturesByDL, SingleCellExperiment-meftéieNames,SingleCellExperiment-method

(filterTrajFeaturesByDL), 13
filterTrajFeaturesByFF, 15

(phenoNames), 27
plotDynamic, 28

filterTrajFeaturesByFF,SingleCellExperiment-melotidynamic,SingleCellExperiment-method

(filterTrajFeaturesByFF), 15
findSpectrum, 16
findSpectrum, numeric-method
(findSpectrum), 16
findStates, 17
findStates,SingleCellExperiment-method
(findStates), 17
fitDynamic, 19

57

(plotDynamic), 28
plotManifold, 29
plotManifold,SingleCellExperiment-method
(plotManifold), 29
plotMap, 30
plotMap,SingleCellExperiment-method
(plotMap), 30
plotStateExpression, 32

58 INDEX

plotStateExpression,SingleCellExperiment-methbdajComponents,SingleCellExperiment-method

(plotStateExpression), 32 (trajComponents), 47
plotStateSize, 33 trajFeatureNames, 48
plotStateSize,SingleCellExperiment-method trajFeatureNames, SingleCellExperiment-method
(plotStateSize), 33 (trajFeatureNames), 48
plotStateTrajectory, 34 trajFeatureNames<-, 49
plotStateTrajectory,SingleCellExperiment-methbdajFeatureNames<-,SingleCellExperiment-method
(plotStateTrajectory), 34 (trajFeatureNames<-), 49
plotTrail, 35 trajLayout, 49
plotTrail,SingleCellExperiment-method trajLayout,SingleCellExperiment-method
(plotTrail), 35 (trajLayout), 49
plotTrajectoryFit, 36 trajLayout<-, 50
plotTrajectoryFit,SingleCellExperiment-methodtrajlLayout<-,SingleCellExperiment-method
(plotTrajectoryFit), 36 (trajLayout<-), 50
trajResiduals, 51
read.ygraphml, 37 trajResiduals,SingleCellExperiment-method
removeTrail, 38 (trajResiduals), 51
removeTrail,SingleCellExperiment-method trajSampleNames, 52
(removeTrail), 38 trajSampleNames, SingleCellExperiment-method

(trajSampleNames), 52
sampleNames, SingleCellExperiment-method,

39 userLandmarks, 53
selectTrajectory, 40 userLandmarks,SingleCellExperiment-method
selectTrajectory,SingleCellExperiment-method (userLandmarks), 53
(selectTrajectory), 40 userLandmarks<-, 54
showTrajInfo, 41 userLandmarks<-,SingleCellExperiment-method
showTrajInfo,SingleCellExperiment-method (userLandmarks<-), 54
(showTrajInfo), 41
simulate_exprs, 41 write.ygraphml, 55
states, 42 write.ygraphml,SingleCellExperiment-method
states, SingleCellExperiment-method (write.ygraphml), 55
(states), 42
states<-, 43

states<-,SingleCellExperiment-method
(states<-), 43

stateTrajlLayout<-, 44

stateTrajlLayout<-,SingleCellExperiment-method
(stateTrajlLayout<-), 44

trailNames, 45

trailNames, SingleCellExperiment-method
(trailNames), 45

trailNames<-, 45

trailNames<-,SingleCellExperiment-method
(trailNames<-), 45

trails, 46

trails,SingleCellExperiment-method
(trails), 46

trajComponents, 47

	addTrail
	connectStates
	contrastTrailExpr
	embedSamples
	enrichment.test
	exSCE
	featureNames,SingleCellExperiment-method
	filterTrajFeaturesByCOV
	filterTrajFeaturesByDL
	filterTrajFeaturesByFF
	findSpectrum
	findStates
	fitDynamic
	fitTrajectory
	landmarks
	latentSpace
	latentSpace<-
	manifold2D
	manifold2D<-
	pca
	phenoNames
	plotDynamic
	plotManifold
	plotMap
	plotStateExpression
	plotStateSize
	plotStateTrajectory
	plotTrail
	plotTrajectoryFit
	read.ygraphml
	removeTrail
	sampleNames,SingleCellExperiment-method
	selectTrajectory
	showTrajInfo
	simulate_exprs
	states
	states<-
	stateTrajLayout<-
	trailNames
	trailNames<-
	trails
	trajComponents
	trajFeatureNames
	trajFeatureNames<-
	trajLayout
	trajLayout<-
	trajResiduals
	trajSampleNames
	userLandmarks
	userLandmarks<-
	write.ygraphml
	Index

