Package ‘CellBarcode’

October 18, 2022
Type Package
Title Cellular DNA Barcode Analysis toolkit
Version 1.2.0

Description This package performs Cellular DNA Barcode (genetic lineage tracing) analysis.
The package can handle all kinds of DNA barcodes, as long as the barcode
within a single sequencing read and has a pattern which can be matched by a
regular expression. This package can handle barcode with flexible length, with
or without UMI (unique molecular identifier). This tool also can be used for
pre-processing of some amplicon data such as CRISPR gRNA screening, immune
repertoire sequencing and meta genome data.

License MIT + file LICENSE
Encoding UTF-8
Depends R (>=4.1.0)

Imports methods, stats, Rcpp (>=1.0.5), data.table (>= 1.12.6), plyr,
ggplot2, stringr, magrittr, ShortRead (>= 1.48.0), Biostrings
(>=2.58.0), egg, Ckmeans.1d.dp, utils, S4Vectors

LinkingTo Rcpp

RoxygenNote 7.1.1

Suggests BiocStyle, testthat (>= 3.0.0), knitr, rmarkdown
biocViews Preprocessing, QualityControl, Sequencing, CRISPR
Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

git_url https://git.bioconductor.org/packages/CellBarcode
git branch RELEASE 3_15

git_last_commit bdde81f

git_last_commit_date 2022-04-26

Date/Publication 2022-10-18

Author Wenjie Sun [cre],
Anne-Marie Lyne [aut],
Leila Perie [aut]

BarcodeObj-class

Maintainer Wenjie Sun <sunwjie@gmail.com>

R topics documented:

BarcodeObj-class 2
be 2df . . . e 4
bc_auto_cutoff 5
bc_barcodes L e e 6
bc cleanBe L L L e 7
bc_cure cluster e e 8
bc_cure_deptho 10
bec_cure umi oL 11
be_extract e e e 12
bec_messyBe . . . L 17
bec meta e e e 18
bec_names e 19
be_obj . . . 20
be_plot_mutual e 21
be_plot_pair 22
be_plot_single L 24
be_seq_filter. L 25
DC_Seq_qC . - . . . e e 27
bc_subset L e e 28
bc_summary_barcode L L 31
bec_summary_seqQc e e 32
CellBarcode e 33
format,BarcodeObj-method 33
show,BarcodeObj-method L 34
[, BarcodeQcSet, ANY,ANY,ANY-method 35
Index 36
BarcodeObj-class BarcodeObj object
Description

A S4 object holds the barcode data and samples’ metadata. A set of operations can be applied to
the BarcodeObj object for quality control and selecting barcodes/samples subset.

Details

The BarcodeObj object is a S4 object, it has three slots, which can be access by "@" operator,
they are messyBc, cleanBc and metadata. A BarcodeObj object can be generated by bc_extract
function. The bc_extract function can use various data types as input, such as data.frame, fastq
files or ShortReadQ.

BarcodeObj-class 3

Slot messyBc is a list holds the raw barcodes sequence before filtering, where each element is a
data.table corresponding to the successive samples. Each table has 5 columns: 1. reads_seq:
full read sequence before parsing. 2. match_seq: the sequence matched by pattern given to
bc_extract. 3. umi_seq (optional): UMI sequence. 4. barcode_seq: barcode sequence. 5.
count: how many reads a full sequence has. In this table, barcode_seq value can be duplicated, as
two different full read sequences can contain the same barcode sequence, due to the diversity of the
UMI or mutations in the constant region.

Slot cleanBc is a 1ist holds the barcodes sequence after applying filtering, where each element is
a data. table corresponding to the successive samples. The "cleanBc" slot contains 2 columns 1.
barcode_seq: barcode sequence 2. counts: reads count, or UMI count if the cleanBc was created
by bc_cure_umi.

Examples

HHHHH

Create BarcodeObj with fastq file

fqg_file <- system.file("extdata”, "simple.fq"”, package="CellBarcode")
library(ShortRead)

bc_extract(fg_file, pattern = "AAAAA(.*)CCCCC")

HHHHH
data manipulation on BarcodeObj object
data(bc_obj)

bc_obj

Select barcodes
bc_subset(bc_obj, barcode = c("AACCTT"”, "AACCTT"))
bc_objLc("AGAG", "AAAG"), 1]

Select samples by meta data
bc_meta(bc_obj)$phenotype <- c("1", "b")
bc_meta(bc_obj)

bc_subset(bc_obj, sample = phenotype == "1")

Select samples by sample name

bc_obj[, "test1"]

bc_obj[, c("test1”, "test2")]

bc_subset(bc_obj, sample = "test1”, barcode = c("AACCTT"”, "AACCTT"))

Apply barcodes black list
bc_subset(
bc_obj,
sample = c("test1”, "test2"),
barcode = c("AACCTT"))

Join two samples with no barcodes overlap
bc_obj["AGAG", "test1"] + bc_obj["AAAG", "test2"]

Join two samples with barcodes overlap
bc_obj_join <- bc_obj["AGAG", "test1"] + bc_obj["AGAG", "test2"]
bc_obj_join

4 bc_2df

The same barcode will be merged after applying bc_cure_depth()
bc_cure_depth(bc_obj_join)

Remove barcodes
bc_obj
bc_obj - "AAAG"

Select barcodes in a white list
bc_obj

bc_obj * "AAAG"

fizizd

bc_2df Transforms BarcodeObj object into other data type

Description

Transforms BarcodeObj object into data.frame, data.table or matrix.

Usage

bc_2df (barcodeObj)
bc_2dt(barcodeObj)
bc_2matrix(barcodeObj)

S4 method for signature 'BarcodeObj'
bc_2df (barcodeObj)

S4 method for signature 'BarcodeObj'
bc_2dt(barcodeObj)

S4 method for signature 'BarcodeObj'
bc_2matrix(barcodeObj)

Arguments

barcodeObj A BarcodeObj object.

Value

A data. frame, with two columns: barcode_seq and count.

bc_auto_cutoff 5

Examples

data(bc_obj)
bc_obj <- bc_cure_depth(bc_obj)

BarcodeObj to data.frame
bc_2df (bc_obj)

BarcodeObj to data.table
bc_2dt(bc_obj)

BarcodeObj to matrix
bc_2matrix(bc_obj)

#iH#

bc_auto_cutoff Finds barcode count cutoff point

Description

Finds the cutoff point for the barcode count filtering based on the barcode count distribution.

Usage

bc_auto_cutoff(barcodeObj, useCleanBc = TRUE)

S4 method for signature 'BarcodeObj
bc_auto_cutoff(barcodeObj, useCleanBc = TRUE)

Arguments
barcodeObj A BarcodeObj object.
useCleanBc A logical value, if TRUE, the cleanBc slot in the BarcodeObj object will be used,
otherwise the messyBc slot will be used.
Details

The one dimension kmeans clustering is applied for identify the "true barcode" based on read count.
The the algorithm detail is: 1. Remove the barcodes with count below the median of counts. 2.
Transform the count by log2(x+1). 3. Apply the 1 dimension clustering to the logarized count, with
the cluster number of 2 and weights of the logarized count. 4. Choose the minimum count value in
the cluster with higher count as cutoff point.

For more info about 1 dimension kmeans used here please refer to Ckmeans. 1d. dp, which has been
used here.

6 bc_barcodes

Value

a numeric vector of the cutoff point.

Examples

data(bc_obj)

bc_auto_cutoff(bc_obj)

bc_barcodes Gets barcode sequences

Description

bc_barcodes used to get the barcode sequences in BarcodeObj object. The input BarcodesObj
object should be pre-processed by bc_cure_* functions, such as bc_cure_depth, bc_cure_umi.

Usage
bc_barcodes(barcodeObj, unlist = TRUE)

S4 method for signature 'BarcodeObj'
bc_barcodes(barcodeObj, unlist = TRUE)

Arguments
barcodeObj A BarcodeObj object.
unlist A logical value. If TRUE, the function returns a vector of unique barcode list
from all samples; otherwise a list will be returned. In the later case, each element
of the list contains the barcodes of a sample.
Value

A character vector or a list.
Examples
data(bc_obj)

get unique barcode vector of all samples
bc_barcodes(bc_obj)

get a list with each element containing barcodes from one sample
bc_barcodes(bc_obj, unlist = FALSE)

#iH#

bc_cleanBc 7

bc_cleanBc Accesses cleanBc slot in the BarcodeObj object

Description

cleanBc slot of BarcodeObj object contains the processed barcode reads frequency data. For more
detail about the cleanBc slot, see BarcodeObj. bc_cleanBc is used to access the ‘cleanBc‘ slot in
the BarcodeObj.

Usage

bc_cleanBc(barcodeObj, isList = TRUE)

S4 method for signature 'BarcodeObj'
bc_cleanBc(barcodeObj, isList = TRUE)

Arguments
barcodeObj A BarcodeObj objects.
isList A logical value, if TRUE (default), the return is a list with each sample as an
element. Otherwise, the function will return a data.frame contains the data
from all the samples with a column named sample_name to keep the sample
information.
Value

If a list is requested, each 1list element a codedata.frame for each sample. In a codedata.frame,
there are 2 columns 1. barcode_seq: barcode sequence 2. counts: reads count, or UMI count if
the cleanBc was created by bc_cure_umi.

If a data. frame is requested, the data.frame in the list described above are combined into one
data.frame by row, with an extra column named sample_name for identifying sample.

Examples

data(bc_obj)

get the data in cleanBc slot

default the return value is a list
bc_cleanBc(bc_obj)

the return value can be a data.frame
bc_cleanBc(bc_obj, isList=FALSE)
H#iH#

8 bc_cure_cluster

bc_cure_cluster Merges barcodes by editing distance

Description

bc_cure_cluster performs clustering of barcodes by editing distance, and merging the barcodes
with similar sequence. This function is only applicable for the BarcodeObj object with a cleanBc
slot

Usage

bc_cure_cluster(
barcodeObj,
dist_thresh = 1,
dist_method = "hamm",
merge_method = "greedy”,
count_threshold = 1000,
dist_costs = list(replace = 1, insert = 1, delete = 1)

)

S4 method for signature 'BarcodeObj'
bc_cure_cluster(
barcodeObj,
dist_thresh = 1,
dist_method = "hamm",
merge_method = "greedy”,
count_threshold = 1000,
dist_costs = list(replace = 1, insert = 1, delete = 1)

)
Arguments

barcodeObj A BarcodeObj object.

dist_thresh A single integer or vector of integers with the length of sample count, specifying
the editing distance threshold of merging two similar barcode sequences. If the
input is a vector, each value in the vector relates to one sample according to the
sample order in BarcodeObj object.

dist_method A character string, specifying the distance algorithm used for evaluating bar-

codes similarity. It can be "hamm" for Hamming distance or "leven" for Leven-
shtein distance.
merge_method A character string specifying the algorithm used to perform the clustering merg-
ing of barcodes. Currently only "greedy" is available, in this case, the least
abundant barcode is preferentially merged to the most abundant ones.
count_threshold
An integer, read depth threshold to consider a barcode as a true barcode, when
when a barcode with count higher than this threshold it will not be merged into
more abundant barcode.

bc_cure_cluster 9

dist_costs A list, the cost of the events of distance algorithm, applicable when Leven-
shtein distance is applied. The names of vector have to be insert, delete
and replace, specifying the weight of insertion, deletion, replacement events
respectively. The default cost for each event is 1.

Value

A BarcodeObj object with cleanBc slot updated.

Examples
data(bc_obj)

d1 <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
"AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC"”,
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"

)Y

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

pattern <- "([ACTG]{33})TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_obj <- bc_extract(list(test = d1), pattern, sample_name=c("test"),
pattern_type=c(UMI=1, barcode=2))

Remove barcodes with depth < 5
(bc_cured <- bc_cure_depth(bc_obj, depth=5))

Do the clustering, merge the less abundent barcodes to the more abundent
one by hamming distance <= 1
bc_cure_cluster(bc_cured, dist_thresh

D)

Levenshtein distance <= 1
bc_cure_cluster(bc_cured, dist_thresh = 2, dist_method = "leven”,
dist_costs = list("insert” = 2, "replace” = 1, "delete"” = 2))

HiH#

10 bc_cure_depth

bc_cure_depth Filters barcodes by counts

Description

bc_cure_depth filters barcodes by the read counts or the UMI counts.

Usage

bc_cure_depth(barcodeObj, depth = @, isUpdate = TRUE)

S4 method for signature 'BarcodeObj'
bc_cure_depth(barcodeObj, depth = @, isUpdate = TRUE)

Arguments
barcodeObj A BarcodeObj object.
depth A numeric or a vector of numeric, specifying the threshold of minimum count
for a barcode to kept. If the input is a vector, if the vector length is not the
same to the sample number the element will be repeatedly used. And when the
depth argument is a number with negative value, automatic cutoff point will be
chosen by bc_auto_cutoff function for each samples. See bc_auto_cutoff
for details.
isUpdate A logical value. If TRUE, the cleanBc slot in BarcodeObj will be used pref-
erentially, otherwise the messyBc slot will be used. If no cleanBc is available,
messyBc will be used instead.
Value

A BarcodeObj object with cleanBc slot updated or created.

Examples

data(bc_obj)

dl <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
" AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"

bc_cure_umi 11

),

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

pattern <- "([ACTGI{3})TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_obj <- bc_extract(list(test = d1), pattern, sample_name=c("test"),
pattern_type=c(UMI=1, barcode=2))

Remove barcodes with depth < 5
(bc_cured <- bc_cure_depth(bc_obj, depth=5))
bc_2matrix(bc_cured)

Use UMI information, filter the barcode < 5 UMI
bc_umi_cured <- bc_cure_umi(bc_obj, depth =0, doFish=TRUE, isUniqueUMI=TRUE)
bc_cure_depth(bc_umi_cured, depth = 5)

#iH#

bc_cure_umi Filters UMI-barcode tag by counts

Description

When the UMI is applied, bc_cure_umi can filter the UMI-barcode tags by counts.

Usage

bc_cure_umi(barcodeObj, depth = 2, doFish = FALSE, isUniqueUMI = FALSE)

S4 method for signature 'BarcodeObj'

bc_cure_umi(barcodeObj, depth = 2, doFish = FALSE, isUniqueUMI = FALSE)
Arguments

barcodeObj A BarcodeObj object.

depth A numeric or a vector of numeric, specifying the UMI-barcode tag count thresh-
old. Only the barcodes with UMI-barcode tag count larger than the threshold are
kept.

doFish A logical value, if true, for barcodes with UMI read depth above the threshold,
“fish” for identical barcodes with UMI read depth below the threshold. The
consequence of doFish will not increase the number of identified barcodes, but
the UMI counts will increase due to including the low depth UMI barcodes.

isUniqueUMI A logical value, In the case that a UMI relates to several barcodes, if you believe

that the UMI is absolute unique, then only the UMI-barcodes tags with highest
count are chosen for each UMI.

12 bc_extract

Details

When invoke this function, it processes the data with following steps:

1. (if isUniqueUMI is TRUE) Find dominant sequence in each UMI.
2. UMlI-barcode depth filtering.
3. (if doFish is TRUE) Fishing the UMI with low UMI-barcode depth.

Value

A BarcodeObj object with cleanBc slot updated (or created).

Examples

data(bc_obj)

d1l <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
"AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"

)7

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

pattern <- "([ACTGI{3})TCGATCGATCGA([ACTGI+)ATCGATCGATC"
bc_obj <- bc_extract(list(test = d1), pattern, sample_name=c("test"),
pattern_type=c(UMI=1, barcode=2))

Use UMI information to remove the barcode < 5 UMI-barcode tags
bc_umi_cured <- bc_cure_umi(bc_obj, depth =@, doFish=TRUE, isUniqueUMI=TRUE)
bc_cure_depth(bc_umi_cured, depth = 5)

bc_extract Extract barcode from sequences

bc_extract 13

Description

bc_extract identifies the barcodes (and UMI) from the sequences using regular expressions. pattern
and pattern_type arguments are necessary, which provide the barcode (and UMI) pattern and their
location within the sequences.

Usage

bc_extract(
X,
pattern = "",
sample_name = NULL,
metadata = NULL,
maxLDist Q,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

S4 method for signature 'data.frame'
bc_extract(
X,
pattern = "",
sample_name = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

S4 method for signature 'ShortReadQ'
bc_extract(
X,
pattern = "",
sample_name = NULL,
maxLDist = 0,
pattern_type = c(barcode = 1),
costs = list(sub = 1, ins = 99, del = 99),
ordered = TRUE
)

S4 method for signature 'DNAStringSet'
bc_extract(

X,

pattern = "",

sample_name = NULL,

maxLDist = 0,

pattern_type = c(barcode = 1),

costs = list(sub = 1, ins = 99, del = 99),

14

)

ordered = TRUE

S4 method for signature 'integer'
bc_extract(

)

S4 method for signature 'character'

X,

pattern = "",

sample_name = NULL,

maxLDist = 0,

pattern_type = c(barcode = 1),

costs = list(sub = 1, ins = 99, del = 99),

ordered = TRUE

bc_extract(

)

X,
pattern =
sample_name = NULL,

metadata = NULL,

maxLDist = 0,

pattern_type = c(barcode = 1),

nn

costs = list(sub = 1, ins = 99, del = 99),

ordered = TRUE

S4 method for signature 'list'
bc_extract(

X,

pattern = "",

sample_name = NULL,

metadata = NULL,

maxLDist = 0,

pattern_type = c(barcode = 1),

costs = list(sub = 1, ins = 99, del = 99),

ordered = TRUE

Arguments

X

pattern

sample_name

bc_extract

A single or a list of fastq file, ShortReadQ, DNAStringSet, data.frame, or named

integer.

A string, specifying the regular expression with capture. It matchs the barcode
(and UMI) with capture pattern.

A string vector, applicable when x is a list or fastq file vector. This argument

specifies the sample names. If not provided, the function will look for sample
name in the rownames of metadata, the fastqfile name or the 1ist names.

bc_extract 15

metadata A data. frame with sample names as the row names, and each metadata record
by column, specifying the sample characteristics.

maxLDist A integer. The mismatch threshold for barcode matching, when maxLDist is
0, the str_match is invoked for barcode matching which is faster, otherwise
aregexec is invoked and the costs parameters can be used to specifying the
weight of the distance calculation.

pattern_type A vector. It defines the barcode (and UMI) capture group. See Details.

costs A named list, applicable when maxLDist > 0, specifying the weight of each
mismatch events while extracting the barcodes. The list element name have
to be sub (substitution), ins (insertion) and del (deletion). The default value
is list(sub=1, ins =99, del = 99). See aregexec for more detail informa-
tion.

ordered A logical value. If the value is true, the return barcodes (UMI-barcode tags) are
sorted by the reads counts.

Details

The pattern argument is a regular expression, the capture operation () identifying the barcode
or UMI. pattern_type argument annotates capture, denoting the UMI or the barcode captured
pattern. In the example:

([ACTGI{3}) TCGATCGATCGA(L[ACTG]+)ATCGATCGATC
|-======== | starts with 3 base pairs UMI.
|-=—====--- | constant sequence in the backbone.
|======= | flexible barcode sequences.
| === | 3" constant sequence.

In UMI part [ACGT]{33}, [ACGT] means it can be one of the "A", "C", "G" and "T", and {3} means
it repeats 3 times. In the barcode pattern [ACGT]+, the + denotes that there is at least one of the A or
CorGorT.

Value

This function returns a BarcodeObj object if the input is a 1ist or a vector of Fastq files, otherwise
it returns a data. frame. In the later case the data.frame has 5 columns:

1. reads_seq: full sequence.

2. match_seq: part of the full sequence matched by pattern.

3. umi_seq (optional): UMI sequence, applicable when there is UMI in ‘pattern‘ and ‘pat-
tern_type‘ argument.

4. barcode_seq: barcode sequence.
5. count: reads number.
The match_seq is part of reads_seq; The umi_seq and barcode_seq are part of match_seq. The

reads_seq is the full sequence, and is unique id for each record (row), On the contrast, match_seq,
umi_seq or barcode_seq may duplicated between rows.

16 bc_extract

Examples

fqg_file <- system.file("extdata”, "simple.fq"”, package="CellBarcode")
library(ShortRead)

barcode from fastq file
bc_extract(fg_file, pattern = "AAAAA(.*)CCCCC")

barcode from ShortReadQ object
sr <- readFastq(fg_file) # ShortReadQ
bc_extract(sr, pattern = "AAAAA(.*)CCCCC")

barcode from DNAStringSet object
ds <- sread(sr) # DNAStringSet
bc_extract(ds, pattern = "AAAAA(.*)CCCCC")

barcode from integer vector
iv <- tables(ds, n = Inf)$top # integer vector
bc_extract(iv, pattern = "AAAAA(.*)CCCCC")

barcode from data.frame
df <- data.frame(seq = names(iv), freq = as.integer(iv)) # data.frame
bc_extract(df, pattern = "AAAAA(.*)CCCCC")

barcode from list of DNAStringSet
1 <- list(samplel = ds, sample2 = ds) # list
bc_extract(l, pattern = "AAAAA(.*)CCCCC")

Extract UMI and barcode
d1l <- data.frame(
seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
" AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"
),
freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)
barcode backbone with UMI and barcode

pattern <- "([ACTGI{3})TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_extract(

list(test = d1),

pattern,

bc_messyBc 17

sample_name=c("test"),
pattern_type=c(UMI=1, barcode=2))

#iH#

bc_messyBc Accesses messyBc slot in the BarcodeObj object

Description

messyBc slot of BarcodeObj object contains the raw barcode reads frequency data. For more detail
about the messyBc slot, see BarcodeObj. bc_messyBc is used to access the ‘messyBc* slot in the
BarcodeObj.

Usage

bc_messyBc(barcodeObj, isList = TRUE)

S4 method for signature 'BarcodeObj'
bc_messyBc(barcodeObj, isList = TRUE)

Arguments
barcodeObj A BarcodeObj objects.
islList A logical value, if TRUE (default), the return is a list with each sample as an
element. Otherwise, the function will return a data.frame contains the data
from all the samples with a column named sample_name to keep the sample
information.
Value

If a 1list is requested, in the 1ist each element is a data. frame corresponding to the successive
samples. Each data.frame has 5 columns: 1. reads_seq: full read sequence before parsing. 2.
match_seq: the sequence matched by pattern given to bc_extract. 3. umi_seq (optional): UMI
sequence. 4. barcode_seq: barcode sequence. 5. count: how many reads a full sequence has. In
this table, barcode_seq value can be duplicated, as two different full read sequences can contain
the same barcode sequence, due to the diversity of the UMI or mutations in the constant region.

If a data. frame is requested, the data. frame in the list described above are combined into one
data. frame by row, with an extra column named sample_name for identifying sample.

Examples

data(bc_obj)

get the data in messyBc slot

default the return value is a list
bc_messyBc(bc_obj)

the return value can be a data.frame

18 bc_meta

bc_messyBc(bc_obj, isList=FALSE)
fizizid

bc_meta Accesses and sets metadata in BarcodeObj object

Description

Sample information is kept in metadata. bc_meta is for accessing and updating metadata in BarcodeOb j
object

Usage
bc_meta(barcodeObj)
bc_meta(barcodeObj, key = NULL) <- value

S4 method for signature 'BarcodeObj'
bc_meta(barcodeObj)

S4 replacement method for signature 'BarcodeObj'
bc_meta(barcodeObj, key = NULL) <- value

Arguments
barcodeObj A BarcodeObj object.
key A string, identifying the metadata record name to be modified.
value A string vector or a data.frame. If the value is a vector, it should have the same
length of sample number in the BarcodeObj object. Otherwise, if the value is
data. frame, the row name of the data. frame should be the sample name, and
each column as a metadata variable.
Value

A data.frame
Examples
data(bc_obj)

get the metadata data.frame
bc_meta(bc_obj)

assign value to a metadata by $ operation
bc_meta(bc_obj)$phenotype <- c("1", "b")

assign value to a metasta by "key” argument
bc_meta(bc_obj, key = "sample_type"”) <- c("1", "b")

bc_names 19

show the updated metadata
bc_meta(bc_obj)

assign a new data.frame to metadata
metadata <- data.frame(

sample_name <- c("test1”, "test2"),
phenotype <- c("1", "b")
)

rownames (metadata) = bc_names(bc_obj)
bc_meta(bc_obj) <- metadata
H#HHHH

bc_names Access & update sample names in BarcodeObj & and BarcodeQcSet

Description

Get or update sample names in BarcodeObj object and BarcodeQcSet.

Usage

bc_names(x)
bc_names(x) <- value

S4 method for signature 'BarcodeObj'

bc_names(x)

S4 replacement method for signature 'BarcodeObj,character’
bc_names(x) <- value

S4 method for signature 'BarcodeQcSet'
bc_names(x)

S4 replacement method for signature 'BarcodeQcSet,ANY'
bc_names(x) <- value

Arguments
X A BarcodeObj object or a BarcodeQcSet object.
value A character vector setting the new sample names, with the length of the samples
number in BarcodeObj or BarcodeQcSet object.
Value

A character vector

20 bc_obj

Examples

data(bc_obj)

bc_names(bc_obj)

bc_names(bc_obj) <- c("newl"”, "new2")
bc_obj A dummy BarcodeObj object
Description

Dataset contains a BarcodeObj with makeup barcode data.

Usage
data(bc_obj)

Format

This is a BarcodeObj object

Source

This is a BarcodeObj object derived from makeup data by:

d1 = data.frame(

seq = c(
"ACTTCGATCGATCGAAAAGATCGATCGATC",
"AATTCGATCGATCGAAGAGATCGATCGATC",
"CCTTCGATCGATCGAAGAAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
" AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"
),

freq = c(
30, 60, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

d2 = data.frame(
seq = c(
"ACTTCGATCGATCGAAACGATCGATCGATC",

bc_plot_mutual 21

"AATTCGATCGATCGAAGAGATCGATCGATC",
"TTTTCGATCGATCGAAAAGATCGATCGATC",
"AAATCGATCGATCGAAGAGATCGATCGATC",
"CCCTCGATCGATCGAAGAAGATCGATCGATC",
"GGGTCGATCGATCGAAAAGATCGATCGATC",
"GGATCGATCGATCGAAGAGATCGATCGATC",
"ACTTCGATCGATCGAACAAGATCGATCGATC",
"GGTTCGATCGATCGACGAGATCGATCGATC",
"GCGTCCATCGATCGAAGAAGATCGATCGATC"
),

freq = c(
30, 9, 10, 14, 5, 10, 30, 6, 4 , 6
)

)

pattern = "TCGATCGATCGA([ACTG]+)ATCGATCGATC"
bc_obj = bc_extract(

list(testl = d1, test2 = d2),
pattern, sample_name=c("test1”, "test2"))

bc_obj = bc_cure_depth(bc_obj, depth=5)

save the dummy data

save(bc_obj, file = "./data/bc_obj.RData")
H#iHH
bc_plot_mutual Barcode read count 2D scatter plot of sample combination
Description

Draw barcode count scatter plot for all pairwise combination of samples within a BarcodeObj
object. It uses cleanBc slot in the BarcodeObj object is used to draw the figure. If the BarcodeObj
object does not have a cleanBc slot, you have to run the bc_curex functions in ahead, such as
bc_cure_depth, bc_cure_umi.

Usage

bc_plot_mutual(
barcodeObj,
count_marks = NULL,
highlight = NULL,
log_coord = TRUE,
alpha = 0.7

)

S4 method for signature 'BarcodeObj'

22 bc_plot_pair

bc_plot_mutual(
barcodeObj,
count_marks = NULL,
highlight = NULL,

log_coord = TRUE,
alpha = 0.7
)
Arguments
barcodeObj A BarcodeObj object, which has a cleanBc slot
count_marks A numeric or numeric vector, specifying the read count cutoff in the scatter plot
for each sample.
highlight A character vector, specifying the barcodes to be highlighted.
log_coord A logical value, if TRUE (default), the x and y coordinates of the scatter plot
will be logarized by log10.
alpha A numeric between 0 and 1, specifies the transparency of the dots in the scatter
plot.
Value

A scatter plot matrix.
Examples
data(bc_obj)

bc_plot_mutual (barcodeObj=bc_obj, count_marks=c(30, 20))
fizizid

bc_plot_pair Barcode read count 2D scatter plot for given pairs

Description

Draws scatter plot for barcode read count between given pairs of samples with a BarcodeObj object.
This function will return scatter plot matrix contains the scatter plots for all given sample pairs.

Usage

bc_plot_pair(
barcodeObj,
sample_x,
sample_y,
count_marks_x = NULL,
count_marks_y = NULL,
highlight = NULL,

bc_plot_pair

23

log_coord = TRUE,

alpha = 0.7
)

S4 method for signature 'BarcodeObj'

bc_plot_pair(
barcodeObj,
sample_x,
sample_y,
count_marks_x
count_marks_y

NULL,
count_marks_x,

highlight = NULL,

log_coord
alpha = @

=0.7

Arguments

barcodeObj

sample_x

sample_y

count_marks_x
count_marks_y
highlight

log_coord

alpha

Value

Scatter plot matrix.

Examples

data(bc_obj)

bc_names(bc_obj)

TRUE,

A BarcodeObj object.

A character vector or a integer vector, specifying the sample in x axis of each
scatter plot. It can be the sample names in BarcodeObj or the sample index
value.

A character vector or a integer vector, similar to sample_x, specifying the sam-
ples used for y axis. It can be the sample names or the sample index value.

A numeric vector used to mark the cutoff point for samples in x axis
A number vector used to mark the cutoff point for samples in y axis.
A character vector, specifying the barcodes need to be highlighted.

A logical value, if TRUE (default), the x and y coordinates of the scatter will be
logarized by log10

A numeric between 0 and 1, specifies the transparency of the dots in the scatter
plot.

bc_plot_pair(barcodeObj=bc_obj, sample_x="test1"”, sample_y="test2",

count_marks_x
H#HH

=30, count_marks_y=20)

24 bc_plot_single

bc_plot_single Scatter plot of barcode count distribution per sample

Description

Draws barcode count distribution for each sample in a BarcodeObj object.

Usage

bc_plot_single(
barcodeObj,
sample_names = NULL,
count_marks = NULL,
highlight = NULL,
log_coord = TRUE,
alpha = 0.

)

~

S4 method for signature 'BarcodeObj'
bc_plot_single(
barcodeObj,
sample_names = bc_names(barcodeObj),
count_marks = NULL,

highlight = NULL,
log_coord = TRUE,
alpha = 0.7
)
Arguments
barcodeObj A BarcodeObj object has a cleanBc slot

sample_names A character vector or integer vector, specifying the samples used for plot.

count_marks A numeric or numeric vector, specifying the read count cutoff in the scatter plot
for each sample.

highlight A character vector, specifying the barcodes need to be highlighted.

log_coord A logical value, if TRUE (default), the x and y coordinates of the scatter plot
will be logarized by log10.

alpha A numeric between 0 and 1, specifies the transparency of the dots in the scatter
plot.

Value

1D distribution graph matrix.

bc_seq_filter
Examples
data(bc_obj)

bc_plot_single(bc_obj, count_marks=c(10, 11))
H#HiH

25

bc_seq_filter Remove low quality sequence

Description

Remove low quality sequences by base-pair quality, sequence length or unknown base "N".

Usage

bc_seq_filter(
X,
min_average_quality = 30,
min_read_length = 0,
N_threshold = 0,
sample_name = ""

)

S4 method for signature 'ShortReadQ'
bc_seq_filter(
X,
min_average_quality = 30,
min_read_length = 0,
N_threshold = @
)

S4 method for signature 'DNAStringSet'’

bc_seq_filter(x, min_read_length = @, N_threshold = 0)
S4 method for signature 'data.frame'
bc_seq_filter(x, min_read_length = @, N_threshold = 0)

S4 method for signature 'character'
bc_seq_filter(
X,
min_average_quality = 30,
min_read_length = 0,
N_threshold = 0,
sample_name = basename(x)

)

S4 method for signature 'integer'

26 bc_seq_filter

bc_seq_filter(x, min_read_length = @, N_threshold = 0)

S4 method for signature 'list'
bc_seq_filter(
X,
min_average_quality = 30,
min_read_length = 0,
N_threshold = 0,
sample_name = names(x)

Arguments

X A single or a list of Fastq file, ShortReadQ, DNAStringSet, data. frame, integer
vector.

min_average_quality
A numeric or a vector of numeric, specifying the threshold of the minimum
average base quality of a sequence to be kept.

min_read_length
A single or a vector of integer, specifying the sequence length threshold.

N_threshold A integer or a vector of integer, specifying the maximum N can be in a sequence.
sample_name A string vector, specifying the sample name in the output.
Value

A ShortReadQ or DNAStringSet object with sequences passed the filters.

Examples

library(ShortRead)
fg_file <- system.file("extdata”, "simple.fq", package="CellBarcode")

apply filter to fastq files
bc_seq_filter(fqg_file)

read in fastq files to get ShortReadQ object
sr <- readFastq(fqg_file[1])

apply sequencing quality filter to ShortReadQ
bc_seq_filter(sr)

get DNAStringSet object

ds <- sread(sr)

apply sequencing quality filter to DNAStringSet
bc_seq_filter(ds)

HiH#

bc_seq_qc 27

bc_seq_qc Evaluates sequences quality

Description

bc_seq_qc evaluates sequences quality. See the return value for detail.
Usage

bc_seq_qc(x, sample_name = NULL)

bc_plot_seqQc(x)

S4 method for signature 'ShortReadQ'
bc_seq_qgc(x)

S4 method for signature 'DNAStringSet'
bc_seq_qgc(x)

S4 method for signature 'data.frame'
bc_seq_qgc(x)

S4 method for signature 'integer'
bc_seq_qgc(x)

S4 method for signature 'character'
bc_seq_qc(x, sample_name = basename(x))
S4 method for signature 'list'
bc_seq_qc(x, sample_name = names(x))

S4 method for signature 'BarcodeQc'
bc_plot_seqQc(x)

S4 method for signature 'BarcodeQcSet'

bc_plot_seqQc(x)

Arguments

X

sample_name

Value

A barcodeQc or a barcodeQcSet class. The barcodeQc is a list with four slots,

A single or list of Fastq file, ShortReadQ object, DNAStringSet object, data.frame
or named integer vector.

A character vector with the length of sample number, used to set the sample

name.

28 bc_subset

* top: adata.frame with top 50 most frequency sequence,

e distribution: a data.frame with the distribution of read depth. It contains nOccurrences
(depth), and nReads (unique sequence) columns.

* base_quality_per_cycle: data.frame with base-pair location (NGS sequencing cycle) by
row, and the base-pair quality summary by column, including Mean, P5 (5 P75 (75

* base_freq_per_cycle: data.frame with three columns: 1. Cycle, the sequence base-pair
location (NGS sequencing cycle); 2. Base, DNA base; Count: reads count.

e summary: a numeric vector with following elements: total_read, median_read_length,
p5_read_length, p95_read_length.

The barcodeQcSet is a list of barcodeQc.

Examples

library(ShortRead)

fastq file

fg_file <- system.file("extdata”, "simple.fq", package="CellBarcode")
bc_seq_qgc(fg_file)

ShortReadQ
sr <- readFastq(fq_file[1])
bc_seq_qc(sr)

DNAStringSet
ds <- sread(sr)
bc_seq_qgc(ds)

List of DNAStringSet
1 <- list(samplel = ds, sample2 = ds)
bc_plot_seqQc(bc_seq_qc(l))

List of ShortRead
1_sr <- list(samplel = sr, sample2 = sr)

bc_plot_seqQc(bc_seq_gc(l_sr))

#iH#

bc_subset Manages barcodes and samples in a BarcodeObj object

Description

A set of functions and operators for subset or join of BarcodeObj object(s). The bc_subset, * and
- are used to select barcodes or samples in a BarcodeObj object. Two BarcodeObj objects can be
joined by +.

bc_subset

Usage

bc_subset(
barcodeObj,

29

sample = NULL,

barcode = NULL,

black_list = NULL,
is_sample_quoted_exp = FALSE

)

bc_merge (barcodeObj_x, barcodeObj_y)

S4 method for signature 'BarcodeObj

bc_subset(
barcodeObj,

sample = NULL,

barcode = NULL,

black_list = NULL,
is_sample_quoted_exp = FALSE

)

S4 method for signature 'BarcodeObj,BarcodeObj'
bc_merge (barcodeObj_x, barcodeObj_y)

S3 method
barcodeObj_x

S3 method
barcodeObj -

S3 method
barcodeObj =*

Arguments

barcodeObj

sample

barcode
black_list

for class 'BarcodeObj'
+ barcodeObj_y

for class 'BarcodeObj'
black_list

for class 'BarcodeObj'
white_list

A BarcodeObj object.

A character vector or integer vector or an expression (expressio not applicable
for [] operator), specifying the samples in the subsets. When the value is an
expression, the columns in the metadata can be used as variable.

A vector of integer or string, indicating the selected barcode.

A character vector, specifying the black list with excluded barcodes.

is_sample_quoted_exp

barcodeObj_x
barcodeObj_y
white_list

A logical value. If TRUE, the expression in sample argument will not be evalu-
ated before executing the function.

A BarcodeObj object.
A BarcodeObj object.

A character vector, giving the barcode white list.

30 bc_subset

Details

bc_subset and []: Gets samples and barcodes subset from a BarcodeObj object.

+: Combines two BarcodeObj objects. The metadata, cleanBc and messyBc slot in the Bar-
codeObj objects will be joined. For the metadata slot, the sample_name column, and the Full
outer join (the record in either BarcodeObj object) will be performed with rownames as the key.
The messyBc and cleanBc from two objects are combined by rows for the same sample from two
BarcodeObj objects.

-: removes barcodes in the black_list.

*: selects barcodes in the white_list.

Value

A BarcodeObj object.

Examples

data(bc_obj)
bc_obj

Select barcodes
bc_subset(bc_obj, barcode = c("AACCTT", "AACCTT"))
bc_objLc("AGAG", "AAAG"), 1]

Select samples by meta data
bc_meta(bc_obj)$phenotype <- c("1", "b")
bc_meta(bc_obj)

bc_subset(bc_obj, phenotype == "1")

Select samples by sample name

bc_obj[, "test1"]

bc_obj[, c("test1”, "test2")]

bc_subset(bc_obj, sample = "test1"”, barcode = c("AACCTT", "AACCTT"))

Apply barcodes black list
bc_subset (
bc_obj,
sample = c("test1”, "test2"),
barcode = c("AACCTT"))

Join two samples with different barcode sets
bc_obj["AGAG", "test1"] + bc_obj["AAAG", "test2"]

Join two samples with overlap barcodes

bc_obj_join <- bc_obj["AGAG", "test1"] + bc_obj["AGAG", "test2"]
bc_obj_join

The same barcode will merged after applying bc_cure_depth()
bc_cure_depth(bc_obj_join)

Remove barcodes

bc_summary_barcode 31

bc_obj
bc_obj - "AAAG”

Select barcodes in white list

bc_obj
bc_obj * "AAAG”
#iH#
bc_summary_barcode Summary and evaluate barcode diversity
Description

bc_summary_barcode evaluates sequence diversity metrics using the barcodes data in the cleanBc
slot of BarcodeObj object. It also generates Lorenz curve and barcode frequency distribution
graphs.

Usage
bc_summary_barcode(barcodeObj, plot = TRUE, log_x = TRUE)
S4 method for signature 'BarcodeObj'
bc_summary_barcode(barcodeObj, plot = TRUE, log_x = TRUE)
Arguments
barcodeObj A BarcodeObj object.
plot Alogical value, if TRUE, draw the Lorenz curve and barcode distribution graphs.
log_x A logical value, if TRUE, the x axis is logarized.
Details

Followings are the metrics used for evaluating the barcode diversity:
Richness: The unique barcodes number R, it evaluates the richness of the barcodes.

Shannon index: Shannon diversity index is weighted geometric average of the proportion p of
barcodes.

R
H = - Zpilnpi
i—1

Equitability index: Shannon equitability E'z; characterize the evenness of the barcodes, it is a value
between 0 and 1, with 1 being complete evenness.

Ey=H'/H!,.. = H/In(R)

ax

Bit: Shannon entropy H, with a units of bit,

R
H ==Y pilog:p;
i=1

32 bc_summary_seqQc

Value

A data.frame with following columns:

* total_reads: total read number.

* uniq_barcode: how many barcodes in the dataset.

* shannon_index: Shannon’s diversity index or Shannon—Wiener index.
* equitability_index: Shannon’s equitability.

e bit_index: Shannon bit information.

Examples

data(bc_obj)

filter barcode by depth
bc_obj <- bc_cure_depth(bc_obj)

Output the summary of the barcodes
bc_summary_barcode(bc_obj)

bc_summary_seqQc Summary barcodeQcSet

Description

Summary the "total read count” and "read length" of each samples within a BarcodeQcSet object,
and output a data. frame with sample by row and different metrics by column.

Usage

bc_summary_seqQc(x)
S4 method for signature 'BarcodeQcSet'

bc_summary_seqQc(x)

Arguments

X a barcodeQcSet object.

Value

A data. frame with 5 columns: sample_name, total_read, median_read_length, p5_read_length
and p95_read_length.

CellBarcode 33

Examples

fg_file <- dir(
system.file("extdata"”, "mef_test_data”, package = "CellBarcode"),
full=TRUE)

bc_summary_seqQc(bc_seq_qgc(fg_file))
HiH

CellBarcode DNA Barcode Analysis toolkit

Description

This package performs DNA Barcode (genetic lineage tracing) analysis. The package can handle
all kinds of DNA barcodes, as long as the barcode within a single sequencing read and has a pattern
which can be matched by a regular expression. CellBarcode can handle barcode with flexible
length, with or without UMI (unique molecular identifier). This tool also can be used for pre-
processing of some amplicon data such as CRISPR gRNA screening, immune repertoire sequencing
and meta genome data.

format,BarcodeObj-method
Formats BarcodeObj object

Description

Format the summary of BarcodeObj object for pretty print.

Usage

S4 method for signature 'BarcodeObj'
format (x)

Arguments

X A BarcodeObj object

Value

Formated summary text.
Examples
data(bc_obj)

format BarcodeObj for pretty print
format(bc_obj)

#iH#

34 show,BarcodeObj-method

show,BarcodeObj-method
Show BarcodeObj object

Description

Show the summary of BarcodeObj object for pretty print.
Show the summary of BarcodeQc object for pretty print.

Show the summary of BarcodeQcSet object for pretty print.

Usage

S4 method for signature 'BarcodeObj'
show(object)

S4 method for signature 'BarcodeQc'
show(object)

S4 method for signature 'BarcodeQcSet
show(object)

Arguments

object A BarcodeQcSet object

Value

Formated summary text.
Formated summary text.

Formated summary text.

Examples

data(bc_obj)

show BarcodeObj for pretty print
bc_obj

#iH#

[.BarcodeQcSet, ANY,ANY,ANY-method 35

[,BarcodeQcSet, ANY, ANY, ANY-method
Subset the BarcodeQcSet

Description

Subset the BarcodeQcSet

Usage

S4 method for signature 'BarcodeQcSet,ANY,ANY,ANY'
x[i, drop = TRUE]

Arguments
X A BarcodeQcSet object
i A integer vector or a character vector, specifying the selected samples.
drop a logical value, if TRUE, when only one sample is selected, the output will be a
BarcodeQc object.
Value

A BarcodeQcSet or BarcodeQc

Examples

example_data <- system.file("extdata”, "mef_test_data”, package = "CellBarcode")
fq_files <- dir(example_data, "fastq.gz"”, full=TRUE)

gc_noFilter <- bc_seq_qc(fq_files)

gc_noFilter[1:3]

Index

+ dataset

bc_obj, 20
*.BarcodeObj (bc_subset), 28
+.BarcodeObj (bc_subset), 28
-.BarcodeObj (bc_subset), 28
[,BarcodeQcSet, ANY,ANY, ANY-method, 35

aregexec, 15

BarcodeObj, 7, 17
BarcodeObj (BarcodeObj-class), 2
BarcodeObj-class, 2
BarcodeQc (bc_seq_qc), 27
BarcodeQc-class (bc_seq_qc), 27
BarcodeQcSet (bc_seq_qc), 27
BarcodeQcSet-class (bc_seq_qc), 27
bc_2df, 4
bc_2df,BarcodeObj-method (bc_2df), 4
bc_2dt (bc_2df), 4
bc_2dt,BarcodeObj-method (bc_2df), 4
bc_2matrix (bc_2df), 4
bc_2matrix,BarcodeObj-method (bc_2df), 4
bc_auto_cutoff, 5, 10
bc_auto_cutoff,BarcodeObj-method
(bc_auto_cutoff), 5
bc_barcodes, 6
bc_barcodes,BarcodeObj-method
(bc_barcodes), 6
bc_cleanBc, 7
bc_cleanBc,BarcodeObj-method
(bc_cleanBc), 7
bc_cure_cluster, 8
bc_cure_cluster,BarcodeObj-method
(bc_cure_cluster), 8
bc_cure_depth, 10, 21
bc_cure_depth,BarcodeObj-method
(bc_cure_depth), 10
bc_cure_umi, 11, 2/
bc_cure_umi,BarcodeObj-method
(bc_cure_umi), 11

36

bc_extract, 12

bc_extract,character-method
(bc_extract), 12

bc_extract,data.frame-method
(bc_extract), 12

bc_extract,DNAStringSet-method
(bc_extract), 12

bc_extract, integer-method (bc_extract),
12

bc_extract,list-method (bc_extract), 12

bc_extract, ShortReadQ-method
(bc_extract), 12

bc_merge (bc_subset), 28

bc_merge,BarcodeObj,BarcodeObj-method
(bc_subset), 28

bc_messyBc, 17

bc_messyBc,BarcodeObj-method
(bc_messyBc), 17

bc_meta, 18

bc_meta,BarcodeObj-method (bc_meta), 18

bc_meta<- (bc_meta), 18

bc_meta<-,BarcodeObj-method (bc_meta),
18

bc_names, 19

bc_names,BarcodeObj-method (bc_names),
19

bc_names,BarcodeQcSet-method
(bc_names), 19

bc_names<- (bc_names), 19

bc_names<-,BarcodeObj, character-method
(bc_names), 19

bc_names<-,BarcodeQcSet, ANY-method
(bc_names), 19

bc_obj, 20

bc_plot_mutual, 21

bc_plot_mutual,BarcodeObj-method
(bc_plot_mutual), 21

bc_plot_pair, 22

bc_plot_pair,BarcodeObj-method

INDEX

(bc_plot_pair), 22
bc_plot_seqQc (bc_seq_qc), 27
bc_plot_seqQc,BarcodeQc-method

(bc_seq_qc), 27
bc_plot_seqQc,BarcodeQcSet-method

(bc_seq_qc), 27
bc_plot_single, 24
bc_plot_single,BarcodeObj-method

(bc_plot_single), 24
bc_seq_filter, 25
bc_seq_filter,character-method

(bc_seq_filter), 25
bc_seq_filter,data.frame-method

(bc_seq_filter), 25
bc_seq_filter,DNAStringSet-method

(bc_seq_filter), 25
bc_seq_filter,integer-method

(bc_seq_filter), 25
bc_seq_filter,list-method

(bc_seq_filter), 25
bc_seq_filter,ShortReadQ-method

(bc_seq_filter), 25
bc_seq_qc, 27

bc_seq_qc, character-method (bc_seq_qc),

27
bc_seq_qc,data. frame-method
(bc_seq_qc), 27
bc_seq_qc,DNAStringSet-method
(bc_seq_qc), 27

bc_seq_qc, integer-method (bc_seq_qc), 27

bc_seq_qc,list-method (bc_seq_qc), 27

bc_seq_qc, ShortReadQ-method
(bc_seq_qc), 27

bc_subset, 28

bc_subset,BarcodeObj-method
(bc_subset), 28

bc_summary_barcode, 31

bc_summary_barcode,BarcodeObj-method

(bc_summary_barcode), 31
bc_summary_seqQc, 32

bc_summary_seqQc,BarcodeQcSet-method

(bc_summary_seqQc), 32

CellBarcode, 33
Ckmeans.1d.dp, 5

format,BarcodeObj-method, 33

show, BarcodeObj-method, 34

show, BarcodeQc-method
(show,BarcodeObj-method), 34
show,BarcodeQcSet-method
(show,BarcodeObj-method), 34
str_match, 15

37

	BarcodeObj-class
	bc_2df
	bc_auto_cutoff
	bc_barcodes
	bc_cleanBc
	bc_cure_cluster
	bc_cure_depth
	bc_cure_umi
	bc_extract
	bc_messyBc
	bc_meta
	bc_names
	bc_obj
	bc_plot_mutual
	bc_plot_pair
	bc_plot_single
	bc_seq_filter
	bc_seq_qc
	bc_subset
	bc_summary_barcode
	bc_summary_seqQc
	CellBarcode
	format,BarcodeObj-method
	show,BarcodeObj-method
	[,BarcodeQcSet,ANY,ANY,ANY-method
	Index

