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1 Introduction

The vignette helps the user to reproduce main results and figures using the
AMC-AJCCII-90 data set to discover and characterize three molecular dis-
tinct subtypes of colon cancer. Please refer to DeSousa et al. [1] for more
details about the biological background, experimental design as well as bioin-
formatic analyses.

2 Package installation

Please run all analyses in this vignette under version 2.15 of R. The following
packages are employed by the DeSousa2013 package: frma, hgul33plus2frmavecs
(for microarray data preprocessing), cluster (for computing GAP statistics),
sva (for correcting for non-biological batch effects), ConsensusClusterPlus
(for consensus clustering), siggenes (for differential gene identification), pamr
(for PAM classification), survival (for survival analysis and generating KM
plots). These packages should be automatically installed when installing
DeSousa2013 from bioconductor:

> if (!requireNamespace ("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install ("DeSousa2013")

3 Overview

De Sousa et al. interrogated the heterogeneity of colon cancer using an un-

supervised classification strategy over 1100 patients. The main bioinformatic

pipeline is focused on how to identify three main molecularly distinct sub-

types based on the microarray data for 90 stage II colon cancer patients.
To begin, we need to load the package:

> library(DeSousa2013)

All analyses included in this package are wrapped in a pipeline function

CRCPipeLine:

> data(AMC)
> CRCPipeLine(celpath=".", AMC_sample_head, AMC_CRC_clinical,
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+ preprocess=FALSE, gap.ntops = c(2, 4, 8, 12, 16, 20)*1000,
+ gap.K.max = 6, gap.nboot = 100, MADth=0.5, conClust.maxK=12,
+ conClust.reps=1000, diffG.pvalth=0.01, diffG.aucth=0.9,

+ savepath=".")

Although the pipeline function can also reproduce the preprocessing of
microarray data, it is not recommended as it can take a long time and the
results may change slightly due to different versions of annotation packages
and analysis packages. Therefore, the user can choose to skip the preprocess-
ing step and run the following analyses by setting the argument preprocess
to TRUE. When the function finishes, all figures will be saved in a given
directory savepath.

4 Subtype identification

Now we introduce step by step the computational workflow to perform mi-
croarray data preprocessing, computing GAP statistics, consensus clustering,
sample and gene filtering, building a PAM classifier, classification, etc. using
the AMC-AJCCII-90 data set. Finally, we will characterize the prognosis of
three subtypes by survival analysis.

4.1 Microarray data preprocessing

The AMC-AJCCII-90 data set includes 90 stage II colon cancer patients
(GSE33113), 13 adenomas and 6 normal samples. Microarrays of all sam-
ples were normalized and summarized using frozen robust multiarray anal-
ysis (fRMA)[2]. Probe-specific effects and variances are precomputed and
frozen in fRMA, which facilitates batches analysis. Gene expression pres-
ence/absence was detected using the barcode algorithm[3] and genes that
were not present in at least one sample were filtered out. Non-biological
batch effects between cancer samples + normals and adenomas were cor-
rected using ComBat [4].

The whole preprocessing analysis can be reproduced by function gene-
EzpPre:

> data (AMC)
> ge.pre <- geneExpPre(celpath, AMC_sample_head)
> ge.all <- ge.pre[["ge.all"]]



> selPbs <- ge.pre[["selPbs"]]
> ge.CRC <- ge.all[selPbs, ]

where celpath is the path to the directory including ‘.CEL’ files of all mi-
croarrays and AMC_sample_head is a data frame including mapping informa-
tion between microarray ids and sample ids. AMC_sample_head is included
in this package and can be loaded using function data.

Since we focus on subtype identification in this vignette, the preprocessed
data ge.all returned by function geneEzpPre only contains the 90 cancer
samples, and selPbs is a vector of probesets that are expressed in at least
one sample:

> length(selPbs)
[1] 37007
> dim(ge.CRC)

[1] 37007 90

4.2 Computing GAP statistic

GAP statistic[5] is a popular method to estimate the number of clusters in
a set of data by comparing the change in observed and expected within-
cluster dispersion. To identify the optimal number of clusters, GAP statistic
was computed for k=1 to 6 for selected top variable genes. The function
compGapStats can be used to reproduce this step:

> gaps <- compGapStats(ge.CRC, ntops=c(2, 4, 8, 12, 16, 20)*1000,
+ K.max=6, nboot=100)

> gapsmat <- gaps[["gapsmat"]]

> gapsSE <- gaps[["gapsSE"]]

The function figGAP can be used to compare the GAP scores across
different numbers of clusters:

> figGAP(gapsmat, gapsSE)

As shown in Figure 1, a peak was consistently found at k=3, irrespective
of the gene set size employed, indicating that three subtypes is ideal to explain
the inherent data structure of the AMC-AJCCII-90 set.
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Figure 1:  Graph depicts the GAP statistic for a range of 2000-20000
probesets.  This analysis suggests optimal clustering at 3 clusters in the
AMC-AJCCII-90 set, independent on the number of probesets used. Error
bars indicate SEM.



4.3 Consensus clustering

Using the following function, probesets with most variability (Median abso-
lute deviation >0.5) across samples were retained and median centred:

> sdat <- selTopVarGenes(ge.CRC, MADth=0.5)
> dim(sdat)
[1] 7846 90

Using the 7846 most variable probesets, we performed hierarchical cluster-
ing with agglomerative average linkage to cluster these samples. Consensus
clustering[6] was employed, with 1000 iterations and 0.98 subsampling ratio,
to assess the clustering stability. The function conClust reproduces this step:

> clus <- conClust(sdat, maxK=12, reps=1000)

> clus

c01004 co01003
2 2
c0l1026 co0l035
3 2
col061 col064
3 3
c0l1085 co0l1091
2 2
c0l072 co0l092
3 3
c01002 co0l1001
1 1
c0l1022 co01023
1 1
c0l055 co0l057
1 1
c0l095 co0l097
1 1

co01008
2
co0l036
3
co0l066
3
co0l093
2
co0l1098
3
c0l1005
1
co0l033
1
co0l065
1
coll01l
1

co0l009
2
co0l040
2
co0l069
3
col096
2
col050
3
co0l006
1
col038
1
co0l070
1
col102
1

col012
3
col052
3
col073
3
c01099
2
c01080
1
col007
1
col039
1
col074
1
col056
1

col013
2
c0l1l053
3
col075
3
col100
2
co0l034
1
colO11
1
col046
1
col076
1
col041
1

col016
2
col054
3
co0l079
3
col045
3
co0l086
1
col015
1
col047
1
co0l078
1
col077
1

co0l1020
2
col058
2
col081
2
col037
3
col010
1
col017
1
co0l048
1
c0l083
1
co0l089
1

col021
2
col059
3
c0l1082
3
colO14
3
col068
1
co0l018
1
col049
1
c0l1l090
1
col067
1

co0l024
2
co0l060
2
co0l084
2
col062
3
col063
1
co0l1019
1
colO51
1
c0l094
1
col044
1

Figure 2 shows the consensus clustering results for k=2, 3, 4 and 5. As
indicated in the cumulative density curves (Figure 3), a significant increase
in clustering stability was observed from k=2 to 3, but not for k>3.
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Figure 2: Consensus clustering for 2, 3, 4 and 5 clusters. The color is
scaled to the frequency that two samples are in the same cluster.
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Figure 3: Empirical cumulative distribution (CDF) of consensus clustering
for 2 to 12 clusters.



4.4 Collapsing probesets to unique genes

To facilitate the use of the classifier on other platforms, we collapsed the
expression levels for probesets to genes. This was performed before selection
of most representative genes (SAM and AUC) and generation of the classi-
fier (PAM), for each gene the probeset with highest overall expression was
selected. The following function can reproduce the annotation file to map

from probesets to unique genes:

> uniGenes <- pbs2unigenes(ge.CRC, sdat)
> length(uniGenes)

[1] 4762

> print (uniGenes[1:20])

213418_at 1555759_a_at 204600_at 1552256_a_at

"HSPAG" "CCL5" "EPHB3" "SCARB1"
221646_s_at 1552309_a_at 1552312_a_at 1552316_a_at
"ZDHHC11" "NEXN" "MFAP3" "GIMAP1"
218250_s_at 225240_s_at 1552365_at 1552370_at
"CNOT7" "MSI2" "SCIN" "C4orf33"
1562470_a_at 1552477_a_at 213050_at 1554897_s_at
"ABHD11" "IRF6" "COBL" "RHBDL2"

4.5 Filtering patient samples

156562281 _at
"SLC39A5"
227444 _at

"ARMCX4"
212805_at
"PRUNE2"
222379_at
"KCNE4"

Subsequently Silhouette width[7] was computed to identify the most rep-
resentative samples within each cluster. Samples with positive silhouette
width (n=85) were retained to build the classifier (Figure 4). The function
filterSamples computes Silhouette width, based on which to select most rep-

resentative samples:

samp.f <- filterSamples(sdat, uniGenes, clus)
silh <- samp.f[["silh"]]

sdat.f <- samp.f[["sdat.f"]]

clus.f <- samp.f[["clus.f"]]

vV VvV Vv V

v

dim(sdat.f)



[1] 4762 85
> rownames (sdat.f) [1:20]

213418_at 1555759_a_at 204600_at 1552256_a_at 1552281_at

"HSPAG" "CCL5" "EPHB3" "SCARB1" "SLC39A5"
221646_s_at 1552309_a_at 1552312_a_at 1552316_a_at 227444 _at
"ZDHHC11" "NEXN" "MFAP3" "GIMAP1" "ARMCX4"
218250_s_at 225240_s_at 15562365_at 1552370_at 212805_at
"CNQOT7" "MSI2" "SCIN" "C4orf33" "PRUNE2"
1552470_a_at 1552477_a_at 213050_at 1554897_s_at 222379_at
"ABHD11" "IRF6" "COBL" "RHBDL2" "KCNE4"

As we see in this filtering step, probesets have been converted to genes.
The function figSilh generates the Silhouette width figure:

> figSilh(silh)

4.6 Feature selection

To build the CCS classifier, we applied two filtering steps to select the most
representative and predictive genes. First, we used Significance Analysis of
Microarrays (SAM)[8] (R package siggenes) to identify genes significantly
differentially expressed (FDR<0.01) between each subtype and the other
two. The function findDiffGenes performs SAM analysis to search for top
differential genes between three subtypes:

> diffGenes <- findDiffGenes(sdat.f, clus.f, pvalth=0.01)
> length(diffGenes)
[1] 2747

As we see, 2747 unique genes are highly differentially expressed between
subtypes.

Second, we calculated AUC (area under ROC curve, R package ROCR)
to assess each gene’s ability to separate one subtype from the other two. The
function filterDiffGenes filters differential genes based on AUC scores:
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Figure 4: Silhouette widths of colon cancer samples. The figure shows
Silhouette widths of samples in each cluster. Samples with positive Silhouette
values were selected as core samples to build the classifier.
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> diffGenes.f <- filterDiffGenes(sdat.f, clus.f, diffGenes, aucth=0.9)
> length(diffGenes.f)
[1] 323

After this step, we retained 323 unique genes that are most predictive.

4.7 Build PAM classifier

The retained 329 genes with AUC > 0.9 were trained by PAM[9] to build
a robust classifier. To select the optimal threshold for centroid shrinkage,
we performed 10-fold cross-validation over a range of thresholds for 1000
iterations, and selected the one yielding a good performance (error rate <
2%) with the least number of genes (Figure 5). Of note, the gene filtering
steps do not have any significant influence on the selection of signature genes,
as observed from PAM classification using various cut-offs on SAM FDR and
AUC (data not shown).
The function buildClassifier builds the PAM classifier:

sigMat <- sdat.f[diffGenes.f, names(clus.f)]

classifier <- buildClassifier(sigMat, clus.f, nfold=10, nboot=100)
signature <- classifier[["signature"]]

pam.rslt <- classifier[["pam.rslt"]]

thresh <- classifier[["thresh'"]]

err <- classifier[["err"]]

vV V.V Vv VvV

The function figPAMCYV reproduces the PAM cross validation figure:
> figPAMCV(err)

Using this strategy, we built a classifier of 146 unique genes and used it
to classify the CRC samples (Figure 6).

The classifier is then applied to classify the 90 colon cancer samples. A
posterior probability >0.5 for one of the subtypes was regarded as being
indicative of association with that group. The following functions are used
to reproduce the classification and figure:

12



[Te) - ——
o 7] %.g
.
1
S B
.
o
2 o |
s o T
5 B
o S
= N E
o 5 .
.
-
'
— .
— OTE
=
[o}N®) Y o L
R i Jp- 20 = = spu.ty C [ O O ol ]
O | AAfmAasEREFTTERSxssHS
e T T T T 1 I T T T

FTTTTTTTTTI
323 323 323 323 312 228 106 42 16 6 2

No. of genes

Figure 5: PAM classification with cross validations. The figure shows the
cross validation error rate as a function of level of PAM shrinkage (number
of genes left).
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datsel <- sdat[names(uniGenes), ]

rownames (datsel) <- uniGenes

datsel <- datsel[diffGenes.f, ]

pamcl <- pamClassify(datsel, signature, pam.rslt, thresh, postRth=1)
sdat.sig <- pamcl[["sdat.sig"]]

pred <- pamcl[["pred"]]

clu.pred <- pamcl[["clu.pred"]]

nam.ord <- pamcl[["nam.ord"]]

gclu.f <- pamcl[["gclu.f"]]

V VVVVVVVYV

v

figClassify (AMC_CRC_clinical, pred, clu.pred, sdat.sig, gclu.f, nam.ord)

5 Subtype characterization

5.1 Survival analysis

The clinical relevance of this classification becomes evident when analysing
the disease-free survival, which revealed a significantly poorer prognosis for

CCS3 patients compared to CCS1-CIN and CCS2-MSI patients (Figure 7).
To reproduce the progression free survival analysis, we developed function

progAMC"

> prog <- progAMC(AMC_CRC_clinical, AMC_sample_head, clu.pred)

Call:
survdiff (formula = Surv(time, status) ~ x, data = datadsurv)

N Observed Expected (0-E)~2/E (0-E)~2/V

x=1 44 3 10.22 5.104 11.107
x=2 22 4 4.83 0.143 0.191
x=3 24 12 3.95 16.436 21.049

Chisq= 22 on 2 degrees of freedom, p= 2e-05

> surv <- progl[["surv"]]
> survstats <- progl[["survstats"]]

The function figkM can be used to reproduce the KM plot:

> figKM(surv, survstats)
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Figure 6: The AMC-AJCCII-90 set is classified in three subtypes accord-
ing to the classifier. The top bar indicates the subtypes; light blue; CCS1,
green; CCS2, dark blue; CCS3. In the heatmap, rows indicate genes from
the classifier and columns represent patients. The heatmap is color-coded
based on median centred log2 gene expression levels (orange, high expres-
sion; blue, low expression). The lower bar indicates the posterior probability
of belonging to each respective subtype.
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6 Session info

This document was produced using:

> toLatex(sessionInfo())

R version 4.1.1 (2021-08-10), x86_64-pc-1linux-gnu

Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

Running under: Ubuntu 20.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.14-bioc/R/1lib/1ibRblas.so
LAPACK: /home/biocbuild/bbs-3.14-bioc/R/1lib/1libRlapack.so

Base packages: base, datasets, grDevices, graphics, methods, stats,
utils

Other packages: DeSousa2013 1.30.0

Loaded via a namespace (and not attached): AnnotationDbi 1.56.1,
Biobase 2.54.0, BiocGenerics 0.40.0, BiocManager 1.30.16,
BiocParallel 1.28.0, Biostrings 2.62.0, ConsensusClusterPlus 1.58.0,
DBI 1.1.1, DelayedArray 0.20.0, GenomelnfoDb 1.30.0,
GenomelnfoDbData 1.2.7, GenomicRanges 1.46.0, [IRanges 2.28.0,
KEGGREST 1.34.0, KernSmooth 2.23-20, MASS 7.3-54,

Matrix 1.3-4, MatrixGenerics 1.6.0, R6 2.5.1, RCurl 1.98-1.5,
ROCR 1.0-11, RSQLite 2.2.8, Rcpp 1.0.7, S4Vectors 0.32.0,
SummarizedExperiment 1.24.0, XML 3.99-0.8, XVector 0.34.0,
affxparser 1.66.0, affy 1.72.0, affyio 1.64.0, annotate 1.72.0, bit 4.0.4,
bit64 4.0.5, bitops 1.0-7, blob 1.2.2, caTools 1.18.2, cachem 1.0.6,
cluster 2.1.2, codetools 0.2-18, compiler 4.1.1, crayon 1.4.1,

edgeR 3.36.0, fastmap 1.1.0, ff 4.0.5, foreach 1.5.1, frma 1.46.0,
genefilter 1.76.0, gplots 3.1.1, grid 4.1.1, gtools 3.9.2,
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hgul33plus2.db 3.13.0, httr 1.4.2, iterators 1.0.13, lattice 0.20-45,
limma 3.50.0, locfit 1.5-9.4, matrixStats 0.61.0, memoise 2.0.0,

mgcev 1.8-38, multtest 2.50.0, nlme 3.1-153, oligo 1.58.0,

oligoClasses 1.56.0, pamr 1.56.1, parallel 4.1.1, pkgconfig 2.0.3,

png 0.1-7, preprocessCore 1.56.0, rlang 0.4.12, rstudioapi 0.13,

scrime 1.3.5, siggenes 1.68.0, splines 4.1.1, stats4 4.1.1, survival 3.2-13,
sva 3.42.0, tools 4.1.1, vetrs 0.3.8, xtable 1.8-4, zlibbioc 1.40.0
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