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Computing q-values conditioned on covariates using swfdr

1 Introduction
Multiple hypothesis testing is a common concern in modern data science workflows: after
performing several - in some cases, thousands - statistical tests on a dataset, many of the
resultant p-values are expected to be small purely by chance. So it is imperative to interpret the
results in a manner that limits spurious associations. At the same time, a parallel requirement
is to identify significant hits despite having performed many tests.
In addition to the classic multiple hypothesis testing problem described above, analyses of
complex datasets are also complicated by covariates. Given p-values calculated using a
particular statistical test, background knowledge may suggest that the test may be more
appropriate for some data instances than for others, or that some results may be more or less
expected a-priori. A tempting analysis strategy in such situations might be to partition the
dataset and to study each part separately. However, direct stratification is not trouble-free. It
relies on splitting data into discrete groups, which can introduce challenges of its own, including
in the choice of appropriate thresholds. It also leads to further statistical testing, which is
redundant and magnifies the burden of multiple hypothesis testing. Thus, an alternative,
more systematic, approach is needed to utilize background knowledge in statistical analyses.
There are, in principle, many possible ways to use covariate variables when tackling the
multiple hypothesis testing problem. This vignette does not attempt an unbiased exposition of
the available methods; some of them have been summarized and benchmarked by Korthauer
et al. (2018). Instead, this vignette provides a practical guide to using the swfdr package,
which implements algorithms for modeling the effect of covariates on a quantity called π0,
which can be interpreted as the probability that a null hypothesis is true. The theoretical
aspects and modeling details are provided by Jager and Leek (2013) and Boca and Leek
(2018). The approach extends methods by Storey (2002) and Storey and Tibshirani (2003).
In practice, these methods take in a set of p-values and output another set of quantities,
q-values, that can be interpreted in the context of a multiple hypothesis analysis.
The vignette begins with notes on how to install the swfdr software. Next, it provides a review
of q-values using the classic qvalue package. This section also introduces some conceptual
datasets and motivates the use of covariates to augment standard q-value analysis. Subsequent
sections explain how to condition q-values on covariates using swfdr. The main points are
summarized in the discussion and some technical details are discussed in an appendix.

2 Installation
The swfdr package can be installed via the Bioconductor package manager, Morgan (2018).
If you don’t already have the package manager, you’ll first have to install it.
install.packages("BiocManager")

This might show a prompt to select a package repository, and you can choose any one that
seems convenient for you.
To perform the package installation, load the Bioconductor manager and request to install
swfdr.
library("BiocManager")

BiocManager::install("swfdr")

After the above command completes, we can load the package.
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library(swfdr)

For this vignette, we will also use Bioconductor package qvalue, Storey et al. (2018). This
can be installed also via Bioconductor
BiocManager::install("qvalue")

library(qvalue)

3 q-values without covariates
Suppose we have measurements from two groups. To perform a statistical analysis, we would
formulate a null hypothesis, compute a p-value against that hypothesis, and then use some
criteria to call the result as significant or not. The practical details may vary from application
to application. For example, a common use case is to assume that measuremets come from
distributions with equal variances, formulate the hypothesis that the distributions have equal
means, and compute p-values using a t-test. An interpretation strategy might consist of
calling a result a ‘hit’ or ‘significant’ if the p-value is below a threshold, often 0.05.
In this section, we will look at how to interpret results from a large set of such statistical tests
and control the rate of false discoveries using q-values. While the technical definitions for
p-values and q-values are given in textbooks and original references, it is useful to highlight
some of their properties here. Consider a statistical test and an associated numerical result
v. The interpretation with respect to p-values and q-values would be as follows (Storey and
Tibshirani (2003)).

• p-value: Assuming that the original data is consistent with the null hypothesis, the
probability that the single result with p = v is a false positive is v.

• q-value: Among the tests assigned q-values below v during an analysis, the proportion
of false positives is v.

There are some important conceptual and practical differences between these definitions.
• The interpretation of the p-value is focused on a single test instance, so any adjustments

motivated by multiple hypothesis testing must be performed post-hoc. In contrast,
the q-value is defined relative to an ensemble of tests and thus intrinsically refers to a
multiple-hypothesis context.

• The p-value is defined from the perspective of a hypothetical ensemble of data that is
consistent with the null hypothesis. The q-value is instead formulated with respect to
the ensemble of performed measurements. (Technically, the properties of the q-value are
valid in the limit of a large ensemble of measurements, but it is possible to replace that
hypothetical ensemble by an actual set of measurements and thus work with q-value
estimates.)

3.1 Conceptual datasets
To demonstrate calculations of q-values, let’s work with some practical datasets. To cover
various scenarios, let’s define three synthetic datasets and some helper functions. Each dataset
will consist of a moderate number of examples, i.e. instances requiring a statistical test.
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N <- 1000

In the first dataset, dataset0, let’s consider two groups with three measurements each and
formulate a null hypothesis that there is no difference in means between the two groups.
Moreover, let’s construct the data so that all measurements come from the same generative
process. In other words, despite fluctuations in individual measurements, all instances are
concordant with the null hypothesis.
set.seed(12345)

dataset0 <- matrix(rnorm(6*N), ncol=6)

head(dataset0, 3)

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0.5855288 1.67751179 -0.6078411 0.5098921 -1.0426910 -0.6924722

## [2,] 0.7094660 0.07947405 1.0762231 -0.7153643 -0.1839484 1.1246956

## [3,] -0.1093033 -0.85642750 -0.5764258 -0.4055215 0.1792667 0.1745351

From this data, we can compute p-values for each set of measurements (rows) using a t-test.
Because a similar calculation will be required again later, it is best to define a helper function.
# compute t-tests on each row of a matrix

dataset_p <- function(D, group1=c(1,2,3), group2=c(4,5,6)) {

t.test.groups <- function(x) {

t.test(x[group1], x[group2])$p.value

}

round(apply(D, 1, t.test.groups), 5) # rounding for legibility

}

D0 <- data.frame(p=dataset_p(dataset0), truth=0)

summary(D0$p)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00527 0.26459 0.48864 0.50197 0.75112 0.99992

After the helper function, the above block defines a data frame with p-values and an integer
code truth; we will use this code later. The p-values range from 0.00527 to 0.99992. Thus,
although by construction all instances in dataset0 are consistent with the null hypothesis,
some p-values are nominally quite small.
For the second dataset, dataset1, let’s again consider two groups of three measurements
each, but give one the groups a shifted mean.
dataset1 <- matrix(c(rnorm(3*N, 0, 1), rnorm(3*N, 2, 1)), ncol=6)

head(dataset1, 3)

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] -0.3487804 -0.6790374 -1.486991 1.180370 2.1612775 2.7892407

## [2,] -1.0257007 -0.5723894 -2.205152 3.375843 2.5319214 -0.4168186

## [3,] -0.9074263 0.8232486 1.405955 1.701138 0.7020966 1.5649241

D1 <- data.frame(p=dataset_p(dataset1), truth=1)

summary(D1$p)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00009 0.03287 0.07704 0.13351 0.17774 0.97222

The resulting p-values span a similar range as before, but are skewed toward lower values. It is
important to note that although all instances are actually inconsistent with the null hypothesis,
some p-values are nominally large.
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To conclude this section, let’s create a final dataset that is a concatenation of the previous
two. We will only need the p-values, so we can omit creating the raw data and only define
the summary data frame.
D2 <- rbind(D0, D1)

dim(D2)

## [1] 2000 2

table(D2$truth)

##

## 0 1

## 1000 1000

This combined dataset has 2000 instances. The first half is concordant with the null hypothesis
(truth equal to zero) and the second half is not (truth equal to 1).

3.2 pi0
Given p-values from individual statistical tests, we can begin looking at their properties as a
set of multiple hypotheses. Let’s visualize the distributions of p-values.
par(mfrow=c(1,3), las=1, mar=c(3,4,2,1))

p_hist <- function(p, breaks=20, freq=F, ylim=c(0, 7.2), ...) {

hist(p, breaks=breaks, freq=freq, ylim=ylim, xlab="", ...)

}

p_hist(D0$p, col="#666666", main="p-values in D0")

p_hist(D1$p, col="#cccccc", main="p-values in D1")

p_hist(D2$p, col="#999999", main="p-values in D2")
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In the first histogram based on D0, the distribution of p-values is flat. This is the expected
pattern for data consistent with the null hypothesis. In the second panel based on dataset D1,
the distribution is skewed and indicates deviation from the null hypothesis. The last histogram,
which is based on the composition of D0 and D1, shows an intermediate skew.
Thus, the shape of the histogram is an indicator for the extent to which a dataset is consistent
with the null hypothesis. This intuition can be codified into a probability that the null
hypothesis is true, denoted as π0 or pi0. It is computed from the histogram by considering
the number of test instances that give p-values below various thresholds, p < λ, where λ
might be 0.05, 0.1, etc. See e.g. Storey (2002) and Storey and Tibshirani (2003) for details.
We can compute π0 for each dataset using the qvalue package.
library(qvalue)

D0q <- qvalue(D0$p)

D1q <- qvalue(D1$p)

D2q <- qvalue(D2$p)

c(D0=D0q$pi0, D1=D1q$pi0, D2=D2q$pi0)
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## D0 D1 D2

## 1.00000000 0.01388784 0.51395921

The π0 estimate for D0 is unity, which is consistent with how we generated the dataset. For
D1, π0 is much lower. At 0.014, it is greater than the true value (zero; none of the instances
in D1 were generated in a way consistent with the null hypothesis). However, this estimate
is nonetheless closer to the truth. Unsurprisingly, the last π0 estimate - for the combined
dataset D2 - lies between the previous values.

3.3 q-value
While π0 is an aggregate summary of an entire dataset, we are often interested in assigning
significance calls to individual test instances. The q-value is a measure that controls for false
positive calls and internally uses the π0 to allow for true positive calls.
We already computed q-values when we ran the function qvalue in the previous section. We
can display a summary for the D0 dataset as follows.
summary(D0q)

##

## Call:

## qvalue(p = D0$p)

##

## pi0: 1

##

## Cumulative number of significant calls:

##

## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1

## p-value 0 0 3 15 36 90 1000

## q-value 0 0 0 0 0 0 1000

## local FDR 0 0 0 0 0 0 0

The table displays hit counts at various thresholds. To simplify the discussion, let’s just look
at the rows labeled ‘p-value’ and ‘q-value’ and the threshold of 0.05. For the following, a
helper function will be useful to extract a subset of the relevant results.
# extract number of hits with values below a threshold

hit_counts <- function(x, threshold=0.05) {

counts <- c(sum(x$pvalues<threshold), sum(x$qvalues<threshold))

names(counts) <- paste0(c("p<", "q<"), threshold)

counts

}

hit_counts(D0q)

## p<0.05 q<0.05

## 36 0

If we were to call significance using unadjusted p-values at a threshold of 0.05, we would
have 36 hits. Because we explicitly constructed the dataset to be consistent with the null
hypothesis, all of these hits would be false positives. In contrast, the number of hits using the
q-value would drop to 0, which in this case is the appropriate answer.
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As an aside, note that if we were to adjust p-values for multiple-hypothesis testing say with
a Bonferroni correction, the number of hits would also drop to 0. To check that, evaluate
sum(D0$p < 0.05/N).
Let’s move on to the second dataset, in which all instances are inconsistent with the null
hypothesis.
hit_counts(D1q)

## p<0.05 q<0.05

## 365 1000

Here, the number of hits obtained by thresholding p-values is higher. However, at 365, it
leaves a large number of instances of the dataset as false negatives. In contrast, the procedure
based on q-values captures the entire dataset. Again, this is a satisfactory result for this
conceptual dataset.
Continuing the previous side note, how many hits would we have using a Bonferroni correction?
The answer is 0 hits, thus producing an even larger number of false negatives. This shows
that procedures that use adjustments of p-values are quite distinct from q-values.
Finally, let’s consider the combined dataset.
hit_counts(D2q)

## p<0.05 q<0.05

## 401 0

The number of hits based on p-values is simply the sum of the previous two results, 401 = 36
+ 365. To look at this result from a different perspective and in preparation for subsequent
calculations, we can display this information as a confusion matrix comparing expected versus
computed hit counts.
# compare expected and observed p-values or q-values

confusion_matrix <- function(truth, x,

criterion=c("qvalues", "pvalues"),

threshold=0.05) {

criterion <- match.arg(criterion)

data = data.frame(truth, x[[criterion]]<threshold)

colnames(data)[2] = paste0(substring(criterion,1,1), "<", threshold)

table(data)

}

We can now get a summary of performance based on thresholding on p-values.
confusion_matrix(D2$truth, D2q, "p")

## p<0.05

## truth FALSE TRUE

## 0 964 36

## 1 635 365

The 2000 instances are split into true positives (bottom-right), false-positives (top-right), true
negatives (top-left), and false negatives (bottom-left). Overall, there are many false negatives
and quite a few false positives.
The confusion matrix based on q-values is as follows.

7



Computing q-values conditioned on covariates using swfdr

confusion_matrix(D2$truth, D2q, "q")

## q<0.05

## truth FALSE

## 0 1000

## 1 1000

There are no positive hits - we have lost all signal. However, we know that calling hits based
on q-values produced correct result based on data from D0 and D1 separately. Thus, it might
be possible to improve the calculation for the joint dataset. This leads to using background
knowledge to condition calculations of π0 and q-values in the next section.

4 Conditioning on covariates
In addition to a core set of data, many datasets come with additional descriptive variables -
metadata. While these descriptive variables might not enter into a primary statistical analysis,
it may nonetheless be fruitful to incorporate them in a larger analysis pipeline. Although many
numerical recipes are possible in this direction. Package swfdr provides two functions, lm_pi0
and lm_qvalue, that use linear models to condition estimates for π0 and q-values.

4.1 Conditioned pi0
Following from the datasets and examples of the previous section, let’s compute π0 estimates
for D2 conditioned on the dataset of origin.
D2_lm_pi0 <- lm_pi0(D2$p, X=D2$truth)

The output is a composite object (list) with several components.
names(D2_lm_pi0)

## [1] "call" "lambda" "X.names" "pi0.lambda" "pi0"

For some follow-up calculations, we will retrieve data from these components. However,
it is instructive to first examine a summary of the object, via summary(D2_lm_pi0) or
print(D2_lm_pi0) or by simply executing it in the console.
D2_lm_pi0

This should produce output with multiple sections. The first few summarize technical details.
##

## Call:

## lm_pi0(p = D2$p, X = D2$truth)

##

## lambda:

## (Length) Min Mean Median Max

## 19 0.05 0.5 0.5 0.95

The top part reiterates the function call and the section on lambda provides details on how
the results were estimated, see Storey (2002) and Storey and Tibshirani (2003) for details.
The next section summarizes the covariates.
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##

## covariates:

## (Length)

## 1

In this case, there is only one covariate. The last section summarizes π0 estimates.
##

## pi0:

## (Length) Min Mean Median Max

## 2000 0.0177 0.508 0.508 0.9983

In contrast to the π0 estimate from function qvalue, we now have one estimate per instance
in the dataset, ranging from 0.018 to 0.998. Internally, the function used logistic regression
to estimate how the distribution of input p-values depends on the covariate, see Boca and
Leek (2018) for details.

4.2 Conditioned q-values
Let’s now compute q-values conditioned on the same covariate.
D2_lm_q <- lm_qvalue(D2$p, X=D2$truth)

Again, the output is a composite object. A summary is available by evaluating it in the
console.
D2_lm_q

The majority of the output is analogous to what was displayed for D2_lm_pi0. The new section
summarizes hit counts at various thresholds.
##

## Cumulative number of significant calls:

## <1e-4 <1e-3 <0.01 <0.05 <0.1 <1

## p-value 1 7 96 401 671 2000

## q-value 0 0 913 1000 1000 2000

In this case, we have 1000 hits based on q-values at a threshold of 0.05. We can further
compute a confusion matrix.
confusion_matrix(D2$truth, D2_lm_q)

## q<0.05

## truth FALSE TRUE

## 0 1000 0

## 1 0 1000

This reveals a strong presence of true positives with 0 false positives and 0 false negatives.
The analysis of the combined dataset with covariate thus reproduces the performance we
obtained when we analyzed D0 and D1 separately.
Of course, the above calculation is idealized in that the covariate perfectly stratifies the
instances. To finish this section, we can repeat the calculation in a more difficult setting
where the covariate carries imperfect signal. To this end, let’s define an object similar to D2.
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D2_noisy <- data.frame(p=D2[, "p"],

truth.noisy=D2[, "truth"]+rnorm(2*N, 0, 0.4))

head(D2_noisy, 3)

## p truth.noisy

## 1 0.30806 0.3076642

## 2 0.44155 -0.4250800

## 3 0.16487 -0.4386329

The new variable truth.noisy is now a real number based on the previous truth, but carries
considerable noise. We can repeat the lm_qvalue calculations using this as a covariate.
D2_noisy_lm_q <- lm_qvalue(D2_noisy$p, X=D2_noisy$truth.noisy)

The hit summary for this object is as follows.
##

## Cumulative number of significant calls:

## <1e-4 <1e-3 <0.01 <0.05 <0.1 <1

## p-value 1 7 96 401 671 2000

## q-value 0 0 5 442 837 2000

Let’s inspect the confusion matrix at various thresholds.
confusion_matrix(D2$truth, D2_noisy_lm_q)

## q<0.05

## truth FALSE TRUE

## 0 999 1

## 1 559 441

confusion_matrix(D2$truth, D2_noisy_lm_q, threshold=0.1)

## q<0.1

## truth FALSE TRUE

## 0 976 24

## 1 187 813

In each case, the confusion matrix reveals a moderate or large number of true positives with
a limited number of false positives. Thus, even in this noisy setting, we have a high hit rate
while restraining false discovery.
Although the last example introduced some noise, all calculations in this section are still based
on synthetic data and are thus quite artificial. We have also considered analyses based on
just one covariate. Nonetheless, the examples are instructive because the analytical workflow
and syntax also apply in more complex scenarios, as demonstrated in the next section.

5 Conditioning on multiple covariates
The package comes with a prepared dataset, BMI_GIANT_GWAS_sample, that summarizes a
portion of a genome-wide association study by Locke et al. (2015). The dataset holds
associations between simple-nucleotide polymorphisms (SNPs) and body-mass-index (BMI).
GWAS <- BMI_GIANT_GWAS_sample

dim(GWAS)

## [1] 50000 9
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head(GWAS)

## # A tibble: 6 x 9

## SNP A1 A2 Freq_MAF_Hapmap b se p N Freq_MAF_Int_Ha~

## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>

## 1 rs10~ T C 0.025 0.0147 0.0152 0.334 212965 [0.000,0.127)

## 2 rs91~ A G 0.342 -0.0034 0.0037 0.358 236084 [0.302,0.500]

## 3 rs48~ A C 0.00830 0.0163 0.0131 0.213 221771 [0.000,0.127)

## 4 rs17~ A G 0.167 0.0004 0.0048 0.934 236177 [0.127,0.302)

## 5 rs46~ C G 0.25 0.0011 0.0042 0.793 236028 [0.127,0.302)

## 6 rs11~ G A 0.233 -0.0006 0.0042 0.886 235634 [0.127,0.302)

This is a table with 50,000 rows. Column SNP contains an identifier for a genetic polymorphism.
Column p contains the p-value from a statistical test linking that polymorphism and BMI.
The other columns contain metadata about the polymorphism - see the original article Locke
et al. (2015) or the data set annotation (help(BMI_GIANT_GWAS_sample)).
In this vignette, we will use two of the metadata columns, N and Freq_MAF_Hapmap. The first
is an integer field conveying the number of patients in the study for which the SNP was
measured. This impacts on the power of the individual statistical tests. The second feature is
the prevalence of the polymorphism in a background population. This impacts the likelihood
that the SNP is associated with an unhealthy phenotype.

5.1 Conditioned pi0s with multiple covariates
The calculation for π0 proceeds just like in the previous section. In this case, however,
argument X should be a matrix or data frame containing both covariates of interest.
GWAS_lm_pi0 <- lm_pi0(GWAS$p, X=GWAS[, c("N", "Freq_MAF_Hapmap")])

We can view a summary of the output object by executing it in the console.
GWAS_lm_pi0

##

## Call:

## lm_pi0(p = GWAS$p, X = GWAS[, c("N", "Freq_MAF_Hapmap")])

##

## lambda:

## (Length) Min Mean Median Max

## 19 0.05 0.5 0.5 0.95

##

## covariates:

## (Length)

## 2

##

## pi0:

## (Length) Min Mean Median Max

## 50000 0.7439 0.9424 0.9524 1

The output structure is by now familiar. One interesting section here summarizes the covariates
and confirms that the function used two variables in the calculation.
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The final table summarizes the distribution of π0 values. Recall that π0 estimate the probability
that a null hypothesis is true. Here, the estimates range from 0.7439 to 1. Because the values
are all fairly close to unity, they suggest that the test instances are largely concordant with no
association between SNPs and BMI. This is an expected property for a GWAS study.

5.2 Conditioned q-values with multiple covariates
Next, we can evaluate whether or not individual instances in the dataset are significant.
GWAS_lm_qvalue <- lm_qvalue(GWAS$p, X=GWAS[, c("N", "Freq_MAF_Hapmap")])

We can preview the contents of the output object by executing it on the console.
GWAS_lm_qvalue

Most of the output should be the analogous to that of GWAS_lm_pi0. The new section is a
summary of hits at various thresholds.
##

## Cumulative number of significant calls:

## <1e-4 <1e-3 <0.01 <0.05 <0.1 <1

## p-value 186 405 1388 3771 6468 49619

## q-value 49 70 126 254 374 49912

We can use our helper function to focus just on the 0.05 threshold.
hit_counts(GWAS_lm_qvalue)

## p<0.05 q<0.05

## 3771 254

There are 3771 SNPs that have a nominal p-value lower than 0.05. (That hit count is
unadjusted for multiple-hypothesis testing and is likely to include many false positives. If we
were to correct for multiple testing via a Bonferroni correction, we would instead impose a
threshold of 0.05/50000. The result would be 64 hits.) In contrast, using a q-value threshold,
we have 254 hits.

5.3 Comparison with qvalue

In the above calculations, we computed q-values conditioned on two covariates. Let’s now see
how those results compare with q-values without conditioning. We can compute those by
repeating the same steps as before, but without specifying argument X.
GWAS_lm_qvalue_0 <- lm_qvalue(GWAS$p)

## Warning: X is missing or NULL - modeling will have no effect

In this calculation, lm_qvalue displays a warning that raises attention to the fact that a
function meant to model the effect of covariates is actually used without any covariates at all.
This message is useful to detect coding errors, e.g. unintentionally providing an empty object
for modeling. Here, omitting the covariates was the intended action, so we can look past the
warning and inspect the output.
##

## pi0:
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## (Length) Min Mean Median Max

## 50000 0.9564 0.9564 0.9564 0.9564

##

## Cumulative number of significant calls:

## <1e-4 <1e-3 <0.01 <0.05 <0.1 <1

## p-value 186 405 1388 3771 6468 49619

## q-value 49 69 124 247 354 50000

This reveals that although the function computes 50,000 estimates for pi0, all the estimates
are equal. The hit table is slightly different than before.
When there are no covariates, the calculations performed by lm_qvalue are conceptually
equivalent to those in function qvalue from the qvalue package. We can check this explicitly.
GWAS_qvalue = qvalue(GWAS$p)

summary(GWAS_qvalue)

##

## Call:

## qvalue(p = GWAS$p)

##

## pi0: 0.9559508

##

## Cumulative number of significant calls:

##

## <1e-04 <0.001 <0.01 <0.025 <0.05 <0.1 <1

## p-value 186 405 1388 2404 3771 6468 49619

## q-value 49 69 124 185 247 354 50000

## local FDR 42 50 76 107 148 203 27449

Apart from the stylistic discrepancies, the final q-value results in the hits table are the same
as those output by lm_qvalue. There is, however, a small discrepancy in the estimate for π0.
This is due to a slight difference in an internal algorithm, which is elaborated upon in the
appendix. Here, we note that the discrepancy is <1% so it is likely to be inconsequential in
most workflows. However, it is possible to obtain exact parity by calling lm_qvalue with an
additional argument smoothing set to smooth.spline. We can verify this by repeating the
calculation with this modified setting.
GWAS_lm_qvalue_smooth <- lm_qvalue(GWAS$p, smoothing="smooth.spline")

## Warning: X is missing or NULL - modeling will have no effect

The same warning appears, but we can again skip it and inspect the output.
table(GWAS_lm_qvalue_smooth$pi0)

##

## 0.955950835227995

## 50000

This reveals all the π0 estimates are equal to the output from qvalue - we have exact parity
with the value package. This is a useful technical control and it builds confidence in the
correctness of the results. However, running this code in the console, there will be a noticeable
difference in execution time. Thus, for large datasets, it is more convenient to use the default
settings.

13



Computing q-values conditioned on covariates using swfdr

6 Discussion
Interpreting statistical results can be challenging, especially when an analysis involves a large
number of tests and p-values. When the aim is to call significant hits while controlling the
rate of false discoveries, it can be useful to re-frame the interpretation in terms of q-values.
The influencial package qvalue provides functions for this purpose, but it is only applicable in
contexts when all the statistical tests in an analysis are a-priori similar and can be weighted
equally. These constraints are at odds with the analysis of complex datasets for which metadata
may hold signals about the tested relationships. The swfdr package provides functions for
using such metadata as covariates while controlling false discovery rates.
In this vignette, we saw how to install the software and walked through the analysis of some
small datasets. These datasets, being synthetically generated, do not capture the nuances
and complexities of a real-word analysis. Instead, the hope is that their they capture the
value of using q-values for controlling false discovery and the potential benefits of using
informative covariates. In particular, they demonstrate the utility of q-values for interpret
datasets with a very high proportion of instances that are significant, as well as for modeling
with covariates to identify hits when they are surrounded by data that is concordant with
the null hypothesis. These are illustrative examples; further evaluations are described in the
original article, Boca and Leek (2018), as well as in an independent review, Korthauer et al.
(2018), which concluded that swfdr consistently performs well in a range of scenarios.
All the analyses included a discussion of π0, the probabilities that a null hypothesis is true,
before going on to compute q-values. Given the outputs of functions lm_pi0 and lm_qvalue, it
should be apparent that the second calculation is an extension of the first. This duplication of
effort is included in the vignette to emphasize the central role π0 plays in computing q-values
and in conditioning on covariates. Practical pipelines, however, may rely on the single function
lm_qvalue.
If you use package swfdr, please cite:

• the article describing the method for conditioning false-discovery rates on covariates via
π0, Boca and Leek (2018)

• the R swfdr software, Leek, Jager, and Boca (2018)
To view the package source, report a bug, or contribute bug fixes, please see the github
development page https://github.com/leekgroup/swfdr.

A Technical notes
The main vignette described a complete, coherent workflow for controlling false discovery
rates using functions lm_pi0 and lm_qvalue from the swfdr package. The focus was on
demonstrating the core features of those functions and on interpreting their outputs. But those
same functions also support other arguments which can fine-tune aspects of the calculations.
These additional arguments have default values that should be suitable for common use cases.
However, (rare) situations may occur when it may be desirable to adjust the default settings.
This section quickly summarizes those options and their implications for the interpretation of
the results and computational performance. The arguments are applicable to both lm_pi0

and lm_qvalue, unless specified otherwise.
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A.1 Modeling resolution (argument lambda)
As hinted in one of the early sections, estimates for π0 are computed from the distribution of
the input p-values. The details for the algorithm are described e.g. in Storey (2002) and Storey
and Tibshirani (2003). Briefly, the calculations take a threshold, say λ = 0.05, and evaluate
the proportion of p-values below that threshold, and then repeat for several thresholds, say
λ = 0.1, 0.15, . . .. By using such estimates together with a spline fit, the calculations arrive
at a single estimate for π0. Argument lambda provides the series of thresholds used in this
process.
A large number of thresholds, i.e. a long vector lambda, is needed to allow the spline to fit the
trend in proportions in a reliable manner. However, excessive length can be counter-productive
if the input set of p-values is short. Long lambda vectors can also increase running time.
In many common applications, the default lambda vector will be appropriate and it is recom-
mended to leave it unchanged. For small datasets, say below 100 items, it may be advisable
to provide a shorter vector, e.g. seq(0.05, 0.95, 0.1).

A.2 Covariate matrix (argument X)
One of the key inputs to lm_pi0 and lm_qvalue is an object, X, capturing covariates. When
there is only one covariate, X can be specified as a vector. Otherwise, it should be either a
matrix or a data frame.
Covariate data is used internally in relatively simple linear models and thus object X cannot
contain missing (NA) or non-finite values (NULL, Inf, NaN). Datasets with such components
should either omit incompatible parts before processing with swfdr, or impute values.
Covariate data should contain only numeric data. Factors and other categorical data are not
supported.

A.3 Model type (argument type)
Modeling the effect of covariates on π0 is controlled via argument type. The default value for
this argument is logistic. In this configuration, functions lm_pi0 and lm_qvalue use logistic
regression with one term for each given covariate. The other supported value for the type

argument is linear, which uses a standard linear regression model instead.
The run time of linear regression is typically faster than logistic regression. However, linear
regression is uninformed about the fact that the output variable is meant to be a probability
in a finite range. Thus, logistic is usually the more appropriate approach.
It is recommended to leave type at its default value. The argument is provided primarily for
backward compatibility and as a inerface for exploring other modeling approaches.

A.4 Thresholding (argument threshold)
Internally, lm_pi0 and lm_qvalue train models on the input data and then predict individual
pi0 estimates. Because these predictions represent probabilities, they are expected to be
in the range [0, 1]. However, some predictions may fall outside this range. By default, the
functions threshold spurious values and impose the expected lower and upper bounds. Setting
argument threshold to FALSE allows the raw prediction values to propagate to the output.
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The value of the threshold argument has almost no impact on performance. Changing it
from its default value can make interpretation of the output less intuitive, although unusual
values can in principle provide insight on the quality of the covariate modeling.
It is recommended to leave threshold at its default value of TRUE. The argument is provided
primarily for testing and research purposes, as well as for backward compatibility.

A.5 Smoothing (argument smoothing)
As described above, the calculations internally use splines to model the effect of λ on π0.
There exist several algorithms for fitting splines, and argument smoothing toggles between
two approaches. Both procedures are motivated by the same conceptual reasoning, but differ
in the implementation, computational performance, and provided output.
Setting smoothing to smooth.spline instructs the algorithm to use base R’s smooth.spline
to fit the spline. This is the spline-fitting approach that is used within the qvalue package and
in early versions of the swfdr package. In the context of covariate modeling, this approach
is, however, computationally inefficient. Setting smoothing to unit.spline shifts the spline
calculations to a bespoke implementation that exploits the fact that multiple splines are fitted
for the same series of λ and the fact that the objective of the calculation is to obtain a single
value π0 and not the actual smoothing spline. The bespoke approach can reduce the running
time many-fold with only small numerical discrepancies with the original algorithm.
It is important to stress that these implementations are provided for performance reasons
only; you are welcome to pick the smoothing method of your choice.

A.6 Smoothing degrees of freedom (argument smooth.df)
Spline-fitting can be further tuned by setting the spline degrees of freedom via argument
smooth.df. The value of smooth.df must be ≥ 3 to fit p-value distributions such as in the
examples in the vignette. Higher values would allow the internal model to accommodate more
complex distributions. However, if the p-value distribution deviates substantially from the
examples, the premise of the π0 calculation comes into question. Thus, there is rarely a good
reason to increase the value of smooth.df.
It is recommended to leave this argument at its default value. The argument is provided
primarily for testing, diagnostics, and backward compatibility.
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