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1 Introduction
This vignette introduces analysis methods for data from high-throughput sequencing of bisul-
phite treated DNA to detect cytosine methylation. The segmentSeq package was originally
designed to detect siRNA loci [1] and many of the methods developed for this can be used
to detect loci of cytosine methylation from replicated (or unreplicated) sequencing data.

2 Preparation
Preparation of the segmentSeq package proceeds as in siRNA analysis. We begin by loading
the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse are usually massive,
we should use (if possible) parallel processing as implemented by the parallel package. If
using this approach, we need to begin by define a cluster. The following command will use
eight processors on a single machine; see the help page for ’makeCluster’ for more information.
If we don’t want to parallelise, we can proceed anyway with a NULL cluster. Results may be
slightly different depending on whether or not a cluster is used owing to the non-deterministic
elements of the method.

> if(require("parallel"))

+ {

+ numCores <- min(8, detectCores())

+ cl <- makeCluster(numCores)

+ } else {

+ cl <- NULL

+ }

The segmentSeq package is designed to read in output from the YAMA (Yet Another Methy-
lome Aligner) program. This is a perl-based package using either bowtie or bowtie2 to align
bisulphite treated reads (in an unbiased manner) to a reference and identify the number of
times each cytosine is identified as methylated or unmethylated. Unlike most other aligners,
YAMA does not require that reads that map to more than one location are discarded, instead
it reports the number of alternate matches to the reference for each cytosine. This is then
used by segmentSeq to weight the observed number of methylated/un-methylated cytosines
at a location. The files used here have been compressed to save space.



> datadir <- system.file("extdata", package = "segmentSeq")

> files <- c("short_18B_C24_C24_trim.fastq_CG_methCalls.gz",

+ "short_Sample_17A_trimmed.fastq_CG_methCalls.gz",

+ "short_13_C24_col_trim.fastq_CG_methCalls.gz",

+ "short_Sample_28_trimmed.fastq_CG_methCalls.gz")

> mD <- readMeths(files = files, dir = datadir,

+ libnames = c("A1", "A2", "B1", "B2"), replicates = c("A","A","B","B"),

+ nonconversion = c(0.004777, 0.005903, 0.016514, 0.006134))

We can begin by plotting the distribution of methylation for these samples. The distribution
can be plotted for each sample individually, or as an average across multiple samples. We can
also subtract one distribution from another to visualise patterns of differential methylation
on the genome.

> par(mfrow = c(2,1))

> dists <- plotMethDistribution(mD, main = "Distributions of methylation", chr = "Chr1")

> plotMethDistribution(mD,

+ subtract = rowMeans(sapply(dists, function(x) x[,2])),

+ main = "Differences between distributions", chr = "Chr1")
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Figure 1: Distributions of methylation on the genome (first two million bases of chromosome 1

2



Next, we process this alignmentData object to produce a segData object. This segData

object contains a set of potential segments on the genome defined by the start and end
points of regions of overlapping alignments in the alignmentData object. It then evaluates
the number of tags that hit in each of these segments.

> sD <- processAD(mD, cl = cl)

We can now construct a segment map from these potential segments.

Segmentation by heuristic Bayesian methods
A fast method of segmentation can be achieved by assuming a binomial distribution on the
data with an uninformative beta prior, and identifying those potential segments which have a
sufficiently large posterior likelihood that the proportion of methylation exceeds some critical
value. This value can be determined by examining the data using the ’thresholdFinder’
function, but expert knowledge is likely to provide a better guess as to where methylation
becomes biologically significant.

> thresh = 0.2

> hS <- heuristicSeg(sD = sD, aD = mD, prop = thresh, cl = cl, gap = 100, getLikes = FALSE)

> hS

GRanges object with 2955 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] Chr1 108-948 *
[2] Chr1 5449-5465 *
[3] Chr1 6452 *
[4] Chr1 6520 *
[5] Chr1 7020-7034 *
... ... ... ...

[2951] Chr1 1993118-1993128 *
[2952] Chr1 1993149 *
[2953] Chr1 1993335 *
[2954] Chr1 1994611 *
[2955] Chr1 1994857-1994886 *
-------

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "lociData"

2955 rows and 4 columns

Slot "replicates"

A A B B

Slot "groups":

list()

Slot "data":

[,1] [,2] [,3] [,4]

[1,] 247:169 175:133 165:149 28:31

[2,] 0:49 1:86 23:36 2:2

[3,] 2:0 5:3 0:3 0:1

[4,] 0:3 0:9 2:1 0:0
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[5,] 0:119 2:78 20:37 0:2

2950 more rows...

Slot "annotation":

data frame with 0 columns and 2955 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 2955 rows.

A B

1 1 1

2 0 1

3 1 0

4 0 1

5 0 1

... ... ...

2951 1 1

2952 1 1

2953 1 0

2954 1 0

2955 0 1

Expected number of loci in each replicate group

A B

1968 2168

Within a methylation locus, it is not uncommon to find completely unmethylated cytosines.
If the coverage of these cytosines is too high, it is possible that these will cause the locus to
be split into two or more fragments. The mergeMethSegs function can be used to overcome
this splitting by merging loci with identical patterns of expression that are not separated by
too great a gap. Merging in this manner is optional, but recommended.

> hS <- mergeMethSegs(hS, mD, gap = 5000, cl = cl)

We can then estimate posterior likelihoods on the defined loci by applying empirical Bayesian
methods. These will not change the locus definition, but will assign likelihoods that the
identified loci represent a true methylation locus in each replicate group.

> hSL <- lociLikelihoods(hS, mD, cl = cl)

Visualising loci
By one of these methods, we finally acquire an annotated methData object, with the annota-
tions describing the co-ordinates of each segment.

We can use this methData object, in combination with the alignmentMeth object, to plot the
segmented genome.
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Figure 2: Methylation and identified loci on the first ten thousand bases of chromosome 1

> plotMeth(mD, hSL, chr = "Chr1", limits = c(1, 50000), cap = 10)

Differential Methylation analysis
We can also examine the methData object for differentially methylated regions using the
beta-binomial methods [2] implemented in baySeq. We first define a group structure on the
data.

> groups(hSL) <- list(NDE = c(1,1,1,1), DE = c("A", "A", "B", "B"))

The methObservables function pre-calculates a set of data to improve the speed of prior and
posterior estimation (at some minor memory cost).

> hSL <- methObservables(hSL)

The density function used here is a composite of the beta-binomial and a binomial distribution
that accounts for the reported non-conversion rates.
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> densityFunction(hSL) <- bbNCDist

We can then determine a prior distribution on the parameters of the model for the data.

> hSL <- getPriors(hSL, cl = cl)

We can then find the posterior likelihoods of the models defined in the groups structure.

> hSL <- getLikelihoods(hSL, cl = cl)

.

We can then retrieve the data for the top differentially methylated regions.

> topCounts(hSL, "DE")

seqnames start end width strand A.1 A.2 B.1 B.2

NA.3932 Chr1 1439804 1440002 199 * 1:239 0:119 102:56 11:5

NA.3064 Chr1 774658 774937 280 * 0:172 0:90 38:16 14:7

NA.3651 Chr1 1192725 1192730 6 * 37:4 15:2 0:55 0:8

NA.3225 Chr1 888560 888590 31 * 423:90 217:56 1:37 0:7

NA.4221 Chr1 1733868 1733987 120 * 0:104 0:150 76:62 11:7

NA.2257 Chr1 25580 25583 4 * 20:2 49:3 0:58 0:3

NA.2517 Chr1 297002 297016 15 * 60:23 48:19 0:48 0:9

NA.3229 Chr1 889432 889508 77 * 2:204 0:131 75:24 9:3

NA.2768 Chr1 526399 526607 209 * 113:148 150:192 0:300 0:15

NA.4179 Chr1 1686726 1686728 3 * 27:2 24:1 0:30 0:5

likes DE FDR.DE FWER.DE

NA.3932 0.9996912 B>A 0.0003088359 0.0003088359

NA.3064 0.9996892 B>A 0.0003098112 0.0006195264

NA.3651 0.9996150 A>B 0.0003348622 0.0010042520

NA.3225 0.9995704 A>B 0.0003585405 0.0014333962

NA.4221 0.9995684 B>A 0.0003731480 0.0018643556

NA.2257 0.9995678 A>B 0.0003829942 0.0022957746

NA.2517 0.9995406 A>B 0.0003939133 0.0027541480

NA.3229 0.9995296 B>A 0.0004034744 0.0032232545

NA.2768 0.9995003 A>B 0.0004141697 0.0037213755

NA.4179 0.9994953 A>B 0.0004232257 0.0042242269

Finally, to be a good citizen, we stop the cluster we started earlier:

> if(!is.null(cl))

+ stopCluster(cl)

Session Info

> sessionInfo()

R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.3 LTS
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Matrix products: default

BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] segmentSeq_2.28.0 ShortRead_1.52.0

[3] GenomicAlignments_1.30.0 SummarizedExperiment_1.24.0

[5] Biobase_2.54.0 MatrixGenerics_1.6.0

[7] matrixStats_0.61.0 Rsamtools_2.10.0

[9] Biostrings_2.62.0 XVector_0.34.0

[11] BiocParallel_1.28.0 baySeq_2.28.0

[13] abind_1.4-5 GenomicRanges_1.46.0

[15] GenomeInfoDb_1.30.0 IRanges_2.28.0

[17] S4Vectors_0.32.0 BiocGenerics_0.40.0

loaded via a namespace (and not attached):

[1] Rcpp_1.0.7 RColorBrewer_1.1-2 compiler_4.1.1

[4] BiocManager_1.30.16 bitops_1.0-7 tools_4.1.1

[7] zlibbioc_1.40.0 digest_0.6.28 evaluate_0.14

[10] lattice_0.20-45 png_0.1-7 rlang_0.4.12

[13] Matrix_1.3-4 DelayedArray_0.20.0 rstudioapi_0.13

[16] yaml_2.2.1 xfun_0.27 fastmap_1.1.0

[19] GenomeInfoDbData_1.2.7 hwriter_1.3.2 knitr_1.36

[22] locfit_1.5-9.4 grid_4.1.1 jpeg_0.1-9

[25] rmarkdown_2.11 latticeExtra_0.6-29 limma_3.50.0

[28] edgeR_3.36.0 htmltools_0.5.2 BiocStyle_2.22.0

[31] RCurl_1.98-1.5 crayon_1.4.1
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