matter: Rapid prototyping with data on disk

Kylie A. Bemis

October 26, 2021

Contents

1 Introduction 1
2 Installation. 2
3 Basic use and data manipulation. 2
4 Linear regression for on-disk datasets. 9
5 Principal components analysis for on-disk datasets 11
6 Design and implementation. 13
6.1 Sdclasses e 13

6.1.1 atoms: contiguous sectors of dataondisk 13

6.1.2 matter: vectors and matrices storedondisk 14

6.2 C++classes e 14

6.2.1 Atoms: contiguous sectors of dataondisk 15

6.2.2 Matter: vectors and matrices storedondisk 15

6.2.3 MatterIterator: iterate over virtual disk objects 15

7 Extending withnew S4 classes. 15
8 Sessioninfo. 17

1 Introduction

matter is designed for rapid prototyping of new statistical methods when working with larger-
than-memory datasets on disk. Unlike related packages bigmemory [1] and ff [2], which also
work with file-backed larger-than-memory datasets, matter aims to offer strict control over
memory and maximum flexibility with on-disk data structures, so it can be easily adapted to
domain-specific file formats, including user-customized file formats.

The vignettes of this package are organized as follows:

= “Rapid prototyping with data on disk”: This is the main vignette describing matter

and its general use, design, and extensibility. It walks through basic data manipulation,
data structures, and demonstrates an example S4 class extending matter.

matter: Rapid prototyping with data on disk

= “Supplementary 1 - Simulations and comparative benchmarks”: This supplementary
vignette re-works the simulated statistical analysis examples from this vignette using
bigmemory and ff and provides some basic benchmarks and comparisons of the three
packages.

= “Supplementary 2 - 3D mass spectrometry imaging case study”: This supplementary
vignette demonstrates using matter for principal components analysis on large experi-
mental data, along with in-depth comparisons with bigmemory and ff on real data.

2 Installation

matter can be installed from Bioconductor using the following commands in R.

> install.packages("BiocManager")
> BiocManager::install("matter")

3 Basic use and data manipulation

matter matrices and vectors can be initialized similarly to ordinary R matrices. When
no file is given, a new temporary file is created in the default temporary file directory,
which will be cleaned up later by either R or the operating system.

Here, we initialize a matter matrix with 10 rows and 5 columns. The resulting object
is a subclass of the matter class, and stores file metadata that gives the location of the
data on disk. In many cases, it can be treated as an ordinary R matrix.

> x <- matter_mat(data=1:50, nrow=10, ncol=5, datamode="double")
> X

<10 row, 5 column> matter_matc :: out-of-memory numeric matrix
[,11 [,21 [,31 [,41 [,5]

[1,] 1 11 21 31 41

[2,] 12 22 32 42

[3,1 13 23 33 43

[4,] 14 24 34 44

[5,] 15 25 35 45

[6,] 16 26 36 46

o U s WN

(6.9 KB real | 400 bytes virtual)
> x[]
[,11 [,21 [,31 [,41 [,5]
[1,] 1 11 21 31 41
[2,1] 12 22 32 42
[3,] 13 23 33 43
[4,] 14 24 34 44
[5,1] 15 25 35 45
[6,] 16 26 36 46
7,1 17 27 37 47
[8,1 18 28 38 48

0 NO U B WN

matter: Rapid prototyping with data on disk

[9,] 9 19 29 39 49
[10,] 10 20 30 40 50

As seen above, this is a small toy example in which the in-memory metadata actually
takes up more space than the size of the data stored on disk. For much larger datasets,
the in-memory metadata will be a small fraction of the total size of the dataset on disk.

matter's matrices and vectors can be indexed into like ordinary R matrices and vectors.
> x[1:4,]

[,11 [,21 [,3] [,4] [,5]
[1,] 1 11 21 31 41
[2,1 2 12 22 32 42
[3,1] 3 13 23 33 43
[4,] 4 14 24 34 44

> x[,3:4]

[,1] [,2]
[1,] 21 31
[2,] 22 32
[3,1] 23 33
[4,] 24 34
[5,] 25 35
[6,] 26 36
[7,] 27 37
[8,] 28 38
[9,1 29 39
[10,] 30 40

We can assign names to matter_vec vectors and row and column names to matter_mat
matrices.

> rownames(x) <- 1:10
> colnames(x) <- letters[1:5]
> x[]

b c d e
11 21 31 41
12 22 32 42
13 23 33 43
14 24 34 44
15 25 35 45
16 26 36 46
17 27 37 47
18 28 38 48
19 29 39 49
10 10 20 30 40 50

O 0o NOoO U B WN =
O 00O NO U WN RO

matter provides methods for calculating summary statistics for its vectors and matrices,
including some methods that do not exist in base R, such as colVars, which uses a
memory-efficient running variance calculation that is accurate for large floating-point
datasets [3].

matter: Rapid prototyping with data on disk

> colSums(x)

a b ¢ d e
55 155 255 355 455

> colSums(x[])

a b C d e
55 155 255 355 455

> colVars(x)

a b C d e
9.166667 9.166667 9.166667 9.166667 9.166667

> apply(x, 2, var)

a b C d e
9.166667 9.166667 9.166667 9.166667 9.166667

One of the major advantages of the flexibility of matter is being able to treat data
from multiple files as a single dataset. This is particularly useful if analysing data
from a domain where each sample in an experiment generates large files, such as high-
resolution, high-throughput mass spectrometry imaging.

Below, we create a second matrix, and show its data is stored in a separate file. We
then combine the matrices, and the result can be treated as a single matrix, despite
originating from multiple files. Combining the matrices does not create new data or
change the existing data on disk.

> y <- matter_mat(data=51:100, nrow=10, ncol=5, datamode="double")
> paths(x)

[1] "/tmp/RtmprYsRQx/filel3f8a8783fb8dc.bin"
> paths(y)
[1] "/tmp/RtmprYsRQx/filel3f8a843464494.bin"

> z <- cbind(x, y)
>z

<10 row, 10 column> matter_matc :: out-of-memory numeric matrix
a b ¢ d e
11 21 31 41 51 ...
12 22 32 42 52 ...
13 23 33 43 53 ...
14 24 34 44 54 ...
15 25 35 45 55 ...
16 26 36 46 56 ...

o Ul B WN
o Ul WN

(12.3 KB real | 800 bytes virtual)

> z[]

a b c d e
1 111 21 31 41 51 61 71 81 91
2 21222 32 42 52 62 72 82 92
3 313 23 33 43 5363 73 83 93

matter: Rapid prototyping with data on disk

14 24 34 44 54 64 74 84 94
15 25 35 45 55 65 75 85 95
16 26 36 46 56 66 76 86 96
17 27 37 47 57 67 77 87 97
18 28 38 48 58 68 78 88 98
19 29 39 49 59 69 79 89 99
10 10 20 30 40 50 60 70 80 90 100

© o ~N o U A
© o ~N o U

Note that matrices in matter are either stored in a column-major or a row-major format.
The default is to use the column-major format, as R does. Column-major matrices are
optimized for fast column-access, and assume that each column is stored contiguously
or mostly-contiguously on disk. Conversely, row-major matrices are optimized for fast
row-access, and make the same assumption for rows.

Since matter does support both column-major and row-major formats, transposing a
matrix is a trivial operation in matter that only needs to change the matrix metadata,
and doesn't touch the data on disk.

> t(x)

<5 row, 10 column> matter_matr :: out-of-memory numeric matrix
1 2 3 45 6 ...
1 2 3 4 5 6 ...

11 12 13 14 15 16 ...

21 22 23 24 25 26 ...

31 32 33 34 3536 ...

41 42 43 44 45 46 ...

7.1 KB real | 400 bytes virtual)

—~ 0O QO 0O T QO

> rbind(t(x), t(y))

<10 row, 10 column> matter_matr :: out-of-memory numeric matrix
1 2 3 4 5 6 ...
1 2 3 4 5 6 ...

11 12 13 14 15 16 ...

21 22 23 24 25 26 ...

31 32 33 34 35 36 ...

41 42 43 44 45 46 ...

51 52 53 54 55 56 ...

™ o N0 T 9

(12.3 KB real | 800 bytes virtual)
Note that this is equivalent to t(cbind(x, y)).

Below, we inspect the metadata associated with the different columns of x using the
atomdata method.

> atomdata(x)

<5 length, 5 group> atoms :: units of data

group_id source_id datamode offset extent index_offset index_extent
1 1 1 double 0 10 0 10
2 2 1 double 80 10 0 10
3 3 1 double 160 10 0 10
4 4 1 double 240 10 0 10

matter: Rapid prototyping with data on disk

5 5 1 double 320 10 0 10

This shows the “atoms” that compose the matter object. An atom in matter is a single
contiguous segment of a file on disk. In this case, each atom corresponds to a different
column. Note that each atom has a byte offset and an extent (i.e., length) associated
with it

Now we show how to create a matter object from a pre-existing file. We will first create
vectors corresponding to the second column of x and third column of y.

> x2 <- matter_vec(offset=80, extent=10, paths=paths(x), datamode="double")
> y3 <- matter_vec(offset=160, extent=10, paths=paths(y), datamode="double")
> cbind(x2, y3)[]

[,11 [,2]
[1,] 11 71
[2,] 12 72
[3,] 13 73
[4,] 14 74
[5,] 15 75
[6,] 16 76
[7,] 17 77
[8,] 18 78
[9,] 19 79
[10,] 20 80

> cbind(x[,2], y[,3])
[,11 [,2]

1 11 71
2 12 72
3 13 73
4 14 74
5 15 75
6 16 76
7 17 77
8 18 78
9 19 79
10 20 80

We can even combine multiple on-disk vectors together before binding them all into a
matrix.

> z <- cbind(c(x2, y3), c(y3, x2))
> atomdata(z)

<4 length, 2 group> atoms :: units of data

group_id source_id datamode offset extent index_offset index_extent
1 1 2 double 80 10 0 10
2 1 1 double 160 10 10 20
3 2 1 double 160 10 0 10
4 2 2 double 80 10 10 20

matter: Rapid prototyping with data on disk

[,11 [,2]
[1,] 11 71
[2,] 12 72
[3,] 13 73
[4,] 14 74
[5,] 15 75
[6,] 16 76
[7,] 17 77
[8,] 18 78
[9,] 19 79
[10,] 20 80
[11,] 71 11
[12,] 72 12
[13,] 73 13
[14,] 74 14
[15,] 75 15
[16,] 76 16
[17,] 77 17
[18,] 78 18
[19,] 79 19
[20,] 80 20

This is a quick and easy way to build a dataset from many files, or even many segments
of many files. Even if the resulting matrix would fit into memory, using matter can be
a tidy, efficient way of reading complex binary data from multiple files into R.

Lastly, it is straightforward to coerce common base R types to their matter object
equivalents using as.matter. This includes raw, logical, integer, numeric, and character
vectors, integer and numeric matrices, and data frames.

> vl <- 1:10
> v2 <- as.matter(vl)
> v2

<10 length> matter_vec :: out-of-memory integer vector
[11 [2] [3] [4] [5] [6]
1 2 3 4 5 6...
(6.6 KB real | 40 bytes virtual)

> v2[]
[11 1 2 3 4 5 6 7 8 910

> ml <- diag(3)
> m2 <- as.matter(ml)
> m2

<3 row, 3 column> matter_matc :: out-of-memory numeric matrix
[,11 [,2] [,3]

[1,1] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

(6.8 KB real | 72 bytes virtual)

> m2[]

matter: Rapid prototyping with data on disk

[,11 [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

> s] <- letters[1:10]
> s2 <- as.matter(sl)
> s2

<10 length> matter_str :: out-of-memory character vector
[1]
a ...
(13.6 KB real | 10 bytes virtual)

> s2[]
[1] Ilall Ilbll IICII IIdll Ilell Il.fll Ilgll Ilhll Ilill II]‘II

> dfl <- data.frame(a=v1l, b=sl, stringsAsFactors=FALSE)
> df2 <- as.matter(dfl)

> df2
<10 row, 2 column> matter_df :: out-of-memory data frame
a b
<matter_vec> <matter_str>
[1,] 1 a
[2,] 2 b
[3,] 3 ¢
[4,] 4 d
[5,1] 5 e
[6,] 6 f

(24.2 KB real | 50 bytes virtual)

> df2[]

© 00 NO Ul B WN =
O oo NOoO UL WN QO
— = DoDQ 0O Q 0O T 9 T

10 10 j

matter: Rapid prototyping with data on disk

4 Linear regression for on-disk datasets

matter is designed to provide a statistical computing environment for larger-than-
memory datasets on disk. To facilitate this, matter provides a method for fitting
of linear models for matter matrices through the biglm package [4]. matter provides
a wrapper for biglm's bigglm function that works with matter_mat matrices, which we

demonstrate below.

First, we simulate some data appropriate for linear regression.

vV + + + + V V V V V V V V V

<15000000 row, 10 column> matter_matc ::

set.seed(81216)
n <- 1.5e7
p<-9
b <- runif(p)
names(b) <- paste@("x", 1:p)
data <- matter_mat(nrow=n, ncol=p + 1, datamode="double")
colnames(data) <- c(names(b), "y")
data[,p + 1] <- rnorm(n)
for (i in 1:p) {
xi <- rnorm(n)
datal,i] <- xi
datal[,p + 1] <- data[,p + 1] + xi * b[i]
}
data

[1,]
[2,1]
[3,1]
[4,1]
[5,]
[6,]

[1,]
[2,]
(3,1
[4,]
[5,]
[6,]

-0.453304707309984
-1.603559736225
0.229209735172422

x1

-1.38862864778614

-0.364736562099852
-0.0720483755681418

x4

0.367485841409887

-0.361011198922584
1.53126321562766
-0.0839640429634791
-1.13518455259198
0.0347246884382338

1.40009227364354
-0.49305815460934
0.355754776323664
0.962935124371361
0.538644519901222
0.213869123415239

(14 KB real | 1.2 GB virtual)

> head(data)

[1,]
[2,]
[3,]
4,1
[5,1]
[6,]

0.599514365390825
0.586236619258292
0.513837718689535

0.14118915810331
0.431528195005573
0.274472405163109

X2

x5

X3

-0.139239535887671
-0.542127512351654
-1.7860077480016
0.316660657477085
1.18603276861004
-0.673054075893344

out-of-memory numeric matrix

X6 ...

x1 X2 x3 x4 x5
-0.45330471 0.5995144 -0.1392395 0.36748584 1.4000923
-1.60355974 0.5862366 -0.5421275 -0.36101120 -0.4930582
0.22920974 0.5138377 -1.7860077 1.53126322 0.3557548
-1.38862865 0.1411892 0.3166607 -0.08396404 0.9629351
-0.36473656 0.4315282 1.1860328 -1.13518455 0.5386445
-0.07204838 0.2744724 -0.6730541 0.03472469 0.2138691

0.555570751192535 ...
0.754944252355442 ...
-0.609381118269745 ...
0.344339708039398 ...

1.14261252422883 ...
0.592388565059538 ...

X6

.5555708
.7549443
.6093811

0.3443397

.1426125

0.5923886

matter: Rapid prototyping with data on disk

x7 X8 x9 y
[1,] -2.4031764 -0.57037899 -0.4356390 0.2280728
[2,] -0.1348020 ©0.05384544 -0.5209713 0.3358334
[3,] 1.0381120 0.72976777 0.9689488 3.8910764
[4,] -1.5310565 -0.44875206 -1.1320185 -0.8646491
[5,] 0.2239818 1.40000992 -0.9843404 1.8709778
[6,] 0.4852140 -0.29082018 1.0831832 1.5140973

This creates a 1.2 GB dataset on disk, but only about 12 KB of metadata is stored in
memory.

Now we calculate some statistical summaries using matter's apply method for mat
ter_mat matrices.

> apply(data, 2, mean)

x1 X2 X3 X4 x5
2.962621e-04 -2.596339e-04 -2.729651e-04 3.014581e-05 -5.893552e-05
X6 x7 X8 x9 y

-2.835383e-04 -1.309537e-04 -9.810476e-05 -1.404680e-04 -3.225581le-04

> apply(data, 2, var)

x1 x2 X3 x4 x5 X6 X7
1.0003094 0.9996336 0.9990518 1.0003654 0.9999593 0.9995961 0.9999286
X8 x9 y

1.0001395 0.9996875 4.4527319

We could also have used colMeans and colVars, which are specialized to be faster and
more memory efficient.

Now we fit the linear model to the data using the bigglm method for matter_mat
matrices. Note that it requires a formula, and (unfortunately) it does not allow y ~ .,
so all variables must be stated explicitly.

> fm <- as.formula(paste@("y ~ ", pasteO(names(b), collapse=" + ")))
> bigglm.out <- bigglm(fm, data=data, chunksize=10000)

> summary(bigglm.out)

Large data regression model: bigglm(formula, getNextDataChunk, ...)
Sample size = 1.5e+07

Coef (95% CI) SE p
(Intercept) 0.0004 -0.0001 0.0009 3e-04 0.1001
x1 0.1689 0.1684 0.1695 3e-04 0.0000
X2 0.9572 0.9566 0.9577 3e-04 0.0000
x3 0.3801 0.3796 0.3806 3e-04 0.0000
x4 0.6042 0.6037 0.6048 3e-04 0.0000
x5 0.5198 0.5193 0.5203 3e-04 0.0000
x6 0.6926 0.6921 0.6931 3e-04 0.0000
x7 0.8374 0.8369 0.8380 3e-04 0.0000
x8 0.4616 0.4610 0.4621 3e-04 0.0000
x9 0.5782 0.5777 0.5788 3e-04 0.0000

> chbind(coef(bigglm.out)[-1], b)

10

matter: Rapid prototyping with data on disk

b
x1 0.1689408 0.1689486
X2 0.9571547 0.9574388
x3 0.3800765 0.3802078
x4 0.6042379 0.6043915
x5 0.5198087 0.5194832
x6 0.6926179 0.6927430
x7 0.8374374 0.8373628
x8 0.4615518 0.4617963
x9 0.5782414 0.5775168

On a 2012 retina MacBook Pro with 2.6 GHz Intel CPU, 16 GB RAM, and 500 GB
SSD, fitting the linear model takes 40 seconds and uses an additional 400 MB of
memory overhead. The max amount of memory used while fitting the model was only
650 MB, for the 1.2 GB dataset. This memory usage can be controlled further by
using the chunksize argument in bigglm or by specifying a different chunksize for the
matter object.

5 Principal components analysis for on-disk datasets

Because matter provides basic linear algebra for on-disk matter_mat matrices with in-
memory R matrices, it opens up the possibility for the use of many iterative statistical
methods which can operate on only small portions of the data at a time.

For example, matter_mat matrices are compatible with the irlba package, which per-
forms efficient, bounded-memory singular value decomposition (SVD) of matrices, and
which can therefore be used for efficient principal components analysis (PCA) of large
datasets [5].

For convenience, matter provides a prcomp method for performing PCA on matter_mat
matrices using the irlba method from the irlba package, as demonstrated below.

First, we simulate some data appropriate for principal components analysis.

> set.seed(81216)
n <- 1.5e6
p <- 100
data <- matter_mat(nrow=n, ncol=p, datamode="double")
for (1 in 1:10)

data[,1i] <- (1:n)/n + rnorm(n)
for (i in 11:20)

data[,i] <- (n:1)/n + rnorm(n)
for (i in 21:p)

datal[,i] <- rnorm(n)
data

vV + V + V + V V V V

<1500000 row, 100 column> matter_matc :: out-of-memory numeric matrix
[,1] [,2] [,3]

[1,] -0.958327568702475 0.275577524187204 -0.887233408757262

[2,] -0.30493385040673 1.25830000385754 -0.372366320827122

[3,] 0.0488585855039826 0.334930568225928 0.195463902180222

[4,]1] 0.983679567123134 0.0170175309380552 0.691561717217739

matter: Rapid prototyping with data on disk

[5,] 0.195548337074337 0.00813590794917924 -0.419399442896796
[6,] 1.87532041011494 1.20399768501766 1.21652000363223
[,4] [,5] [,6] ...
[1,]1 -1.77270213007981 -0.963877538872828 -0.994567853310815 ...
[2,] -0.460991028635869 -0.520983285747269 -0.30604472854568 ...
[3,] 0.0976829967454221 0.4287921961907 -1.27785736097015 ...
[4,] -0.349494137163228 0.195244566791897 -0.194911009269911 ...

[5,] -0.050063674723078 0.438584851998696 -0.995859895958513 ...
[6,] -1.06033279494112 -0.428354335544101 -0.917993930577563 ...

(13.3 KB real | 1.2 GB virtual)

This again creates a 1.2 GB dataset on disk, but only about 12 KB of metadata is stored
in memory. More metadata is stored compared to the previous example, because the
matrix has more columns, and it is stored as a column-major matter_matc matrix with
independent metadata for each column.

Note that, in the simulated data, only the first twenty variables show systematic vari-
ation, with the first ten variables varying distinctly from the next ten variables.

First we calculate the variance for each column.

> var.out <- colVars(data)
> plot(var.out, type='h', ylab="Variance")

This takes only 7 seconds and uses less than 30 KB of additional memory. The maxi-
mum amount of memory used while calculating the variance for all columns of the 1.2
GB dataset is only 27 MB.

Note that the irlba function has an optional argument mult which allows specification
of a custom matrix multiplication method, for use with packages such as bigmemory
and ff. This is especially useful since it allows a transpose=TRUE argument, so that the
identity t(t(B) %% A) can be used in place of t(A) %% B) when transposition is an
expensive operation. However, this is not necessary for matter, since transposition is a
trivial operation for matter_mat matrices.

Implicit scaling and centering is supported in matter, so the data can be scaled and
centered without changing the data on disk or the additional overhead of storing a
scaled version of the data.

Unlike the default prcomp method for ordinary R matrices, this version supports an
argument n for specifying the number of principal components to calculate.

> prcomp.out <- prcomp(data, n=2, center=FALSE, scale.=FALSE)
On a 2012 retina MacBook Pro with 2.6 GHz Intel CPU, 16 GB RAM, and 500 GB
SSD, calculating the first two principal components takes 100 seconds and uses an

additional 450 MB of memory overhead. The max amount of memory used during the
computation was only 700 MB, for the 1.2 GB dataset.

Now we plot the first two principal components.

> plot(prcomp.out$rotation[,1], type='h', ylab="PC 1")

12

matter: Rapid prototyping with data on disk

> plot(prcomp.out$rotation[,2], type='h', ylab="PC 2")

(a) Sample vari-

ance (b) PC1 loadings (c) PC2 loadings

Figure 1: Principal components analysis for on-disk dataset

As shown in the plots of the first and second principal components, the first PC shows
that most of the variation in the data occurs in the first twenty variables, while the
second PC distinguishes the first ten variables from the next ten variables.

Design and implementation

6.1

6.1.1

The matter package is designed with several goals in mind. Like the bigmemory and ff
packages, it seeks to make statistical methods scalable to larger-than-memory datasets
by utilizing data-on-disk. Unlike those packages, it seeks to make domain-specific
file formats (such as Analyze 7.5 and imzML for MS imaging experiments) accessible
from disk directly without additional file conversion. It seeks to have a minimal memory
footprint, and require minimal developer effort to use, while maintaining computational
efficiency wherever possible.

S4 classes

matter utilizes S4 classes to implement on-disk matrices in a way so that they can be
seamlessly accessed as if they were ordinary R matrices. These are the atoms class and
the matter class. The atoms class is not exported to the user, who only interacts with
the matter class and matter objects to create and manipulate on-disk matrices.

atoms: contiguous sectors of data on disk

By analogy to R's notion of “atomic” vectors, the atoms class uses the notion of
contiguous “atomic” sectors of disk. Each “atom" in an atoms object gives the location
of one block of contiguous data on disk, as denoted by a file path, an byte offset from
the beginning of the file, a data type, and the number of data elements (i.e., the
length) of the atom. An atoms object may consist of many atoms from multiple files
and multiple locations on disk, while ultimately representing a single vector or row or
column of a matrix. The “atoms” may be arranged into group, corresponding to rows
or columns of a matrix, margins of an array, elements of a list, etc.

Structure:
= natoms: the number of atoms
= ngroups: the number of groups

= group_id: which group each atom belongs to

13

matter: Rapid prototyping with data on disk

6.1.2

6.2

= source_id: the ID’s of the file paths where each atom is located

= datamode: the type of data (short, int, long, float, double) for each atom
= offset: each atom's byte offset from the beginning of the file

= extent: the length of each atom

= index_offset: the cumulative index of the first element of each atom

= index_extent: the cumulative one-past-the-end index of each atom

The atoms class has a C++ backend in the Atoms C++ class.

matter: vectors and matrices stored on disk

A matter object is made of one or more atoms objects, and represents a vector or
matrix. It includes additional metadata such as dimensions and row names or column
names.

Structure:
= data: one or more atoms objects
= datamode: the type of data (integer, numeric) for the represented vector or matrix
= paths: the paths to the files used by the atoms objects
= filemode: should the files be open for read/write, or read-only?

= chunksize: how large the chunk sizes should be for calculations that operate on
chunks of the dataset

= length: the total length of the dataset

= dim: the extent of each dimension (for a matrix)

= names: the names of the data elements (e.g., for a vector)
= dimnames: the names of the dimensions (e.g., for a matrix)
= ops: delayed operations registered to the object

A matter_vec vector contains a single atoms object that represents all of the atoms
of the vector. The matter_mat matrix class has two subtypes for column-major (mat
ter_matc) and row-major (matter_matr) matrices. A column-major matter_matc ma-
trix has one atoms object for each column, while a row-major matter_matr matrix has
one atoms object for each row.

The matter class has a C++ backend in the Matter C++ class.

C++ classes

matter utilizes a C++ backend to access the data on disk and transform it into the
appropriate representation in R. Although these classes correspond to S4 classes in R,
and are responsible for most of the computational work, all of the required metadata
is stored in the S4 classes in R, and are simply read by the C4++ classes. This means
that matter never depends on external pointers, which makes it trivial to share mat
ter vectors and matter matrices between R sessions that have access to the same
filesystem.

14

matter: Rapid prototyping with data on disk

6.2.1

6.2.2

6.2.3

Atoms: contiguous sectors of data on disk

The Atoms C++ class is responsible for reading and writing the data on disk, based
on its metadata. For computational efficiency, it tries to perform sequential reads over
random read/writes whenever possible, while minimizing the total number of atomic
read /writes on disk.

Matter: vectors and matrices stored on disk

The Matter C++ class is responsible for transforming the data read by the Atoms class
into a format appropriate for R. This may include re-arranging contiguous data that
has been read sequentially into a different order, either due to the inherent organization
of the dataset, or as requested by the user in R.

MatterIterator: iterate over virtual disk objects

The MatterIterator C4++ class acts similarly to an iterator, and allows buffered itera-
tion over a Matter object. It can either iterate over the whole dataset (for both vectors
and matrices), or over a single column for column-major matrices, or over a single row
for row-major matrices.

A MatterIterator object will load portions of the dataset (as many elements as the
chunksize at once) into memory, and then free that portion of the data and load a
new chunk, as necessary. This buffering is handled automatically by the class, and code
can treat it as a regular iterator. This allows seamless and simple iteration over Matter
objects while maintaining strict control over the memory footprint of the calculation.

Extending with new S4 classes

The matter package is intended to be extensible to any uncompressed, open-source
format. For example, the Cardinal package uses matter to attach Analyze 7.5 and
imzML datasets, which are popular open-source data formats in mass spectrometry
imaging. The flexibility of matter in terms of specifying custom file formats with a
high degree of control distinguishes it from other packages for working with large,
on-disk datasets in R.

In this section, we demonstrate how one could create a custom S4 class for genomics
sequencing data.

We begin by creating a small toy example of a FASTQ file with only two sample reads
from a larger library [6] and writing them to disk.

seqs <- c("@SRR0O01666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=72",

"GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGTTACCCTTAACAACTTAAGGGTTTTCAAATAGA",

"+SRR0O01666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=72",

"@SRR0O01666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=72",

>
+
+
+ "IIITIIITITIIITITIIITITIIIITITIIIOIGOICITIIIIIITITIIIITITITIIIIDITIITIII>IIIIILI/",
+
+ "GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGAAGCAGAAGTCGATGATAATACGCGTCGTTTTATCAT",
+

"+SRR001666.2 071112_SLXA-EAS1_s_7:5:1:801:338 length=72",

+ “TITITIITITITIITITITITITIITITITIITI6IBITTIITITITTIITITITIITITITGITI>IITIII-I)8I")

> file <- tempfile()
> writeLines(seqs, file)

15

matter: Rapid prototyping with data on disk

We create a new S4 class called Fastq, with slots for a sequence identifier, the raw
sequence of letters, and the quality values for the sequence, all of which will be objects
of the matter_str class for on-disk strings.

We also create generic functions and S4 methods to access these slots. Note that if we
were creating this class for a package, it would be wiser to import the existing generic
functions from packages Biostrings and ShortRead. For the purpose of demonstration,
we define them here.

> setClass("Fastq", slots=c(

+ id = "matter_str",

+ sread = "matter_str",

+ quality = "matter_str"))

> setGeneric("id", function(x) standardGeneric("id"))

[1] Ilidll

> setGeneric("sread", function(object, ...) standardGeneric("sread"))

[1] "sread"

> setGeneric("quality", function(object, ...) standardGeneric("quality"))

[1] "quality"

> setMethod("id", "Fastq", function(x) x@id)
> setMethod("sread", "Fastq", function(object) object@sread)
> setMethod("quality", "Fastq", function(object) object@quality)

Now we write a function for constructing the new class. First we attach the file as a flat
matter_vec raw byte vector, and calculate the byte offsets of the new lines in the file.
This is done by calling which(raw == charToRaw('\n"')), which requires parsing the
whole vector to do the elementwise comparisons. Note that matter will automatically
perform this operation in chunks in efficient C4++ code. For a large dataset, this means
that only chunksize(raw) data elements are ever loaded into memory at once.

attachFastq <- function(file) {
length <- file.info(file)$size
raw <- matter_vec(paths=file, length=length, datamode="raw")
newlines <- which(raw == charToRaw('\n')) # parses the file in chunks
if (newlines[length(newlines)] == length)
newlines <- newlines[-length(newlines)]
byte_start <- c(0L, newlines)
byte_end <- c(newlines, length) - 1L # don't include the '\n'
line_offset <- byte_start
line_extent <- byte_end - byte_start

offset=1L + line_offset[c(TRUE, FALSE,FALSE,FALSE)], # skip the '@'
extent=1line_extent[c(TRUE, FALSE, FALSE,FALSE)] - 1L) # adjust for '@'

sread <- matter_str(paths=file,
offset=line_offset[c(FALSE, TRUE, FALSE, FALSE)],
extent=1line_extent[c(FALSE, TRUE, FALSE, FALSE)])

quality <- matter_str(paths=file,
offset=line_offset[c(FALSE, FALSE, FALSE, TRUE)],
extent=line_extent[c(FALSE, FALSE, FALSE, TRUE)])

>
+
+
+
+
+
+
+
+
+
+ id <- matter_str(paths=file,
+
+
+
+
+
+
+
+
+ new("Fastq", id=id, sread=sread, quality=quality)

matter: Rapid prototyping with data on disk

+}
Now we can call our attachFastq function to parse the file and create an object of our
new class Fastq.

> fq <- attachFastq(file)
> fq

An object of class "Fastq"

Slot "id":

<2 length> matter_str :: out-of-memory character vector
(6.9 KB real | 108 bytes virtual)

Slot "sread":
<2 length> matter_str :: out-of-memory character vector
(6.9 KB real | 144 bytes virtual)

Slot "quality":
<2 length> matter_str :: out-of-memory character vector
(6.9 KB real | 144 bytes virtual)

> 1id(fq)[1]

[1] "SRROO1666.1 071112 _SLXA-EAS1 s _7:5:1:817:345 length=72"

> 1d(fq)[2]

[1] "SRRO0O1666.2 071112 _SLXA-EAS1 s _7:5:1:801:338 length=72"

> sread(fq)[1]

[1] "GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGTTACCCTTAACAACTTAAGGGTTTTCAAATAGA"
> sread(fq)[2]

[1] "GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGAAGCAGAAGTCGATGATAATACGCGTCGTTTTATCAT"
> quality(fq)[1]

[1] "ITIIITIIIIIITIIIIITIIIIIITIIIIIITIOIGOICIIIIIIIIIIIITIIIIIITIDIIITIIII>IIIIILI/"
> quality(fq)[2]

[1] "ITIIIIIIIIIIIIIIIIIIIIIIIIIIIITIIGIBITIIIIIIIITIIIITIIIIIIIIIIGII>IIIII-1)8I"
Although this example used only a small toy data file, the same class and parsing

function could be applied to much larger files. Very large files would take some time to
parse and index the newlines, but the our Fastq class would remain memory-efficient.

8 Session info

= R version 4.1.1 (2021-08-10), x86_64-pc-linux-gnu

= Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

17

matter: Rapid prototyping with data on disk

= Running under: Ubuntu 20.04.3 LTS

= Matrix products: default

= BLAS: /home/biocbuild/bbs-3.14-bioc/R/1ib/1ibRblas.so

= LAPACK: /home/biocbuild/bbs-3.14-bioc/R/1lib/1ibRlapack.so

= Base packages: base, datasets, grDevices, graphics, methods, stats, utils

= Other packages: BiocParallel 1.28.0, DBI 1.1.1, Matrix 1.3-4, biglm 0.9-2.1,
matter 1.20.0

= Loaded via a namespace (and not attached): BiocGenerics 0.40.0,
BiocManager 1.30.16, BiocStyle 2.22.0, ProtGenerics 1.26.0, compiler 4.1.1,
digest 0.6.28, evaluate 0.14, fastmap 1.1.0, grid 4.1.1, htmltools 0.5.2,
irlba 2.3.3, knitr 1.36, lattice 0.20-45, parallel 4.1.1, rlang 0.4.12,
rmarkdown 2.11, tools 4.1.1, xfun 0.27, yaml 2.2.1

References

[1] Michael J. Kane, John Emerson, and Stephen Weston. Scalable strategies for
computing with massive data. Journal of Statistical Software, 55(14):1-19, 2013.
URL: http://www.jstatsoft.org/v55/i14/.

[2] Daniel Adler, Christian Glaser, Oleg Nenadic, Jens Oehlschlagel, and Walter
Zucchini. ff: memory-efficient storage of large data on disk and fast access
functions, 2014. R package version 2.2-13. URL:
https://CRAN.R-project.org/package=ff.

[3] B P Welford. Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics, 4(3):1-3, August 1962.

[4] Thomas Lumley. biglm: bounded memory linear and generalized linear models,
2013. R package version 0.9-1. URL:
https://CRAN.R-project.org/package=biglm.

[5] Jim Baglama and Lothar Reichel. irlba: Fast Truncated SVD, PCA and
Symmetric Eigendecomposition for Large Dense and Sparse Matrices, 2015. R
package version 2.0.0. URL: https://CRAN.R-project.org/package=irlba.

[6] Srx000430: lllumina sequencing of escherichia coli str. k-12 substr. mgl655
genomic paired-end library. URL: https://www.ncbi.nlm.nih.gov/sra/SRR001666.

18

http://www.jstatsoft.org/v55/i14/
https://CRAN.R-project.org/package=ff
https://CRAN.R-project.org/package=biglm
https://CRAN.R-project.org/package=irlba
https://www.ncbi.nlm.nih.gov/sra/SRR001666

	1 Introduction
	2 Installation
	3 Basic use and data manipulation
	4 Linear regression for on-disk datasets
	5 Principal components analysis for on-disk datasets
	6 Design and implementation
	6.1 S4 classes
	6.1.1 atoms: contiguous sectors of data on disk
	6.1.2 matter: vectors and matrices stored on disk

	6.2 C++ classes
	6.2.1 Atoms: contiguous sectors of data on disk
	6.2.2 Matter: vectors and matrices stored on disk
	6.2.3 MatterIterator: iterate over virtual disk objects

	7 Extending with new S4 classes
	8 Session info

